RESUMO
Vibration and noise-reduction materials are indispensable in various fields. Polyurethane (PU)-based damping materials can dissipate the external mechanical and acoustic energy through molecular chain movements to mitigate the adverse effects of vibrations and noise. In this study, PU-based damping composites were obtained by compositing PU rubber prepared using 3-methyltetrahydrofuran/tetrahydrofuran copolyether glycol, 4,4'-diphenylmethane diisocyanate, and trimethylolpropane monoallyl ether as raw materials with hindered phenol, viz., and 3,9-bis{2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)proponyloxy]-1,1-dimethylethyl}-2,4,8,10-tetraoxaspiro[5.5]undecane (AO-80). Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and tensile tests were conducted to evaluate the properties of the resulting composites. The glass transition temperature of the composite increased from -40 to -23 °C, and the tan δMax of the PU rubber increased by 81%, from 0.86 to 1.56 when 30 phr of AO-80 was added. This study provides a new platform for the design and preparation of damping materials for industrial applications and daily life.
Assuntos
Elastômeros , Poliuretanos , Elastômeros/química , Poliuretanos/química , Fenol , Borracha , FenóisRESUMO
Introducción: Durante los últimos años las técnicas de mastectomía y reconstrucción han evolucionado hacia procedimientos menos agresivos, mejorando la satisfacción y calidad de vida de la mujer. Por ello, la mastectomía se ha convertido en una opción válida tanto para mujeres con cáncer de mama como en mujeres de alto riesgo. El objetivo de este estudio es analizar la seguridad de la mastectomía y reconstrucción inmediata prepectoral con implante de poliuretano en mujeres con cáncer de mama y reducción de riesgo. Métodos: Estudio prospectivo observacional para evaluar la factibilidad y seguridad de la reconstrucción inmediata mediante implante prepectoral de poliuretano. Se incluyeron todas las mujeres (con cáncer de mama o alto riesgo para cáncer de mama) intervenidas mediante una mastectomía preservadora de piel o piel y pezón con reconstrucción inmediata con implante de poliuretano prepectoral. Se excluyeron las mujeres con sarcomas de mama, progresión de la enfermedad durante el tratamiento sistémico primario, reconstrucción diferida, autóloga o retropectoral y aquellas pacientes que no desearon participar en el estudio. Los procedimientos quirúrgicos fueron realizados tanto por cirujanos senior como junior. Todas las pacientes recibieron los tratamientos complementarios correspondientes. Se analizaron todos los eventos adversos acontecidos durante el seguimiento y los factores de riesgo para desarrollarlos. Resultados: Se realizaron 159 reconstrucciones en 102 mujeres, el 80,4% por un carcinoma mamario. Catorce pacientes desarrollaron complicaciones, siendo el seroma y la dehiscencia de la herida las más frecuentes. Ocho mujeres precisaron una reintervención (5%), 7 de ellas por exposición del implante. Cuatro reconstrucciones (2,5%) culminaron con pérdida del implante. Tres pacientes presentaron progresión de su proceso oncológico: una recaída local en el colgajo de la mastectomía, una progresión axilar y una progresión sistémica. (AU)
Introduction: In recent years, mastectomy and reconstruction techniques have evolved towards less aggressive procedures, improving the satisfaction and quality of life of women. For this reason, mastectomy has become a valid option for both women with breast cancer and high-risk women. The objective of this study is to analyze the safety of mastectomy and immediate prepectoral reconstruction with polyurethane implant in women with breast cancer and risk reduction. Method: Observational prospective study to evaluate the feasibility and safety of immediate reconstruction using prepectoral polyurethane implant. All women (with breast cancer or high risk for breast cancer) who underwent skin-sparing or skin-and-nipple-sparing mastectomy with immediate reconstruction with a prepectoral polyurethane implant were included. Women with breast sarcomas, disease progression during primary systemic therapy, delayed, autologous or retropectoral reconstruction, and those who did not wish to participate in the study were excluded. Surgical procedures were performed by both senior and junior surgeons. All patients received the corresponding complementary treatments. All adverse events that occurred during follow-up and the risk factors for developing them were analyzed. Results: 159 reconstructions were performed in 102 women, 80.4% due to breast carcinoma. Fourteen patients developed complications, the most frequent being seroma and wound dehiscence. Eight women required a reoperation (5.0%), seven of them due to implant exposure. Four reconstructions (2.5%) resulted in loss of the implant. Three patients progressed from their oncological process: a local relapse in the mastectomy flap, an axillary progression and a systemic progression. (AU)
Assuntos
Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Neoplasias da Mama/cirurgia , Poliuretanos , Mamoplastia/métodos , Estudos ProspectivosRESUMO
PURPOSE: We developed a ureteral stent with a non-fouling inner surface using plasma micro-surface modification technology. This study aimed to evaluate the safety and efficacy of this stent in animal model. MATERIALS AND METHODS: Ureteral stents were placed in five Yorkshire pigs. A bare stent was inserted on one side and an inner surface-modified stent was inserted on the other side. Two weeks after stenting, laparotomy was performed to harvest the ureteral stents. The changes in the inner surface were grossly evaluated using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). In addition, if encrustation was observed, the components were analyzed using Fourier transform infrared spectroscopy. Urine cultures were used for safety assessment. RESULTS: In all models, urine cultures did not show any bacterial growth before and after stenting, and stent-related complications were not identified. Hard materials were palpable in four bare models. Palpable material was not identified in the modified stent. Calcium oxalate dihydrate/uric acid stones were identified in two bare stents. In the SEM images with EDS, biofilm formation was confirmed in the bare stents. Biofilm formation was significantly less on the inner surface of the modified stent, and the intact surface of the modified stent was larger than that of the bare stent. CONCLUSIONS: The application of a specialized, plasma-enhanced, chemical vapor deposition technology to the inner surface of ureteral stents was safe and showed resistance to biofilm formation and encrustation.
Assuntos
Nefrolitíase , Poliuretanos , Suínos , Animais , Stents/efeitos adversos , Oxalato de Cálcio , Modelos AnimaisRESUMO
OBJECTIVE: This study investigated the ability of a laser, and a 'quad-wave' LCU, to photo-cure paste and flowable bulk-fill resin-based composites (RBCs). METHODS: Five LCUs and nine exposure conditions were used. The laser LCU (Monet) used for 1 s and 3 s, the quad-wave LCU (PinkWave) used for 3 s in the Boost and 20 s in the Standard modes, the the multi-peak LCU (Valo X) used for 5 s in the Xtra and 20 s in the Standard modes, were compared to the polywave PowerCure used in the 3 s mode and for 20 s in the Standard mode, and to the mono-peak SmartLite Pro used for 20 s. Two paste consistency bulk-fill RBCs: Filtek One Bulk Fill Shade A2 (3 M), Tetric PowerFill Shade IVA (Ivoclar Vivadent), and two flowable RBCs: Filtek Bulk Fill Flowable Shade A2 (3 M), Tetric PowerFlow Shade IVA (Ivoclar Vivadent) were photo-cured in 4-mm deep x 4-mm diameter metal molds. The light received by these specimens was measured using a spectrometer (Flame-T, Ocean Insight), and the radiant exposure delivered to the top surface of the RBCs was mapped. The immediate degree of conversion (DC) at the bottom, and the 24-hour Vickers Hardness (VH) at the top and bottom of the RBCs were measured and compared. RESULTS: The irradiance received by the 4-mm diameter specimens ranged from 1035 mW/cm2 (SmartLite Pro) to 5303 mW/cm2 (Monet). The radiant exposures between 350 and 500 nm delivered to the top surface of the RBCs ranged from 5.3 J/cm2 (Monet in 1 s) to 26.4 J/cm2 (Valo X), although the PinkWave delivered 32.1 J/cm2 in 20 s 350 to 900 nm. All four RBCs achieved their maximum DC and VH values at the bottom when photo-cured for 20 s. The Monet used for 1 s and the PinkWave used for 3 s on the Boost setting delivered the lowest radiant exposures between 420 and 500 nm (5.3 J/cm2 and 3.5 J/cm2 respectively), and they produced the lowest DC and VH values. CONCLUSIONS: Despite delivering a high irradiance, the short 1 or 3-s exposures delivered less energy to the RBC than 20-s exposures from LCUs that deliver> 1000 mW/cm2. There was an excellent linear correlation (r > 0.98) between the DC and the VH at the bottom. There was a logarithmic relationship between the DC and the radiant exposure (Pearson's r = 0.87-97) and between the VH and the radiant exposure (Pearson's r = 0.92-0.96) delivered in the 420-500 nm range.
Assuntos
Resinas Acrílicas , Materiais Dentários , Poliuretanos , LasersRESUMO
Bovine pericardium (BP) has been used as leaflets of prosthetic heart valves. The leaflets are sutured on metallic stents and can survive 400 million flaps (~10-year life span), unaffected by the suture holes. This flaw-insensitive fatigue resistance is unmatched by synthetic leaflets. We show that the endurance strength of BP under cyclic stretch is insensitive to cuts as long as 1 centimeter, about two orders of magnitude longer than that of a thermoplastic polyurethane (TPU). The flaw-insensitive fatigue resistance of BP results from the high strength of collagen fibers and soft matrix between them. When BP is stretched, the soft matrix enables a collagen fiber to transmit tension over a long length. The energy in the long length dissipates when the fiber breaks. We demonstrate that a BP leaflet greatly outperforms a TPU leaflet. It is hoped that these findings will aid the development of soft materials for flaw-insensitive fatigue resistance.
Assuntos
Matriz Extracelular , Longevidade , Animais , Bovinos , Estado Nutricional , Pericárdio , Poliuretanos , ColágenoRESUMO
Reinforcement of polymer nanocomposites can be achieved by the selection of the appropriate fabrication method, surface modification, and orientation of the filler. Herein, we present a nonsolvent-induced phase separation method with ternary solvents to prepare thermoplastic polyurethane (TPU) composite films with excellent mechanical properties using 3-Glycidyloxypropyltrimethoxysilane-modified cellulose nanocrystals (GLCNCs). ATR-IR and SEM analyses of the GLCNCs confirmed that GL was successfully coated on the surface of the nanocrystals. The incorporation of GLCNCs in TPU resulted in the enhancement of the tensile strain and toughness of pure TPU owing to the enhanced interfacial interactions between them. The GLCNC-TPU composite film had tensile strain and toughness values of 1740.42% and 90.01 MJ/m3, respectively. Additionally, GLCNC-TPU exhibited a good elastic recovery rate. CNCs were readily aligned along the fiber axis after the spinning and drawing of the composites into fibers, which further improved the mechanical properties of the composites. The stress, strain, and toughness of the GLCNC-TPU composite fiber increased by 72.60%, 10.25%, and 103.61%, respectively, compared to those of the pure TPU film. This study demonstrates a facile and effective strategy for fabricating mechanically enhanced TPU composites.
Assuntos
Nanopartículas , Poliuretanos , Poliuretanos/química , Silanos , Celulose/química , Polímeros/química , Nanopartículas/químicaRESUMO
Due to the questionable durability of dental restorations, there is a need to increase the lifetime of composite restoration. The present study used diethylene glycol monomethacrylate/4,4'-methylenebis(cyclohexyl isocyanate) (DEGMMA/CHMDI), diethylene glycol monomethacrylate/isophorone diisocyanate (DEGMMA/IPDI) monomers, and bis(2,6-diisopropylphenyl)carbodiimide (CHINOX SA-1) as modifiers of a polymer matrix (40 wt% urethane dimethacrylate (UDMA), 40 wt% bisphenol A ethoxylateddimethacrylate (bis-EMA), and 20 wt% triethyleneglycol dimethacrylate (TEGDMA)). Flexural strength (FS), diametral tensile strength (DTS), hardness (HV), sorption, and solubility were determined. To assess hydrolytic stability, the materials were tested before and after two aging methods (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). The aging protocol resulted in no noticeable change (median values were the same as or higher than the control value) or a decrease in the DTS value from 4 to 28%, and a decrease in the FS value by 2 to 14%. The hardness values after aging were more than 60% lower than those of the controls. The used additives did not improve the initial (control) properties of the composite material. The addition of CHINOX SA-1 improved the hydrolytic stability of composites based on UDMA/bis-EMA/TEGDMA monomers, which could potentially extend the service life of the modified material. Extended studies are needed to confirm the possible use of CHINOX SA-1 as an antihydrolysis agent in dental composites.
Assuntos
Metacrilatos , Ácidos Polimetacrílicos , Bis-Fenol A-Glicidil Metacrilato , Hidróxido de Sódio , Teste de Materiais , Resinas Compostas , Polietilenoglicóis , Poliuretanos , ÁguaRESUMO
Water-blown polyurethane (PU) foams were prepared by bio-polyols from epoxidized linseed oils and caprylic acid in combination with toluene diisocianate (TDI). A series of terpenes (menthol, geraniol, terpineol, and borneol), natural compounds with recognized antibacterial properties, were included in the starting formulations to confer bactericidal properties to the final material. Foams additivated with Irgasan®, a broad-spectrum antimicrobial molecule, were prepared as reference. The bactericidal activity of foams against planktonic and sessile E. coli (ATCC 11229) and S. aureus (ATCC 6538) was evaluated following a modified AATCC 100-2012 static method. Menthol-additivated foams showed broad-spectrum antibacterial activity, reducing Gram+ and Gram- viability by more than 60%. Foams prepared with borneol and terpineol showed selective antibacterial activity against E. coli and S. aureus, respectively. NMR analysis of foams leaking in water supported a bactericidal mechanism mediated by contact killing rather than molecule release. The results represent the proof of concept of the possibility to develop bio-based PU foams with intrinsic bactericidal properties through a simple and innovative synthetic approach.
Assuntos
Óleos Voláteis , Terpenos , Poliuretanos/química , Mentol , Staphylococcus aureus , Escherichia coli , Antibacterianos/química , ÁguaRESUMO
Polyurethane materials will come into contact with different solvents in daily life, and at the same time, they will be subject to different degrees of collision, wear and tear. Failure to take corresponding preventative or reparative measures will result in a waste of resources and an increase in costs. To this end, we prepared a novel polysiloxane with isobornyl acrylate and thiol groups as side groups, which was further used in the preparation of poly(thiourethane-urethane) materials. Thiourethane bonds generated by the click reaction of thiol groups with isocyanates endow poly(thiourethane-urethane) materials with the ability to heal and reprocess. Isobornyl acrylate with a large sterically hindered rigid ring promotes segment migration, accelerating the exchange of thiourethane bonds, which is beneficial to the recycling of materials. These results not only promote the development of terpene derivative-based polysiloxanes but also show the great potential of thiourethane as a dynamic covalent bond in the field of polymer reprocessing and healing.
Assuntos
Acrilatos , Siloxanas , Poliuretanos/química , Compostos de SulfidrilaRESUMO
Polyurethanes (PU) are one of the most used categories of plastics and have become a significant source of environmental pollutants. Degrading the refractory PU wastes using environmentally friendly strategies is in high demand. In this study, three microbial consortia from the landfill leachate were enriched using PU powder as the sole carbon source. The consortia efficiently degraded polyester PU film and accumulated high biomass within 1 week. Scanning electron microscopy, Fourier transform infrared spectroscopy, and contact angle analyses showed significant physical and chemical changes to the PU film after incubating with the consortia for 48 h. In addition, the degradation products adipic acid and butanediol were detected by high-performance liquid chromatography in the supernatant of the consortia. Microbial composition and extracellular enzyme analyses revealed that the consortia can secrete esterase and urease, which were potentially involved in the degradation of PU. The dominant microbes in the consortia changed when continuously passaged for 50 generations of growth on the PU films. This work demonstrates the potential use of microbial consortia in the biodegradation of PU wastes. KEY POINTS: ⢠Microbial consortia enriched from landfill leachate degraded polyurethane film. ⢠Consortia reached high biomass within 1 week using polyurethane film as the sole carbon source. ⢠The consortia secreted potential polyurethane-degrading enzymes.
Assuntos
Poliuretanos , Poluentes Químicos da Água , Poliuretanos/metabolismo , Consórcios Microbianos , Microbiologia do Solo , Biodegradação Ambiental , Instalações de Eliminação de ResíduosRESUMO
Mimicking the multilayered structure of blood vessels and constructing a porous inner surface are two effective approaches to achieve mechanical matching and rapid endothelialization to reduce occlusion in small-diameter vascular grafts. However, the fabrication processes are complex and time consuming, thus complicating the fabrication of personalized vascular grafts. A simple and versatile strategy is proposed to prepare the skeleton of vascular grafts by rolling self-adhesive polymer films. These polymer films are directly fabricated by dropping a polymer solution on a water surface. For the tubes, the length and wall thickness are controlled by the rolling number and position of each film, whereas the structure and properties are tailored by regulating the solution composition. Double-layer vascular grafts (DLVGs) with microporous inner layers and impermeable outer layers are constructed; a microporous layer is formed by introducing a hydrophilic polymer into a polyurethane (PU) solution. DLVGs exhibit a J-shaped stress-strain deformation profile and compliance comparable to that of coronary arteries, sufficient suture retention strength and burst pressure, suitable hemocompatibility, significant adhesion, and proliferation of human umbilical vein endothelial cells. Freshly prepared PU tubes exhibit good cytocompatibility. Thus, this strategy demonstrates potential for rapid construction of small-diameter vascular grafts for individual customization.
Assuntos
Células Endoteliais , Água , Humanos , Prótese Vascular , Esqueleto , Polímeros , Poliuretanos/químicaRESUMO
Fabricating bioartificial bone graft ceramics retaining structural, mechanical, and bone induction properties akin to those of native stem-cell niches is a major challenge in the field of bone tissue engineering and regenerative medicine. Moreover, the developed materials are susceptible to microbial invasion leading to biomaterial-centered infections which might limit their clinical translation. Here, we successfully developed biomimetic porous scaffolds of polyurethane-reinforcedL-cysteine-anchored polyaniline capped strontium oxide nanoparticles to improve the scaffold's biocompatibility, osteo-regeneration, mechanical, and antibacterial properties. The engineered nanocomposite substrate PU/L-Cyst-SrO2 @PANI (0.4 wt%) significantly promotes bone repair and regeneration by modulating osteolysis and osteogenesis. ALP activity, collagen-I, ARS staining, as well as biomineralization of MC3T3-E1 cells, were used to assess the biocompatibility and cytocompatibility of the developed scaffolds in vitro, confirming that the scaffold provided a favorable microenvironment with a prominent effect on cell growth, proliferation, and differentiation. Furthermore, osteogenic protein markers were studied using qRT-PCR with expression levels of runt-related transcription factor 2 (RUNX2), secreted phosphoprotein 1 (Spp-I), and collagen type I (Col-I). The overall results suggest that PU/L-Cyst-SrO2 @PANI (0.4 wt%) scaffolds showed superior interfacial biocompatibility, antibacterial properties, load-bearing ability, and osteoinductivity as compared to pristine PU. Thus, prepared bioactive nanocomposite scaffolds perform as a promising biomaterial substrate for bone tissue regeneration.
Assuntos
Nanofibras , Osteogênese , Cisteína/farmacologia , Tecidos Suporte/química , Poliuretanos/farmacologia , Nanofibras/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Regeneração Óssea , Diferenciação Celular , Colágeno Tipo I/farmacologia , Antibacterianos/farmacologiaRESUMO
The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications.
Assuntos
Polímeros , Poliuretanos , Polímeros/química , Temperatura , Água/químicaRESUMO
Electrospinning has become a well-established method for creating nanofibrous meshes for tissue-engineering applications. The incorporation of natural extracellular components, such as electrospun pure collagen nanofibers, has proven to be particularly challenging, as electrospun collagen nanofibers do not constitute native collagen fibers anymore. In this study, we show that this detrimental effect is not only limited to fluorinated solvents, as previously thought. Rat tail collagen was dissolved in acetic acid and ethanol and electrospun at various temperatures. Electrospun collagen mats were analyzed using circular dichroism, enzymatic digestion, SDS-PAGE, western blotting, and Raman spectroscopy and compared to heat-denaturated and electrospun collagen in HFIP. Our data suggest that even non-fluorinated electrospinning solvents, such as acid-based solvents, do not yield structurally intact fibers. Interestingly, neither epithelial cells nor fibroblasts displayed a different cellular response to electrospun collagen compared to collagen-coated polyurethane scaffolds in F-actin staining and metabolic analysis using fluorescent lifetime imaging. The disruption of the structural integrity of collagen might therefore be underestimated based on the cell-material interactions alone. These observations expose the larger than anticipated vulnerability of collagen in the electrospinning process. Based on these findings, the influence of the electrospinning process on the distinct biochemical properties of collagen should always be considered, when ECM-mimicking fibrous constructs are manufactured.
Assuntos
Colágeno , Engenharia Tecidual , Ratos , Animais , Solventes/química , Colágeno/química , Engenharia Tecidual/métodos , Poliuretanos , Células EpiteliaisRESUMO
The applications of fluorescence imaging in tumor detection and assistance in tumor resection have become progressively more widespread. Biocompatible fluorescent nanoparticles with high sensitivity and selectivity are a challenge for biological fluorescence imaging. Ligand-mediated targeting of nanoparticles to tumors is an appealing tactic for improving imaging efficiency. Herein, tetraphenyl ethylene (TPE) and phenylboronic acid (PBA) were introduced into polyurethane to synthesize a PU-TPE-PBA (PTP) fluorescent emulsion with aggregation-induced emission (AIE) for targeted tumor imaging. The PTP emulsion with a size of less than 50 nm shows excellent stability and high fluorescence sensitivity (extremely low TPE concentrations of 0.31 µg mL-1). Since PBA can selectively recognize and bind to sialic acid (SA) which is widely overexpressed in tumor cells, such PTP nanoparticles can be enriched in tumors and retained for longer periods due to enhanced permeability and retention (EPR) as well as active targeting effects. In addition, the PTP emulsion exhibits good biocompatibility and biosafety. Therefore, the novel PTP emulsion is promising for tumor cell imaging.
Assuntos
Nanopartículas , Neoplasias , Humanos , Poliuretanos , Emulsões , Corantes Fluorescentes , Neoplasias/diagnóstico por imagemRESUMO
Alcoholysis is a promising approach for upcycling postconsumer polylactide (PLA) products into valuable constituents. In addition, an alcohol-acidolysis of PLA by multifunctional 2,2-bis(hydroxymethyl)propionic acid (DMPA) produces lactate oligomers with hydroxyl and carboxylic acid terminals. In this work, a process for sizing down commercial PLA resin to optimum medium-sized lactate oligomers is developed at a lower cost than a bottom-up synthesis from its monomer. The microwave-assisted reaction is conveniently conducted at 220-240 °C and pressure lower than 100 psi. The PLA resin was completely converted via alcohol-acidolysis reaction, with a product purification yield as high as 93%. The resulting products are characterized by FTIR, 2D-NMR, 1H-NMR, GPC, DSC, and XRD spectroscopy. The effects of PLA: DMPA feed ratios and the incorporation of 1,4-butanediol (BDO) on the structures, properties, and particle formability of the alcohol-acidolyzed products are examined. The products from a ratio of 12:1, which possessed optimum size and structures, are used to synthesize PLA-based polyurethane (PUD) by reacting with 1,6-diisocyanatohexane (HDI). The resulting PUD is employed in encapsulating lavender essential oil (LO). Without using any surfactant, stable LO-loaded nanoparticles are prepared due to the copolymer's self-stabilizability from its carboxylate groups. The effect of the polymer: LO feed ratio (1.25-3.75: 1) on the physicochemical properties of the resulting nanoparticles, e.g., colloidal stability (zeta potential > -60 mV), hydrodynamic size (300-500 nm), encapsulation efficiency (80-88%), and in vitro release, are investigated. The LO-loaded nanoparticles show non-toxicity to fibroblast cells, with an IC50 value higher than 2000 µg/mL. The products from this process have high potential as drug encapsulation templates in biomedical applications.
Assuntos
Nanopartículas , Poliuretanos , Poliésteres/química , Polímeros/química , Nanopartículas/química , LactatosRESUMO
Decellularized extracellular matrix (dECM) nerve guide conduits (NGCs) are a promising strategy to replace autogenous nerve grafting for the treatment of peripheral nerve system (PNS) injury. However, dECM conduits with mechanical properties that match those of peripheral nerves are yet to be well developed. Herein, we developed polyurethane-based NGCs incorporating decellularized spinal cord (BWPU-DSC NGCs) to repair peripheral nerves. BWPU-DSC NGCs have an inner three-dimensional micro-nanostructure. The mechanical properties of BWPU-DSC NGCs were similar to those of polyurethane NGCs, which were proven to promote peripheral nerve regeneration. An in vitro study indicated that BWPU-DSC NGCs could boost the proliferation and growth of cell processes in Schwann and neuron-like cells. In a rat sciatic nerve transected injury model, BWPU-DSC NGCs exhibited a dramatic increase in nerve repair, similar to that obtained by the current gold standard autograft implantation at only 6 weeks post-implantation, whereas polyurethane NGCs still displayed incomplete nerve repair. Histological analysis revealed that BWPU-DSC NGCs could induce the reprogramming of Schwann cells to promote axon regeneration and remyelination. Moreover, reprogrammed Schwann cells together with BWPU-DSC NGCs had anti-inflammatory effects and altered the activation state of macrophages to M2 phenotypes to enhance PNS regeneration. In this study, we provided a strategy to prepare polyurethane-based dECM NGCs enriched with bioactive molecules to promote PNS regeneration.
Assuntos
Regeneração Tecidual Guiada , Traumatismos dos Nervos Periféricos , Ratos , Animais , Axônios , Poliuretanos/farmacologia , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Reprogramação Celular , Nervos Periféricos , Células de Schwann , Traumatismos dos Nervos Periféricos/terapiaRESUMO
Forchlorfenuron (CPPU) is a plant growth regulator widely applied on kiwifruit to improve yield, however, there are rarely reports on its effects on the nutrients of kiwifruits. Based on UHPLC-Q-TOF-MS, the effects of CPPU on metabolism profile and nutrient substances of two kiwifruit varieties during development were investigated by non-targeted metabolomics. A total of 115 metabolites were identified, and 29 differential metabolites were confirmed and quantified using certified reference standards. Metabolic profile indicated that CPPU promoted kiwifruit development during the main expansion stages at the molecular level, and the effects varied slightly for different varieties. In the early and middle stages of kiwifruit development, the anthocyanin, flavone and flavonol biosynthesis were down-regulated in both varieties, and flavanols biosynthesis was down-regulated only in Hayward variety. Arginine biosynthesis was down-regulated at all stages till the harvest. Although the synthesis of these nutrient substances in kiwifruits was mostly down-regulated by CPPU, the negative effects became mild at harvest time, and positively, the significant increase of sucrose and decrease of organic acids at harvest time could help to improve the taste of kiwifruits.
Assuntos
Actinidia , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Polietilenoglicóis/farmacologia , Poliuretanos/farmacologia , Actinidia/metabolismoRESUMO
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.
Assuntos
Plásticos , Gerenciamento de Resíduos , Polímeros , Poliuretanos , Polietilenotereftalatos , Biotecnologia , ReciclagemRESUMO
This work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina. ABWs were used in the bio-TPUs composites as a filler in the quantity of 1, 5, 10, and 15 wt.%. The bio-based composites were prepared via the in situ method. Polymer matrix was synthesized from a bio-based polyester polyol, diisocyanate mixture (composed of partially bio-based and synthetic diisocyanates), and bio-based 1,3 propanediol. In this study, the chemical structure, morphology, thermal and mechanical properties of prepared composites were investigated. Based on the conducted research, it was determined that the type and the content of algae waste influence the properties of the bio-based polyurethane matrix. In general, the addition of algae biomass wastes led to obtain materials characterized by good mechanical properties and noticeable positive ecological impact by increasing the total amount of green components in prepared bio-TPU-based composites from 68.7% to 73.54%.