Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Zootaxa ; 5168(2): 196-206, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101290

RESUMO

The bark louse genus Ceratostigma Li, 2002 is revised with description of Ceratostigma stagona sp. n., from Xizang Autonomous Region, China. A new combination of an Indonesian endemic species, C. lisae (Thornton, 1984) comb. n., is proposed, and thus Ceratostigma is newly recorded from Indonesia. A distribution map and a key to species of Ceratostigma are also provided.


Assuntos
Anoplura , Plumbaginaceae , Animais , China , Neópteros , Casca de Planta
2.
Folia Med (Plovdiv) ; 64(1): 96-102, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35851881

RESUMO

INTRODUCTION: Plumbagozeylanica grows widely in many tropical countries. In Indonesia, this plant, known as Daun Encok, has some beneficial effects on human health.


Assuntos
Naftoquinonas , Plumbaginaceae , Humanos , Indonésia , Naftoquinonas/análise , Compostos Fitoquímicos , Extratos Vegetais/farmacologia
3.
Sci Rep ; 12(1): 9864, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701526

RESUMO

This study aimed at investigating the chemical composition and the hepatoprotective activities of Plumbago indica L. and P. auriculata Lam. LC-MS/MS analyses for the hydroalcoholic extracts of the aerial parts of the two Plumbago species allowed the tentative identification of thirty and twenty-five compounds from P. indica and P. auriculata, respectively. The biochemical and histopathological alterations associated with thioacetamide (TAA)-induced liver fibrosis in rats were evaluated in vivo where rats received the two extracts at three different dose levels (100, 200 and 400 mg/kg p.o, daily) for 15 consecutive days with induction of hepatotoxicity by TAA (200 mg/kg/day, i.p.) at 14th and 15th days. Results of the present study showed a significant restoration in liver function biomarkers viz. alanine transaminase (ALT), aspartate transaminase (AST), gamma glutamyl transferase and total bilirubin. The liver homogenates exhibited increased levels of antioxidant biomarkers: reduced glutathione (GSH) and catalase (CAT), accompanied with decline in malondialdehyde (MDA). Furthermore, treated groups exhibited a significant suppression in liver inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6), and fibrotic biomarker: alpha smooth muscle relaxant. Histopathological examination of the liver showed normality of hepatocytes. Noteworthy, P. indica extract showed better hepatoprotective activity than P. auriculata, particularly at 200 mg/kg. To sum up, all these results indicated the hepatoprotective properties of both extracts, as well as their antifibrotic effect was evidenced by reduction in hepatic collagen deposition. However, additional experiments are required to isolate their individual secondary metabolites, assess the toxicity of the extracts and explore the involved mechanism of action.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Plumbaginaceae , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Plumbaginaceae/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Tioacetamida/toxicidade
4.
Mol Plant ; 15(6): 1024-1044, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35514085

RESUMO

Halophytes have evolved specialized strategies to cope with high salinity. The extreme halophyte sea lavender (Limonium bicolor) lacks trichomes but possesses salt glands on its epidermis that can excrete harmful ions, such as sodium, to avoid salt damage. Here, we report a high-quality, 2.92-Gb, chromosome-scale L. bicolor genome assembly based on a combination of Illumina short reads, single-molecule, real-time long reads, chromosome conformation capture (Hi-C) data, and Bionano genome maps, greatly enriching the genomic information on recretohalophytes with multicellular salt glands. Although the L. bicolor genome contains genes that show similarity to trichome fate genes from Arabidopsis thaliana, it lacks homologs of the decision fate genes GLABRA3, ENHANCER OF GLABRA3, GLABRA2, TRANSPARENT TESTA GLABRA2, and SIAMESE, providing a molecular explanation for the absence of trichomes in this species. We identified key genes (LbHLH and LbTTG1) controlling salt gland development among classical trichome homologous genes and confirmed their roles by showing that their mutations markedly disrupted salt gland initiation, salt secretion, and salt tolerance, thus offering genetic support for the long-standing hypothesis that salt glands and trichomes may share a common origin. In addition, a whole-genome duplication event occurred in the L. bicolor genome after its divergence from Tartary buckwheat and may have contributed to its adaptation to high salinity. The L. bicolor genome resource and genetic evidence reported in this study provide profound insights into plant salt tolerance mechanisms that may facilitate the engineering of salt-tolerant crops.


Assuntos
Arabidopsis , Plumbaginaceae , Animais , Folhas de Planta/genética , Plumbaginaceae/genética , Salinidade , Glândula de Sal , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628211

RESUMO

With global increases in saline soil, it has become increasingly important to decipher salt-tolerance mechanisms and identify strategies to improve salt tolerance in crops. Halophytes complete their life cycles in environments containing ≥200 mM NaCl; these remarkable plants provide a potential source of genes for improving crop salt tolerance. Recretohalophytes such as Limonium bicolor have salt glands that secrete Na+ on their leaf epidermis. Here, we identified Lb1G04202, an uncharacterized gene with no conserved domains, from L. bicolor, which was highly expressed after NaCl treatment. We confirmed its expression in the salt gland by in situ hybridization, and then heterologously expressed Lb1G04202 in Arabidopsis thaliana. The transgenic lines had a higher germination rate, greater cotyledon growth percentage, and longer roots than the wild type (WT) under NaCl treatments (50, 100 and 150 mM). At the seedling stage, the transgenic lines grew better than the WT and had lower Na+ and malonyldialdehyde accumulation, and higher K+ and proline contents. This corresponded with the high expression of the key proline biosynthesis genes AtP5CS1 and AtP5CS2 under NaCl treatment. Isotonic mannitol treatment showed that Lb1G04202 overexpression significantly relieved osmotic stress. Therefore, this novel gene provides a potential target for improving salt tolerance.


Assuntos
Arabidopsis , Plumbaginaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Plumbaginaceae/genética , Plumbaginaceae/metabolismo , Prolina/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Cloreto de Sódio/metabolismo
6.
J Struct Biol ; 214(1): 107830, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979244

RESUMO

Acantholimon riyatguelii Yildirim is a local endemic restricted to gypsum habitats. SEM observation on roots, stems and leaves of A. riyatguelii presented detailed information of ultrastructural properties which described this species adaptations to specific conditions of gypsum habitats. This study showed that A. riyatguelii leaves which are amphistomatic exhibited strong xeromorphic adaptations reflecting numerous stomata, surface hairs, thick cuticle (∼10 µm) and advanced palisade. The xeromorphic stomata in the leaves of the A. riyatguelii growing in aridty areas are in the form of deep cavities under the epidermis. Mesophyll cells had a somewhat rounded shape and placed rather regularly in the mesophyll. Some crystal deposits were observed at stomata and inside the mesophyll cells. In the root, xylem was in the form of pentarch along with the phloem observed among the protoxylems and the periderm was ca. 100 µm thick. In the stem, the centre of the stem was filled with large xylem vessels and five bundles of phloem tissue distributed around the xylem. The ultrastructural properties of A. riyatguelii, a gypsophyte species, were given for the first time in this study at Turkey and revealed detailed descriptive ultrastructures which could serve as a source of information and reference. Finally, this study offers new and interesting avenues to interpret ultrastructural features that allow gypsophiles to tolerate drought and atypical mineral soils.


Assuntos
Sulfato de Cálcio , Plumbaginaceae , Sulfato de Cálcio/análise , Ecossistema , Folhas de Planta/química , Solo/química
7.
BMC Plant Biol ; 22(1): 16, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983373

RESUMO

BACKGROUND: Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS: We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 µM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 µM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS: Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.


Assuntos
Antioxidantes/metabolismo , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Plumbaginaceae/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plumbaginaceae/genética , Plumbaginaceae/crescimento & desenvolvimento , Plumbaginaceae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Tolerância ao Sal/efeitos dos fármacos
8.
J Biomol Struct Dyn ; 40(7): 3273-3284, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33213303

RESUMO

In this study, the antimicrobial properties of Plumbago indica root bark against bacterial strains and a fungal strain were investigatedusing the disc diffusion and minimum inhibitory concentration assays. Gas chromatography/mass spectrometry, nuclear magnetic resonance spectrometry, and column chromatography analyses were conducted to identify and isolate the active compounds. A docking study was performed to identify possible interactions between the active compound and DNA gyrase using the Schrödinger Glide docking program. Both methanol extract and the ethyl acetate fraction of the root bark showed significant antimicrobial activity against the gram-positive bacteria than against the gram-negative bacteria and the fungal strain. The active compound was identified as plumbagin. A disc diffusion assay of plumbagin revealed potent antimicrobial activity against methicillin-resistant Staphylococcus aureus. Molecular docking of plumbagin revealed high specificity towards the DNA gyrase binding site with a high fitness score and a minimum energy barrier of -7.651 kcal/mol. These findings indicate that P. indica exhibits significant antimicrobial activity, primarily due to the presence of plumbagin. The specificity of plumbagin toward DNA gyrase in S. aureus indicates the feasibility of utilizing P. indica for developing new drug leads against drug resistant microbial strain. Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Plumbaginaceae , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , DNA Girase/metabolismo , Ligantes , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Naftoquinonas , Plumbaginaceae/química , Plumbaginaceae/metabolismo , Staphylococcus aureus
9.
Plant Mol Biol ; 108(1-2): 127-143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34950990

RESUMO

KEY MESSAGE: Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.


Assuntos
Plumbaginaceae/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Perfilação da Expressão Gênica , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plumbaginaceae/fisiologia , Proteoma , Reação em Cadeia da Polimerase em Tempo Real , Plantas Tolerantes a Sal/fisiologia , Sódio/metabolismo
10.
Int J Nanomedicine ; 16: 8221-8233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955639

RESUMO

INTRODUCTION: Plumbago indica L. is considered a valuable source in the Plumbaginaceae family for various types of active compound such as alkaloids, phenolics and saponins. To promote the usage of P. indica in the bionanotechnology field, zinc oxide nanoparticles (ZnONPs) were biosynthesized by using its alcoholic extract. The inhibitory effects of ZnONPs and the plant extract were also evaluated against HSV-1. METHODS: ZnONPs were described by the following techniques, UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The phenolic and flavonoid contents of P. indica extract, which are accountable for bioreduction, formation and stabilization of the nanoparticles, were analyzed by HPLC technique. The antiviral assessment was implemented on both agents by using Vero cell lines. RESULTS: DLS revealed that the average size of ZnONPs was 32.58 ± 7.98 nm and the zeta potential was -20.8 mV. The observation of TEM analysis revealed that the particle size of ZnONPs varied from 2.56 to 8.83 nm. The XRD analysis verified the existence of pure crystals of hexagonal shapes of nanoparticles of ZnO with a main average size of 35.28 nm that is approximating to the values of particle size acquired by SEM analysis (19.64 and 23.21 nm). The HPLC analysis of P. indica ethanolic extract showed that gallic acid, chlorogenic acid and rutin were the major compounds, with concentrations equal to 8203.99, 2965.95 and 1144.99 µg/g, respectively. Regarding the antiviral assessment, the synthesized uncalcinated ZnONPs were found to exhibit a promising activity against HSV-1, with CC50 and IC50 values equal to 43.96 ± 1.39 and 23.17 ± 2.29 µg/mL, respectively. CONCLUSION: The green synthesized ZnONPs are considered promising adjuvants to enhance the efficacy of HSV-1 drugs.


Assuntos
Antivirais , Herpesvirus Humano 1 , Nanopartículas Metálicas , Plumbaginaceae , Óxido de Zinco , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plumbaginaceae/química , Óxido de Zinco/farmacologia
11.
Pak J Pharm Sci ; 34(4): 1421-1428, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799317

RESUMO

Plumbago europaea L. is a plant utilized in Palestinian ethnomedicine for the treatment of various dermatological diseases. The current investigation was designed to isolate plumbagin from P. europaea leaves, roots and for the first time from the stems. Moreover, it aimed to evaluate the antimycotic activity against three human fungal pathogens causing dermatophytosis, also against an animal fungal pathogen. The qualitative analysis of plumbagin from the leaves, stems, and roots was conducted using HPLC and spectrophotometer techniques, while the structure of plumbagin was established utilizing Proton and Carbon-13 Nuclear Magnetic Resonance (NMR) and Infrared (IR) techniques. The entire plant constituents were determined by GC-MS. Moreover, the antimycotic activity against Ascosphaera apis, Microsporum canis, Trichophyton rubrum, and Trichophyton mentagrophytes was assessed utilizing the poison food technique method. The percentage of plumbagin recorded in the leaves, stems, and roots was found to be 0.51±0.001%, 0.16±0.001%, and 1.65±0.015%, respectively. The GC-MS examination declared the presence of 59 molecules in the plant extract. The plant extract and pure plumbagin exhibited complete inhibition against all tested dermatophytes at 6.0mg/mL for the extracts and 0.2mg/mL for plumbagin. P. europaea root is the best source of plumbagin and the plant extract could represent a potential drug candidate for the treatment of dermatophytosis infections. Further studies required to design suitable dosage forms from the natural P. europaea root extracts or plumbagin alone, to be utilized for the treatment of dermatological and veterinary ailments.


Assuntos
Antifúngicos/isolamento & purificação , Naftoquinonas/isolamento & purificação , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Plumbaginaceae/química , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Estrutura Molecular , Naftoquinonas/farmacologia , Onygenales/efeitos dos fármacos , Espectrofotometria Infravermelho
12.
Pak J Biol Sci ; 24(11): 1195-1201, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34842392

RESUMO

<b>Background and Objective:</b> The medicinal herb <i>Plumbago indica</i> (PI) and its major constituent plumbagin have reported pharmacological properties but there is a lack of information about their herb-drug interactions. The effects of methanolic (PI-MeOH) and ethanolic (PI-EtOH) crude extracts of PI and plumbagin on the expression of cytochrome P450s (<i>CYP1A2</i>, <i>CYP2E1</i> and <i>CYP3A4</i>) and transporters (<i>ABCC1</i>, <i>ABCG2</i> and <i>SLC22A11</i>) were investigated in BeWo and HepG2 cells. <b>Materials and Methods:</b> BeWo or HepG2 cells were treated with 0.5-5 µM plumbagin or 25-500 µg mL<sup>1</sup> of PI-MeOH or PI-EtOH for 24 hrs. Total RNA was extracted and mRNA expression of CYPs and transporters were determined using RT-qPCR. <b>Results:</b> PI and plumbagin affected mRNA expression differently in the two tested cell types. In BeWo cells, all concentrations of PI-MeOH induced <i>CYP2E1</i>, 100 and 500 µg Ml<sup>1</sup> PI-MeOH and PI-EtOH up-regulated <i>CYP1A2</i>, <i>CYP3A4 </i>and <i>ABCG2 </i>and 500 µg mL<sup>1</sup> PI-EtOH induced <i>ABCG2</i> expression. Plumbagin suppressed <i>CYP1A2</i> and induced <i>SLC22A11 </i>expression at the highest concentration, 5 µM. In HepG2 cells, 5 µM plumbagin and 500 µg Ml<sup>1</sup> PI-EtOH suppressed <i>CYP3A4 </i>expression and 500 µg mL<sup>1</sup> PI-MeOH and PI-EtOH up-regulated <i>CYP1A2</i> and <i>CYP2E1 </i>expression. <i>ABCC1</i> expression was induced by all treatments while <i>ABCG2</i> and <i>SLC22A11 </i>were induced only by 500 µg mL<sup>1</sup> PI-MeOH and PI-EtOH. <b>Conclusion:</b> The use of PI or plumbagin supplements in large quantities or for long periods should be carefully considered due to the risk of herbal drug interactions via modulated expression of CYPs and transporters.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Naftoquinonas/farmacologia , Plumbaginaceae/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Humanos
13.
Plant Physiol Biochem ; 168: 305-320, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34673320

RESUMO

In Sabkha biotope, several environmental factors (i.e., salinity, drought, temperature, etc.) especially during dry season affect halophytes developments. To cope with these harmful conditions, halophytes use multiple mechanisms of adaptations. In this study, we focused on the effect of environmental condition changes over a year in the Sabkha of Aïn Maïder (Medenine - Tunisia) on the physiological and biochemical behavior of Limoniastrum guyonianum using a modeling approach. Our study showed that the model depicted well (R2 > 0.75) the monthly fluctuations of the studied parameters in this habitat. During the dry period (June to September), the salinity of the soil increased remarkably (high level of EC and Na+ content), resulting in high Na+ content in the aerial parts followed by a nutrient deficiency in K+, Ca2+, and Mg2+. As a result of this disruption, L. guyonianum decreased its water potential to more negative values to maintain osmotic potential using inorganic osmolytes (i.e., Na+) and organic osmolytes (i.e., sugars: sucrose, fructose, glucose, and xylitol, and organic acids: citric and malic acids). In addition, CO2 assimilation rate, stomatal conductance, transpiration rate, and photosynthetic pigments decreased significantly with increasing salinity. The phenolic compounds contents and the antioxidant activity increased significantly in the dry period as a result of increased levels of H2O2 and lipid peroxidation. This increase was highly correlated with soil salinity and air temperature. The maintenance of tissue hydration (i.e., moderate decrease of relative water content), the accumulation of sugars and organic acids, the enhancement of phenolic compounds amounts, and the increase of antioxidant activity during the dry period suggest that L. guyonianum possesses an efficient tolerance mechanism that allows the plant to withstand the seasonal fluctuations of climatic conditions in its natural biotope.


Assuntos
Peróxido de Hidrogênio , Plumbaginaceae , Antioxidantes/metabolismo , Fotossíntese , Plumbaginaceae/metabolismo , Salinidade , Estações do Ano , Tunísia
14.
PLoS One ; 16(8): e0255904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358274

RESUMO

Root and bark of Limonium axillare (Forssk) Kuntze are used as antidiabetic remedies in parts of East Africa, but this activity has never been fully investigated. To validate its ethnobotanical use, we compared the chemical and pharmacological profiles of the ethanolic extracts of L. axillare root (REE) and aerial parts (AEE). Administration of REE (500 mg kg-1) reduced streptozotocin-induced hyperglycemia by 44%, restored serum insulin levels, reestablished Glut2 and Glut4 expression and ameliorated pancreatic tissue damage in diabetic rats. In vitro studies revealed a strong radical scavenging effect, α-glucosidase, and α-amylase inhibition activity of REE at IC50 at 25.2, 44.8 and 89.1µg/mL, respectively. HPLC analysis identified ten phenolic compounds in REE with umbelliferone as the major constituents at 10 ± 0.081 mg/g of extract. Additionally, six compounds were isolated from REE including, ß-sitosterol-3-palmitate, ß-sitosterol, myricetin and gallic acids with two new tetrahydrofuran monoterpenes; 2-isopropyl- 3,4,4, trimethyl-tetrahydrofuran (3), and 2-isopropyl-4-methyl-tetrahydrofuran-3,4 dicarboxylic acid (4), the latter was revealed by molecular docking to be a good ligand to glycerol-3-phosphate dehydrogenase a key enzyme in glycolysis.


Assuntos
Hipoglicemiantes , Plumbaginaceae , Animais , Diabetes Mellitus Experimental , Simulação de Acoplamento Molecular
15.
Chem Biodivers ; 18(9): e2100278, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34227240

RESUMO

This work aimed to investigate, for the first time, the chemical composition, antioxidant, antiparasitic, cytotoxicity, and antimicrobial activities of the aromatic plant Limonium oleifolium Mill. essential oil (EO) and organic extracts. L. oleifolium aerial parts essential oil was analyzed by GC-FID and GC-MS, and 46 constituents representing 98.25±1.12 % of the oil were identified. γ-Muurolene (10.81±0.07 %), cis-caryophyllene (7.71±0.06 %), o-cymene (7.07±0.01 %) and α-copaene (5.02±0.05 %) were the essential oil main compounds. The antioxidant activity of L. oleifolium EO and organic extracts (MeOH, CHCl3 , AcOEt, BuOH) was explored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS, ß-carotene/linoleic acid, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing power assays. The results showed that L. oleifolium EO exhibit antioxidant capacity (IC50 =17.40±1.32 µg/mL for DPPH assay, IC50 =29.82±1.08 µg/mL for ß-carotene assay, IC50 =25.23±1.01 µg/mL for ABTS assay, IC50 =9.11±0.08 µg/mL for CUPRAC assay and IC50 =19.41±2.06 mg/mL for reducing power assay). Additionally, the EO showed significant activity against trophozoite form of Acanthamoeba castellanii (IC50 =7.48±0.41 µg/mL) and promastigote form of Leishmania amazonensis (IC50 =19.36±1.06 µg/mL) and low cytotoxicity on murine macrophages (LC50  90.23±1.09 µg/mL), as well as good antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella oxytoca, and Pseudomonas aeruginosa. These results suggest that L. oleifolium essential oil is a valuable source of bioactive compounds presenting antioxidant, antiparasitic, and antimicrobial activities. Furthermore, it is considered nontoxic.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Antiparasitários/farmacologia , Extratos Vegetais/farmacologia , Plumbaginaceae/química , Acanthamoeba castellanii/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antiparasitários/química , Antiparasitários/isolamento & purificação , Bactérias/efeitos dos fármacos , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ácidos Sulfônicos/antagonistas & inibidores
16.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279385

RESUMO

This work aimed to evaluate the phenolic content and in vitro antioxidant, antimicrobial and enzyme inhibitory activities of the methanol extracts and their fractions of two edible halophytic Limonium species, L. effusum (LE) and L. sinuatum (LS). The total phenolic content resulted about two-fold higher in the ethyl acetate fraction of LE (522.82 ± 5.67 mg GAE/g extract) than in that of LS (274.87 ± 1.87 mg GAE/g extract). LC-MS/MS analysis indicated that tannic acid was the most abundant phenolic acid in both species (71,439.56 ± 3643.3 µg/g extract in LE and 105,453.5 ± 5328.1 µg/g extract in LS), whereas hyperoside was the most abundant flavonoid (14,006.90 ± 686.1 µg/g extract in LE and 1708.51 ± 83.6 µg/g extract in LS). The antioxidant capacity was evaluated by DPPH and TAC assays, and the stronger antioxidant activity in ethyl acetate fractions was highlighted. Both species were more active against Gram-positive bacteria than Gram negatives and showed considerable growth inhibitions against tested fungi. Interestingly, selective acetylcholinesterase (AChE) activity was observed with LE and LS. Particularly, the water fraction of LS strongly inhibited AChE (IC50 = 0.199 ± 0.009 µg/mL). The ethyl acetate fractions of LE and LS, as well as the n-hexane fraction of LE, exhibited significant antityrosinase activity (IC50 = 245.56 ± 3.6, 295.18 ± 10.57 and 148.27 ± 3.33 µg/mL, respectively). The ethyl acetate fraction and methanol extract of LS also significantly inhibited pancreatic lipase (IC50 = 83.76 ± 4.19 and 162.2 ± 7.29 µg/mL, respectively). Taken together, these findings warrant further investigations to assess the potential of LE and LS as a bioactive source that can be exploited in pharmaceutical, cosmetics and food industries.


Assuntos
Compostos Fitoquímicos/química , Extratos Vegetais/química , Plumbaginaceae/química , Polifenóis/análise , Acetilcolinesterase/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/metabolismo , Lipase/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
17.
Microsc Res Tech ; 84(12): 3150-3160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34268833

RESUMO

There has been tremendous spread of antimicrobial resistance globally, mainly due to the excessive and unnecessary use of antibiotics, making the situation alarming. This has created a need for the development of alternative strategies to selectively target the bacterial pathogenicity without exerting selection pressure for the development of antimicrobial resistance. Targeting quorum sensing (QS)-mediated virulence and biofilms by nontoxic natural products is gaining importance as new control strategy to combat the virulence and biofilms of pathogenic bacteria. In this study, the crude extract of Plumbago zeylanica was fractioned in different solvents using liquid-liquid partitioning to obtain the most bioactive fraction. The inhibitory effect of the bioactive extract of P. zeylanica on QS at sub-minimum inhibitory concentrations (MICs) was studied against Chromobacterium violaceum 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MTCC 97. Biofilm inhibition was studied using microtiter plate assay, scanning electron microscopy, and confocal laser scanning microscopy. Major phytocompounds detected were cinnamaldehyde dimethyl acetal, plumbagin, asarone, 4-chromanol, phthalic acid, palmitic acid, ergost-5-en-3-ol, stigmasterol, and ß-sitosterol. The violacein production in C. violaceum 12472 was reduced by >80% in the presence of P. zeylanica hexane fraction (PZHF; 200 µg/ml). The most active PZHF inhibited QS-mediated virulence factors of P. aeruginosa PAO1 such as pyocyanin, pyoverdin, rhamnolipid production, motility, etc., significantly at sub-MICs. Similarly, PZHF showed 59 to 76% inhibition of biofilm formation of above test pathogens. The findings revealed that active fraction of P. zeylanica was effective against the QS-regulated functions and biofilms development of Gram -ve pathogenic bacteria.


Assuntos
Plumbaginaceae , Percepção de Quorum , Antibacterianos/farmacologia , Biofilmes , Chromobacterium , Extratos Vegetais/farmacologia , Fatores de Virulência/farmacologia
18.
BMC Plant Biol ; 21(1): 284, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157974

RESUMO

BACKGROUND: Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. RESULTS: The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. CONCLUSION: These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plumbaginaceae/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Clonagem Molecular , Genes de Plantas/fisiologia , Hibridização In Situ , Pressão Osmótica , Proteínas de Plantas/fisiologia , Plumbaginaceae/metabolismo , Plumbaginaceae/fisiologia , Reação em Cadeia da Polimerase , Estresse Salino , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Técnicas do Sistema de Duplo-Híbrido
19.
Microb Biotechnol ; 14(4): 1699-1706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34107174

RESUMO

Considering its worldwide abundance, cellulose can be a suitable candidate to replace the fossil oil-based materials, even if its potential is still untapped, due to some scientific and technical gaps. This work offers new possibilities demonstrating for the first time the ability of a cerato-platanin, a small fungal protein, to valorize lignocellulosic Agri-food Wastes. Indeed, cerato-platanins can loosen cellulose rendering it more accessible to hydrolytic attack. The cerato-platanin ThCP from a marine strain of Trichoderma harzianum, characterized as an efficient biosurfactant protein, has proven able to efficiently pre-treat apple pomace, obtaining a sugar conversion yield of 65%. Moreover, when used in combination with a laccase enzyme, a notable increase in the sugar conversion yield was measured. Similar results were also obtained when other wastes, coffee silverskin and potato peel, were pre-treated. With respect to the widespread laccase pre-treatments, this new pre-treatment approach minimizes process time, increasing energy efficiency.


Assuntos
Plumbaginaceae , Trichoderma , Proteínas Fúngicas , Hidrólise , Hypocreales , Lignina
20.
Plant Biol (Stuttg) ; 23(6): 1063-1073, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33969585

RESUMO

Limonium Mill. plants are typical recretohalophytes, as they withstand salt stress by secreting excess salt onto the leaf surface through salt glands. However, little is known on the salinity thresholds of these plants and the function of salt glands in salt tolerance. Here, we investigated the salinity thresholds of salt tolerance of the Limonium species L. aureum (Linn.) Hill, L. gmelinii (Willd.) Kuntze, L. otolepis (Schrenk) Kuntze and L. sinuatum (L.) Mill grown with various concentrations of NaCl. The salinity thresholds of L. otolepis, L. aureum, L. sinuatum and L. gmelinii were 300, 350, 400 and 420 mm NaCl, respectively. Correlation analysis indicated that total dry weight, chlorophyll content and intercellular CO2 concentration were highly positively correlated with the total fresh weights of all four Limonium species and could therefore be used as indicators of plant salt tolerance. Furthermore, as the salt gland density on the leaf surface increased, the rate of salt secretion per salt gland also increased, allowing more Na+ to be secreted from the plant. Redundancy discriminant analysis indicated that salt gland density, Na+ content and Na+ secretion rate per salt gland were positively correlated with salt concentration. These observations support the notion that salt glands play important roles in the adaptation of Limonium species to high salinity conditions.


Assuntos
Plumbaginaceae , Tolerância ao Sal , Folhas de Planta , Plumbaginaceae/fisiologia , Estresse Salino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...