RESUMO
This study aimed to determine the antiulcerogenic and antioxidant activities of Psyllium (Plantago ovata Forssk) seed ethanolic extract in rats. We assessed the antioxidant potential using free radical scavenging on DPPH, ß-carotene bleaching activity, ferric reducing power, and hydroxyl radical scavenging activity. In the antiulcerogenic study, pre-treatment with Plantago ovata seeds ethanolic extract (POE) (400 mg/kg b.wt) significantly protected against ethanol-induced gastric ulcer in rats by decreasing the ulcer index value and preserving the integrity of the gastric mucosa. The oxidative stress status in the stomach tissues showed a significant increase in the antioxidant enzyme levels of superoxide dismutase, catalase, and glutathione peroxidase with a significant decrease in lipid peroxidation during pre-treatment with POE. In conclusion, the POE protects against gastric ulcer due to its antioxidant potential and presence of bioactive molecules.
O presente estudo teve como objetivo determinar as atividades antiulcerogênica e antioxidante das sementes de Psyllium (Plantago ovata Forssk) em ratos. O potencial antioxidante foi avaliado utilizando o método do sequestro do radical livre DPPH, autooxidação do ß-caroteno, poder redutor de ferro e atividade de sequestro do radical hidroxila. No estudo antiulcerogênico, o pré-tratamento com o extrato etanólico das sementes de Plantago ovata (POE) (400 mg/Kg b.wt) reduziu a úlcera gástrica induzida pelo etanol em ratos, diminuindo o valor do índice de úlcera e preservando a integridade da mucosa gástrica. O estudo do estresse oxidativo nos tecidos estomacais mostrou um aumento significativo dos níveis das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase, com uma diminuição significativa da peroxidação lipídica enquanto pré-tratamento com POE. Em conclusão, o POE protege contra úlcera gástrica devido aos seus potenciais antioxidantes e à presença de moléculas bioativas.
Assuntos
Ratos , Plantago , Úlcera Gástrica , Mucosa Gástrica , Fitoterapia , AntioxidantesRESUMO
Species in the genus Plantago have several unique traits that have led to them being adapted as model plants in various fields of study. However, the lack of a genetic manipulation system prevents in-depth investigation of gene function, limiting the versatility of this genus as a model. Here, a transformation protocol is presented for Plantago lanceolata, the most commonly studied Plantago species. Using Agrobacterium tumefaciens-mediated transformation, 3 week-old roots of aseptically grown P. lanceolata plants were infected with bacteria, incubated for 2-3 days, and then transferred to a shoot induction medium with appropriate antibiotic selection. Shoots typically emerged from the medium after 1 month, and roots developed 1-4 weeks after the shoots were transferred to the root induction medium. The plants were then acclimated to a soil environment and tested for the presence of a transgene using the ß-glucuronidase (GUS) reporter assay. The transformation efficiency of the current method is ~20%, with two transgenic plants emerging per 10 root tissues transformed. Establishing a transformation protocol for narrowleaf plantain will facilitate the adoption of this plant as a new model species in various areas.
Assuntos
Agrobacterium tumefaciens , Plantago , Agrobacterium tumefaciens/genética , Plantago/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Transformação GenéticaRESUMO
INTRODUCTION: The use of herbal extracts is increasing because of the increase in bacterial resistance to conventional antibiotics. Plantago major is frequently used in traditional medicine because of its medicinal properties. The aim of the current study was to assess the antibacterial efficacy of an ethanolic extract of P. major leaves against Pseudomonas aeruginosa isolated from burn infections. METHODOLOGY: One hundred and twenty burn samples were collected from hospitalized patients at the Burn Hospital in Duhok city. The bacterium was identified using Gram stain, colony morphology, biochemical tests and selective differential media. Antibacterial activity of P. major leaves was assessed by using an ethanolic extract in serial dilutions of 100, 75, 50, 25, and 10 % and disc diffusion assay. Antibiotic susceptibility testing was also performed by disk diffusion using Muller-Hinton agar medium. RESULTS: Different concentrations of the ethanolic extract of P. major leaves exhibited different zones of inhibition against P. aeruginosa from 9.93 mm to 22.18 mm in diameter. The inhibition zone increased as the concentration of the extract increased. The 100% ethanolic extract had the greatest inhibitory effect, inhibiting bacteria in the zone of 22.18 mm diameter. This bacterium showed a high level of resistance to the antibiotics used. CONCLUSIONS: This study demonstrated that herbal extracts could be used as a combination therapy with antibiotics and chemical drugs in the elimination of bacterial growth. Further investigations and future experiments, need to be carried out before recommending use of herbal extracts.
Assuntos
Queimaduras , Doenças Transmissíveis , Plantago , Humanos , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Bactérias , Antibacterianos/farmacologia , Folhas de Planta/químicaRESUMO
Plantain peels as agro-waste are generated in the millions of tons per year with no profitable management strategies. On the other hand, the excessive use of plastic packaging threatens the environment and human health. This research aimed to address both problems via a green approach. High-quality pectin was recovered from plantain peels via an enzyme-assisted and ethanol-recycling process. The yield and galacturonic acid (GalA) content of the recovered low methoxy pectin was 12.43% and 25.0%, respectively, when cellulase was added at 50 U per 5 g peel powder, with a significantly higher recovery rate and purity than the pectin products extracted with no cellulase (P ≤ 0.05). The recovered pectin was further integrated and reinforced with beeswax solid-lipid nanoparticles (BSLNs) to fabricate films as a potential alternative packaging material to single-use plastics. The reinforced pectin films showed improved light barrier, water resistance, mechanical, conformational, and morphological properties. This study presents a sustainable strategy to transform plantain peels into pectin products and pectin-based packaging films with broad applications.
Assuntos
Pectinas , Plantago , Humanos , Embalagem de Produtos , PlásticosRESUMO
The combined efficacy in lowering serum lipid levels and increasing kidney protection of Plantago asiatica L. seed (Plantago) and Coptis chinensis Franch. rhizoma (Coptis) is far better than the effects of either herb alone. This finding suggests that there must be some degree of herb-herb interactions (HHI) affect potency. Here, we chose geniposidic acid (GPA), acteoside (ACT), and plantagoamidinic acid A (PLA) as active components in Plantago, and berberine (BBR) as the active component in Coptis, and, using transporter gene-transfected Madin-Darby canine kidney (MDCK) cells in combination with specific substrates and inhibitors, investigated Plantago- Coptis HHIs. We also established a UPLC-MS/MS analytical method to determine substrate content. Results showed that PLA in Plantago was a substrate of rOCT1/2 and rMATE1, and had inhibitory effects on rOCT2 and rMATE1. We also found that ACT is a substrate of rMATE1, but GPA was not a substrate of any transporter that we investigated. When BBR was used as the substrate, the inhibition rate of 10 µM PLA was 53.6% on rOCT2 and 31.5% on rMATE1. The inhibition rates of 30 µM ACT and 30 µM GPA on rMATE1 were 47.0% and 31.0%, respectively. Thus, our findings suggest that GPA, ACT, PLA, and BBR have competitive interactions that are driven by the rOCT2 and rMATE1 transporters. These interactions affect the transport and excretion of compounds and result in efficacy changes after co-administration.
Assuntos
Coptis , Plantago , Animais , Cães , Espectrometria de Massas em Tandem/métodos , Coptis chinensis , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Proteínas de Transporte de Cátions Orgânicos , Coptis/química , Sementes , PoliésteresRESUMO
The aim of the study was to characterize raw aqueous extracts from Plantago ovata husk in terms of molecular chain mass, osmotic, hydrodynamic, and rheological properties. The raw extracts used in this study have not been yet investigated in the indicated research area. Determination of the molecular weight of the chains present in the extract was performed by gel permeation chromatography (GPC). Osmotic properties were characterized using membrane osmometry. Rheological properties were investigated via classical rotational rheology with normal force measurements, as well as less common but equally important measurements of extensional viscosity. Two types of chains with an average molecular mass of 200 and 1780 kDa were found. The values of the first virial coefficient (B2) indicate the predominance of biopolymer-biopolymer interactions. The hydrodynamic radius established at 25 and 30 °C was 74 and 67 nm, respectively, and lower than at 40 °C (>600 nm). The first critical concentration was determined: c*=0.11 g·dL-1. The dominance of negative normal force values resulting from the formation of a pseudo-gel structure of the heteroxylates was demonstrated. Extensional viscosity measurement results revealed that the studied extracts cannot be treated as simple shear-thinning fluids, as indicated by shear flow, but should be considered as viscoelastic fluids.
Assuntos
Plantago , Plantago/química , Hidrodinâmica , Reologia , ViscosidadeRESUMO
Plantago ovata is cultivated for production of its seed husk (psyllium). When wet, the husk transforms into a mucilage with properties suitable for pharmaceutical industries, utilised in supplements for controlling blood cholesterol levels, and food industries for making gluten-free products. There has been limited success in improving husk quantity and quality through breeding approaches, partly due to the lack of a reference genome. Here we constructed the first chromosome-scale reference assembly of P. ovata using a combination of 5.98 million PacBio and 636.5 million Hi-C reads. We also used corrected PacBio reads to estimate genome size and transcripts to generate gene models. The final assembly covers ~ 500 Mb with 99.3% gene set completeness. A total of 97% of the sequences are anchored to four chromosomes with an N50 of ~ 128.87 Mb. The P. ovata genome contains 61.90% repeats, where 40.04% are long terminal repeats. We identified 41,820 protein-coding genes, 411 non-coding RNAs, 108 ribosomal RNAs, and 1295 transfer RNAs. This genome will provide a resource for plant breeding programs to, for example, reduce agronomic constraints such as seed shattering, increase psyllium yield and quality, and overcome crop disease susceptibility.
Assuntos
Plantago , Psyllium , Plantago/genética , Melhoramento Vegetal , Cromossomos , GenomaRESUMO
Monocyte-derived macrophages can be polarized into antitumor M1 phenotype, which inhibited the growth of tumors, and immune-suppressive M2 phenotype, which promoted the development and metastasis of tumors. Plantain polysaccharide (PLP), extracted from the Plantago asiatica, has shown its various biological activities. However, the ability of PLP involved in immune regulation was still obscure. Accordingly, we aimed to investigate whether PLP could polarize macrophages and further inhibit 4T1 tumor cells in vivo and in vitro. In this research, in vitro results showed that PLP displayed the potential in polarizing RAW264.7 macrophages into M1 phenotype and indirect inhibiting migratory effect on 4T1 cells. Furthermore, the phagocytosis and the release of reactive oxygen species (ROS) of macrophages were enhanced. In vivo anti-tumor results demonstrated that PLP could effectively inhibit the growth of 4T1 breast tumors by promoting accumulation of macrophages and T cells in the spleen and lymph node. In conclusion, these findings indicated that PLP inhibited the proliferation and progression of breast tumors by accumulating CD4+, CD8+ T cells and M1-like macrophages in lymph node and spleen, and therefore provided an experimental basis for PLP as a potential antitumor adjunctive therapy in preclinical and clinical trials.
Assuntos
Neoplasias da Mama , Plantago , Humanos , Feminino , Linfócitos T CD8-Positivos , Macrófagos , Fenótipo , Polissacarídeos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular TumoralRESUMO
Plantago asiatica L. is a representative individual species of Plantaginaceae, whose high reputation is owed to its edible and medicinal values. However, the phylogeny and genes of the P. asiatica chloroplast have not yet been well described. Here we report the findings of a comprehensive analysis of the P. asiatica chloroplast genome. The P. asiatica chloroplast genome is 164,992 bp, circular, and has a GC content of 37.98%. The circular genome contains 141 genes, including 8 rRNAs, 38 tRNAs, and 95 protein-coding genes. Seventy-two simple sequence repeats are detected. Comparative chloroplast genome analysis of six related species suggests that a higher similarity exists in the coding region than the non-coding region, and differences in the degree of preservation is smaller between P. asiatica and Plantago depressa than among others. Our phylogenetic analysis illustrates P. asiatica has a relatively close relationship with P. depressa, which was also divided into different clades with Plantago ovata and Plantago lagopus in the genus Plantago. This analysis of the P. asiatica chloroplast genome contributes to an improved deeply understanding of the evolutionary relationships among Plantaginaceae.
Assuntos
Genoma de Cloroplastos , Plantaginaceae , Plantago , Plantago/genética , Plantaginaceae/genética , Filogenia , Genoma de Cloroplastos/genética , Cloroplastos/genéticaRESUMO
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Assuntos
Plantago , Plantago/química , Antivirais/farmacologia , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/farmacologia , Ásia , Extratos Vegetais/farmacologiaRESUMO
Dairy cow urine patches contain high rates of nitrogen (N; >500 kg N/ha) and represent the main source of N loss from grazed pastoral systems. Emerging research has identified plantain (Plantago lanceolata) as a key forage to potentially reduce urine N (UN) losses from dairy cows. This experiment examined the effect of increasing proportions of plantain in the diet of dairy cows on UN excretion relative to a ryegrass-white clover diet. Twenty mixed aged non-lactating dairy cows were randomly assigned to one of five treatment diets; 0 %, 20 %, 40 %, 60 % or 100 % plantain (dry matter basis), with the remainder comprised of ryegrass-white clover pasture and grass-silage. Cows were fitted with urine sensors to measure urination event N concentration, volume and frequency. Daily N intake increased with increasing proportions of plantain in the diet due to the greater N concentration of plantain. Conversely, mean UN concentration was reduced as the proportion of plantain in the diet increased. Urine-N concentration was >40 % lower for cows on 100 % plantain compared with 0 % plantain (0.46 and 0.81 % N respectively). There was no treatment effect on the total daily amount of UN excreted, indicating a dilution effect of plantain as total daily urine volumes markedly increased with increasing plantain diets. Nitrogen load per urination event was lower for cows on 100 % plantain than 0 % despite greater N intake, with no significant difference for the intermediate treatment groups. The reduced N load per event for cows on >60 % plantain could help to reduce N leaching losses at the urine patch level. This experiment suggests that a reduction in UN concentration can be achieved on low levels of plantain (20 % of the diet), but >60 % plantain diets are required to reduce N load per event.
Assuntos
Lolium , Plantago , Animais , Bovinos , Feminino , Dieta/veterinária , Lactação , Medicago , Leite/química , Nitrogênio/análise , SilagemRESUMO
Infections caused by the monkeypox virus (MPXV) have continued to be transmitted significantly in recent years. However, understanding the transmission mechanism, risk factors, and consequences of infection are still limited. Structure-based drug design for MPXV is at an early stage due to the availability of protein structures that have been determined experimentally. However, the structure of the A42R profilin-like protein of MPXV has been solved and submitted to the structure database. This study illustrated an in silico structure-based approach to identify the potential hit compound against A42R of MPXV. Here, 65 Plantago lanceolata compounds were computationally screened against A42R of MPXV. Virtual screening identified top five hits (i) Luteolin 7,3'-Diglucuronide (PubChem ID: 44258091), (ii) Luteolin 7-Glucuronide-3'-Glucoside (PubChem ID: 44258090), (iii) Plantagoside (PubChem ID: 174157), (iv) Narcissoside (PubChem ID: 5481663), and (v) (AlphaE,8S,9R)-N-(3,4-Dihydroxyphenethyl)-8-[(3,4-Dihydroxyphenethyl)Carbamoyl]-9-(1,3-Benzodioxole-5-Yl)-3aalpha,7aalpha-Ethano-1,3-Benzodioxole-5-Acrylamide (PubChem ID: 101131595), with binding energy <-9.0 kcal/mol that was further validated by re-docking and molecular dynamic (MD) simulation. Interaction analysis of re-docked poses confirmed the binding of these top hits to the A42R protein as reported in the reference compound, including active residues ARG114, ARG115, and ARG119. Further, MD simulation and post-simulation analysis support Plantagoside and Narcissoside for substantial stability in the binding pocket of viral protein contributed by hydrogen and hydrophobic interactions. The compounds can be considered for further optimisation and in vitro experimental validation for anti-monkeypox drug development.
Assuntos
Vírus da Varíola dos Macacos , Plantago , Luteolina , Profilinas , Antivirais/farmacologia , Simulação de Dinâmica Molecular , BenzodioxóisRESUMO
Introducción: La importancia del quitosano se debe a sus propiedades químicas y biológicas ya que es biodegradable, bioactivo, poli catiónico y biocompatible, lo que le confiere una gran utilidad en la industria en aspectos biomédicos. La efectividad de sus derivados tales como la carboximetilquitosano está comprobada debido a que presenta propiedades como el ser soluble en agua y actuar como antimicrobiano en el algodón usado en la industria textil. El quitosano se extrae a partir de la quitina de los desechos de los crustáceos, siendo este polisacárido el segundo más abundante en la Naturaleza. Método: El presente estudio es de tipo aplicado con diseño y nivel experimental de corte transversal. Se utilizó, por un lado, dos variedades de plátanos: plátano isla (Musa paradisiaca) y plátano pildorita (Musa alinsanaya); de otro lado, se usaron cangrejos procedentes de los Manglares de Tumbes. La muestra no probabilística fue de 10 compotas de cada tipo de plátano y una solución de quitosano al 80% (p/v). La técnica microbiológica utilizada para el análisis de hongos y levaduras fue el recuento en placa. Se consideró evaluar el efecto conservante del quitosano respecto al del benzoato sódico. Resultados: En las muestras tratadas con quitosano (80% p/v), un 60% de ellas mostró ausencia de crecimiento y un 40% crecimientos de 5 UFC/g. Por otro lado, en las muestras tratadas con benzoato de sodio (0,1% p/v) no hubo crecimiento bacteriano en el 80% de los casos y sólo en un 20% hubo crecimientos de 10 UFC/g. Conclusiones: el quitosano obtenido a partir de la quitina de cangrejo tiene efecto antimicrobiano sobre hongos y levaduras, cuando se utiliza en una proporción del 80% (p/v) en compotas procesadas de plátano peruano. (AU)
Introduction: The importance of chitosan is due to its chemical and biological properties as it is biodegradable, bioactive, poly cationic and biocompatible, which gives it great utility in the industry in biomedical aspects. The effectiveness of its derivatives such as carboxymethylchitosan is proven due to its water-soluble and antimicrobial properties in cotton used in the textile industry. Chitosan is extracted from the chitin of crustacean waste, the sec-ond most abundant polysaccharide in nature. Method: This is an applied study with a cross-sectional design and experimental level. Two varieties of plantain were used: island plantain (Musa paradisiaca) and pildorita plantain (Musa alinsanaya); on the other hand, crabs from the Tumbes mangroves were used. The non-probabilistic sample consisted of 10 compotes of each type of plantain and an 80% (w/v) chitosan solution. The microbiological technique used for the analysis of fungi and yeasts was the plate count. It was considered to evaluate the preservative effect of chitosan with respect to that of sodium benzoate. Results: In the samples treated with chitosan (80% w/v), 60% of them showed no growth and 40% showed growths of 5 CFU/g. On the other hand, in the samples treated with sodium benzoate (0.1%) there was no bacterial growth in 80% of the cases and only in 20% there were growths of 10 CFU/g. Conclusions: Chitosan obtained from crab chitin has an antimicrobial effect on fungi and yeasts, when used at a rate of 80% (w/v) in processed Peruvian plantain compotes. (AU)
Assuntos
Animais , Quitosana , Anti-Infecciosos , Plantago , Estudos Transversais , Quitina , FungosRESUMO
While pathogenic and mutualistic microbes are ubiquitous across ecosystems and often co-occur within hosts, how they interact to determine patterns of disease in genetically diverse wild populations is unknown. To test whether microbial mutualists provide protection against pathogens, and whether this varies among host genotypes, we conducted a field experiment in three naturally occurring epidemics of a fungal pathogen, Podosphaera plantaginis, infecting a host plant, Plantago lanceolata, in the Åland Islands, Finland. In each population, we collected epidemiological data on experimental plants from six allopatric populations that had been inoculated with a mixture of mutualistic arbuscular mycorrhizal fungi or a nonmycorrhizal control. Inoculation with arbuscular mycorrhizal fungi increased growth in plants from every population, but also increased host infection rate. Mycorrhizal effects on disease severity varied among host genotypes and strengthened over time during the epidemic. Host genotypes that were more susceptible to the pathogen received stronger protective effects from inoculation. Our results show that arbuscular mycorrhizal fungi introduce both benefits and risks to host plants, and shift patterns of infection in host populations under pathogen attack. Understanding how mutualists alter host susceptibility to disease will be important for predicting infection outcomes in ecological communities and in agriculture.
Assuntos
Interações entre Hospedeiro e Microrganismos , Micorrizas , Plantago , Simbiose , Ecossistema , Fungos/fisiologia , Micorrizas/fisiologia , Plantago/genética , Plantago/microbiologia , Plantas/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Genótipo , Interações MicrobianasRESUMO
Nowadays, the environmentally friendly approach to everyday life routines including body supplementation with pharma-, nutraceuticals and dietary supplements gains popularity. This trend is implemented in pharmaceutical as well as cosmetic and antiageing industries by adopting a newly developed green chemistry approach. Following this trend, a new type of solvents has been created, called Natural Deep Eutectic Solvents (NADES), which are produced by plant primary metabolites. These solvents are becoming a much better alternative to the already established organic solvents like ethanol and ionic liquids by being nontoxic, biodegradable, and easy to make. An interesting fact about NADES is that they enhance the biological activities of the extracted biological compounds. Here, we present our results that investigate the potential antiageing effect of CiAPD14 as a NADES solvent and three plant extracts with it. The tested NADES extracts are from propolis and two well-known medicinal plants-Sideritis scardica and Plantago major. Together with the solvent, their antiageing properties have been tested during the chronological lifespan of four Saccharomyces cerevisiae yeast strains-a wild type and three chromatin mutants. The chromatin mutants have been previously proven to exhibit characteristics of premature ageing. Our results demonstrate the potential antiageing activity of these NADES extracts, which was exhibited through their ability to confer the premature ageing phenotypes in the mutant cells by ameliorating their cellular growth and cell cycle, as well as by influencing the activity of some stress-responsive genes. Moreover, we have classified their antiageing activity concerning the strength of the observed bioactivities.
Assuntos
Plantago , Própole , Sideritis , Cromatina , Longevidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Própole/farmacologia , Saccharomyces cerevisiae , Solventes/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Plantago major (P. major) has traditionally been used in Iranian Persian medicine to treat gastrointestinal ulcers and bleeding. RESEARCH OBJECTIVES: This study aimed to investigate the anti-inflammatory effects of the leaf and seed extracts of P. major in rats with acetic acid-induced ulcerative colitis (UC). MATERIALS AND METHODS: To this end, 49 rats were randomly divided into seven groups. UC was induced in all groups but the control (vehicle) group using a single intra-rectal administration of 2 ml of 4% acetic acid. Other groups received daily intraperitoneal (i.p.) injections of the seed extract of P. major (400 mg/kg and 700 mg/kg), the leaf extract of P. major (400 mg/kg and 700 mg/kg), and sulfasalazine (400 mg/kg) for seven consecutive days, respectively. The rats' rectum was surgically removed and evaluated for macroscopic and microscopic damage. The tissue levels of oxidative stress and inflammatory markers were measured using the ELISA method. RESULTS: The high-dose leaf extract significantly decreased ulcer index and histopathologic damage as well as the tissue levels of IL-6, TNF-α, PGE2, IL-1ß, MPO, and MDA compared to the damage group. The low-dose leaf extract also significantly reduced the levels of some markers. The seed extract in the two used doses caused a modest decrease in the histopathological damages and ulcer index. CONCLUSIONS: P. major leaf extract effectively reduces inflammation and mucosal damage in rats with UC, especially when administered in high doses. P. major seed extract has minimal protective effects on UC.
Assuntos
Colite Ulcerativa , Plantago , Ácido Acético/uso terapêutico , Animais , Anti-Inflamatórios/efeitos adversos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Irã (Geográfico) , Extratos Vegetais/efeitos adversos , Ratos , Ratos Wistar , Úlcera/tratamento farmacológicoRESUMO
Background: Great plantain (Plantago major L. or P.major) is a medicinal plant that is available all around the world. The whole plant has several bioactive compounds including terpenoids, flavonoids, phenolic compounds, alkaloids, fatty acids, iridoid glycosides, polysaccharides, and vitamins. Scientific studies have recognized several medical benefits like wound healing, anti-inflammatory, antimicrobial, antiulcerative, and antioxidative agents. The wound-healing capacity of this plant has been investigated under in vivo and ex vivo conditions. In the current study, we aim to compare the therapeutic effect of the P.major extract with 1% sulfadiazine on the healing of second-degree burn wounds. Method: Second-degree burn victims were included in our study. The investigation and control group, respectively, received P. major ointment 10% and silver sulfadiazine ointment 1%. The bacterial culture from the wound site was taken on days 3, 7, 10, 13, and last day of hospitalization. Patients' subjective complaints were obtained through the visual analog scale (VAS). All patients were treated and evaluated in the hospital. Result: Among the 15 patients, 11 were male, and the mean age was 33.3 years. The average complete healing duration was 11.73 vs. 13 days in the P. major and control group, respectively (P=0.166). On the third day, infection control was similar between the two groups, and on the seventh day, all bacterial cultures were negative. Although there was a significant reduction in pain scores during the recovery time, no significant differences in pain reduction were noted between the two groups (P=0.849). Conclusion: We showed that P.major ointment is a safe and suitable herbal compound in the treatment of second-degree burn wounds that not only has wound-healing properties but also is an analgesic and antimicrobial compound.
Assuntos
Queimaduras , Plantago , Lesões dos Tecidos Moles , Adulto , Queimaduras/tratamento farmacológico , Estudos de Casos e Controles , Humanos , Pomadas/uso terapêutico , DorRESUMO
Radopholus Similis (R. Similis) or burrowing nematode, is one of the most damaging and widespread nematodes attacking bananas, causing toppling or blackhead disease. A mathematical model for the population dynamics of R. Similis is considered, with the aim of investigating the impact of climatic factors on the growth of R. Similis. In this paper, based on the life cycle of R. Similis, we first propose a mathematical model to study and control the population dynamics of this banana pest. We show also how control terms based on biological and chemical controls can be integrated to reduce the population of R. Similis within banana-plantain roots. Sensitivity analysis was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter [Formula: see text], called the basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever [Formula: see text], while when [Formula: see text], the non trivial equilibrium is globally asymptotically stable. After, we extend the proposed model by taking account climatic factors that influence the growth of this pest. Biological and chemical controls are now introduced through impulsive equations. Threshold and equilibria are obtained and global stabilities have been studied. The theoretical results are supported by numerical simulations. Numerical results of model with biological and chemical controls reveal that biological methods are more effective than chemical methods. We also found that the month February is the best time to apply these controls.
Assuntos
Musa , Plantago , Tylenchoidea , Animais , Raízes de Plantas , Dinâmica PopulacionalRESUMO
Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS), and ultra-high performance liquid chromatography-mass spectrometry with ion-mobility spectrometry (UHPLC-IM-MS) was established and used to separate and identify the structures of compounds from PAL. The extracts of PAL were firstly separated into three parts by AB-8 macroporous resin and further separated and identified by UHPLC-Q-TOF MS and UHPLC-IM-MS, respectively. Additionally, UHPLC-IM-MS was used to identify isomers and coeluting compounds, so that the product ions appearing at the same retention time (RT)can clearly distinguish where the parent ion belongs by their different drift times. UNIFI software was used for data processing and structure identification. A total of 86 compounds, including triterpenes, iridoids, phenylethanoid glycosides, guanidine derivatives, organic acids, and fatty acids, were identified by using MS information and fragment ion information provided by UHPLC-Q-TOF MS and UHPLC-IM-MS. In particular, a pair of isoforms of plantagoside from PAL were detected and identified by UHPLC-IM-MS combined with the theoretical calculation method for the first time. In conclusion, the AB-8 macroporous resin column chromatography can separate the main compounds of PAL and enrich the trace compounds. Combining UHPLC-IM-MS and UHPLC-Q-TOF MS can obtain not only more fragments but also their unique drift times and RT, which is more conducive to the identification of complex systems, especially isomers. This proposed strategy can provide an effective method to separate and identify chemical components, and distinguish isomers in the complex system of traditional Chinese medicine (TCM).
Assuntos
Medicamentos de Ervas Chinesas , Plantago , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Espectrometria de Mobilidade Iônica , Espectrometria de Massas/métodosRESUMO
In the current study, some phenolic compounds, including acteoside, isoacteoside, echinacoside, and arenarioside purified and characterized from Plantago subulata. These compounds were tested for its antioxidant potential, including Fe3+ and Cu2+ reductive ability and Fe2+ chelating effects. The inhibitory effects of isolated phenolic compounds were tested towards human carbonic anhydrase I and II isoenzymes (hCAâ I and hCAâ II), butyrylcholinesterase (BChE) acetylcholinesterase (AChE), aldose reductase (AR) and α-glycosidase (α-gly). Ki values were found these compounds in range of 0.24±0.05-1.38±0.34â µM against hCAâ I, 0.194±0.018-1.03±0.06â µM against hCAâ II, 0.043±0.01-0.154±0.02â µM against AChE, 3.92±1.08-11.93±4.45â µM against BChE, 0.082±0.0008-1.68±0.42â µM against AR, and 6.93±2.74-17.17±6.70â µM against α-glycosidase. As a result, isolated compounds displayed inhibition effects against studied all metabolic enzymes. They are promising candidates for treating disorders like Alzheimer's disease, diabetes mellitus, glaucoma, leukemia, and epilepsy.