Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 951
Filtrar
1.
Nature ; 615(7950): 117-126, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36859578

RESUMO

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.


Assuntos
Arqueologia , Genoma Humano , Genômica , Genética Humana , Caça , Paleontologia , Humanos , Europa (Continente)/etnologia , Pool Gênico , História Antiga , Genoma Humano/genética
2.
PLoS One ; 18(3): e0282041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888576

RESUMO

The Tazy or Kazakh National sighthound has been officially recognized as the national heritage of Kazakhstan. Comprehensive genetic studies of genetic diversity and population structure that could be used for selection and conservation of this unique dog breed have not been conducted so far. The aim of this study was to determine the genetic structure of the Tazy using microsatellite and SNP markers and to place the breed in the context of the world sighthound breeds. Our results showed that all 19 microsatellite loci examined were polymorphic. The observed number of alleles in the Tazy population varied from 6 (INU030 locus) to 12 (AHT137, REN169D01, AHTh260, AHT121, and FH2054 loci) with a mean of 9.778 alleles per locus. The mean number of effective alleles was 4.869 and ranged from 3.349 f to 4.841. All markers were highly informative (PIC values greater than 0.5) and ranged from 0.543 (REN247M23 locus) to 0.865 (AHT121 locus). The observed and expected heterozygosities in a total population were 0.748 and 0.769 and ranged from 0.746 to 0.750 and 0.656 to 0.769, respectively. Overall, the results confirmed that the Tazy breed has a high level of genetic diversity, no significant inbreeding, and a specific genetic structure. Three gene pools underlie the genetic diversity of the Tazy breed. SNP analysis using the CanineHD SNP array, which contains more than 170,000 SNP markers, showed that the Tazy breed is distinct from other sighthound breeds and genetically related to ancient eastern sighthound breeds sharing the same branch with the Afghan Hound and the Saluki. The results, together with archeological findings, confirm the ancient origin of the breed. The findings can be used for the conservation and international registration of the Tazy dog breed.


Assuntos
Variação Genética , Endogamia , Animais , Cães , Heterozigoto , Pool Gênico , Repetições de Microssatélites/genética , Alelos
3.
Sci Rep ; 13(1): 3319, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849504

RESUMO

Divergently selected chicken breeds are of great interest not only from an economic point of view, but also in terms of sustaining diversity of the global poultry gene pool. In this regard, it is essential to evaluate the classification (clustering) of varied chicken breeds using methods and models based on phenotypic and genotypic breed differences. It is also important to implement new mathematical indicators and approaches. Accordingly, we set the objectives to test and improve clustering algorithms and models to discriminate between various chicken breeds. A representative portion of the global chicken gene pool including 39 different breeds was examined in terms of an integral performance index, i.e., specific egg mass yield relative to body weight of females. The generated dataset was evaluated within the traditional, phenotypic and genotypic classification/clustering models using the k-means method, inflection points clustering, and admixture analysis. The latter embraced SNP genotype datasets including a specific one focused on the performance-associated NCAPG-LCORL locus. The k-means and inflection points analyses showed certain discrepancies between the tested models/submodels and flaws in the produced cluster configurations. On the other hand, 11 core breeds were identified that were shared between the examined models and demonstrated more adequate clustering and admixture patterns. These findings will lay the foundation for future research to improve methods for clustering as well as genome- and phenome-wide association/mediation analyses.


Assuntos
Algoritmos , Galinhas , Feminino , Animais , Galinhas/genética , Peso Corporal , Análise por Conglomerados , Pool Gênico
4.
Proc Natl Acad Sci U S A ; 120(5): e2206945119, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2212230

RESUMO

Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding the origins of SARS-CoV-2 and the molecular processes that could underlie future epidemic viruses. While genomic analyses suggest recombination was a factor in the emergence of SARS-CoV-2, few studies have quantified recombination rates among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated substitutions in sequencing data using a coalescent model with recombination. Our computationally-efficient, non-phylogenetic method infers recombination parameters of both sampled sequences and the unsampled gene pools with which they recombine. We apply this approach to infer recombination parameters for a range of positive-sense RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We identify which SL-CoV sequence clusters have recombined with shared gene pools, and show that these pools have distinct structures and high recombination rates, with multiple recombination events occurring per synonymous substitution. We find that individual genes have recombined with different viral reservoirs. By decoupling contributions from mutation and recombination, we recover the phylogeny of non-recombined portions for many of these SL-CoVs, including the position of SARS-CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole genome sequences, we show current diversity levels are insufficient to infer the within-population recombination rate of the virus since the pandemic began. Our work offers new methods for inferring recombination rates in RNA viruses with implications for understanding recombination in SARS-CoV-2 evolution and the structure of clonal relationships and gene pools shaping its origins.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/genética , SARS-CoV-2/genética , Pool Gênico , Filogenia , Genômica , Genoma Viral/genética , Evolução Molecular
5.
Proc Natl Acad Sci U S A ; 120(5): e2206945119, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693089

RESUMO

Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding the origins of SARS-CoV-2 and the molecular processes that could underlie future epidemic viruses. While genomic analyses suggest recombination was a factor in the emergence of SARS-CoV-2, few studies have quantified recombination rates among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated substitutions in sequencing data using a coalescent model with recombination. Our computationally-efficient, non-phylogenetic method infers recombination parameters of both sampled sequences and the unsampled gene pools with which they recombine. We apply this approach to infer recombination parameters for a range of positive-sense RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We identify which SL-CoV sequence clusters have recombined with shared gene pools, and show that these pools have distinct structures and high recombination rates, with multiple recombination events occurring per synonymous substitution. We find that individual genes have recombined with different viral reservoirs. By decoupling contributions from mutation and recombination, we recover the phylogeny of non-recombined portions for many of these SL-CoVs, including the position of SARS-CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole genome sequences, we show current diversity levels are insufficient to infer the within-population recombination rate of the virus since the pandemic began. Our work offers new methods for inferring recombination rates in RNA viruses with implications for understanding recombination in SARS-CoV-2 evolution and the structure of clonal relationships and gene pools shaping its origins.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/genética , SARS-CoV-2/genética , Pool Gênico , Filogenia , Genômica , Genoma Viral/genética , Evolução Molecular
6.
Nat Commun ; 14(1): 251, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36646704

RESUMO

While immunotherapy has emerged as a breakthrough cancer therapy, it is only effective in some patients, indicating the need of alternative therapeutic strategies. Induction of cancer immunogenic cell death (ICD) is one promising way to elicit potent adaptive immune responses against tumor-associated antigens. Type I interferon (IFN) is well known to play important roles in different aspects of immune responses, including modulating ICD in anti-tumor action. However, how to expand IFN effect in promoting ICD responses has not been addressed. Here we show that depletion of ubiquitin specific protease 18 (USP18), a negative regulator of IFN signaling, selectively induces cancer cell ICD. Lower USP18 expression correlates with better survival across human selected cancer types and delays cancer progression in mouse models. Mechanistically, nuclear USP18 controls the enhancer landscape of cancer cells and diminishes STAT2-mediated transcription complex binding to IFN-responsive elements. Consequently, USP18 suppression not only enhances expression of canonical IFN-stimulated genes (ISGs), but also activates the expression of a set of atypical ISGs and NF-κB target genes, including genes such as Polo like kinase 2 (PLK2), that induce cancer pyroptosis. These findings may support the use of targeting USP18 as a potential cancer immunotherapy.


Assuntos
Interferon Tipo I , Neoplasias , Camundongos , Animais , Humanos , Piroptose , Pool Gênico , Transdução de Sinais , NF-kappa B/metabolismo , Interferon Tipo I/genética , Ubiquitina Tiolesterase/metabolismo , Neoplasias/genética
7.
Curr Biol ; 33(3): 423-433.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36638796

RESUMO

The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.


Assuntos
Pool Gênico , Genoma Humano , Humanos , História Antiga , Recém-Nascido , Ásia , Federação Russa , Sibéria , Migração Humana , Genética Populacional
8.
Sci Total Environ ; 862: 160739, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502686

RESUMO

The European brown trout, Salmo trutta, is a cold-adapted fish reported as a Least Concern species in the IUCN Red List. This species colonized new territories from southern refuges during the last glacial melting, but during the 20th century suffered from anthropic impacts on its habitats. The long-time survival of the species relies on the genetic diversity within and among populations. Brown trout is among the genetically most diverse vertebrate species; however, native populations in Mediterranean rivers have dramatically suffered of introgressive hybridization from extensive releases of evolutionary distant non-native Atlantic stocks. In addition, in Mediterranean rivers climate change will result in unsuitable conditions for the species during the 21st century. Using brown trout populations at the headstreams of a Pyrenean river as a model, this paper revised how hatchery releases have affected the native gene pools and how environmental and climatic variables controlled the amount of local introgression at intra-basin level. Introgressive hybridization was detected in all studied sites. Ten times larger divergence was observed among populations at tributaries than among populations along the main stem. A highly impacted population distributed in a long transect in the main stem suggested that hatchery fish move towards the main stem wherever released. From already highly impacted populations and despite the cessation of hatchery releases, warmer temperatures and lower precipitation expected from climate change will extend the introgressive hybridization along the basin, contributing to the extinction of the native gene pools. Based on available morphological distinction of native, hatchery and hybrid brown trout, we advocate the involvement of regional social groups (e.g. riverside dwellers, anglers, conservationists, hikers) in citizen science programs to detect the spread of non-native phenotypes along the rivers. These are cheap and fast methods to collaborate with fishery managers in the preservation and recovery of the regional native populations.


Assuntos
Pool Gênico , Rios , Animais , Truta/genética , Ecossistema , Hong Kong
9.
Neuron ; 110(21): 3513-3533, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36327897

RESUMO

Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Pool Gênico , Fagocitose/genética
10.
Sci Rep ; 12(1): 20614, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450793

RESUMO

Genomic selection is a promising breeding technique for tree crops to accelerate the development of new cultivars. However, factors such as genetic structure can create spurious associations between genotype and phenotype due to the shared history between populations with different trait values. Genetic structure can therefore reduce the accuracy of the genotype to phenotype map, a fundamental requirement of genomic selection models. Here, we employed 272 single nucleotide polymorphisms from 208 Mangifera indica accessions to explore whether the genetic structure of the Australian mango gene pool explained variation in trunk circumference, fruit blush colour and intensity. Multiple population genetic analyses indicate the presence of four genetic clusters and show that the most genetically differentiated cluster contains accessions imported from Southeast Asia (mainly those from Thailand). We find that genetic structure was strongly associated with three traits: trunk circumference, fruit blush colour and intensity in M. indica. This suggests that the history of these accessions could drive spurious associations between loci and key mango phenotypes in the Australian mango gene pool. Incorporating such genetic structure in associations between genotype and phenotype can improve the accuracy of genomic selection, which can assist the future development of new cultivars.


Assuntos
Mangifera , Animais , Mangifera/genética , Pool Gênico , Austrália , Melhoramento Vegetal , Fenótipo , Aves , Excipientes , Família Multigênica
11.
Nature ; 610(7930): 112-119, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131019

RESUMO

The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.


Assuntos
Pool Gênico , Migração Humana , Arqueologia , DNA Antigo/análise , Dinamarca , Inglaterra , Feminino , França , Genética Populacional , Genoma Humano/genética , Alemanha , História Medieval , Migração Humana/história , Humanos , Idioma , Masculino , Dinâmica Populacional , Armas/história
12.
Gut Microbes ; 14(1): 2127438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170451

RESUMO

Lactic acid bacteria (LAB) and bifidobacteria may serve as reservoirs of antimicrobial resistance, but the risk posed by strains intentionally introduced into the agro-food chain has not yet been thoroughly investigated. The aim of our study was to evaluate whether probiotics, starter and protective cultures, and feed additives represent a risk to human health. In addition to commercial strains of LAB and bifidobacteria, isolates from human milk or colostrum, intestinal mucosa or feces, and fermented products were analyzed. Phenotypic susceptibility data of 474 strains showed that antimicrobial resistance was more common in intestinal isolates than in commercial strains. Antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) were characterized in the whole genome sequences of 1114 strains using comparative genomics. Intrinsic ARGs were abundant in enterococci, bifidobacteria, and lactococci but were considered non-risky due to the absence of MGEs. The results revealed that 13.8% of commercial strains contained acquired ARGs, most frequently for tetracycline. We associated 75.5% of the acquired ARGs with known or novel MGEs, and their potential for transmission was assessed by examining metagenomic sequences. We confirmed that ARGs and MGEs were not as abundant or diverse in commercial strains as in human intestinal isolates or isolates from human milk, suggesting that strains intentionally introduced into the agro-food chain do not pose a significant threat. However, attention should be paid especially to individual probiotic strains containing elements that have been shown to have high potential for transferability in the gut microbiota.Abbreviations: ARG, antimicrobial resistance gene; ICE, integrative and conjugative element; IME, integrative and mobilizable element; LAB, lactic acid bacteria; MDR, multidrug resistance; MIC, minimum inhibitory concentration; MGE, mobile genetic element; TRRPP, tetracycline-resistant ribosomal protection protein; WGS, whole genome sequences.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Antibacterianos/farmacologia , Bifidobacterium/genética , Farmacorresistência Bacteriana/genética , Cadeia Alimentar , Pool Gênico , Humanos , Lactobacillales/genética , Tetraciclinas
13.
Theor Appl Genet ; 135(10): 3511-3529, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029318

RESUMO

KEY MESSAGE: Structural variants (SV) of 23 barley inbreds, detected by the best combination of SV callers based on short-read sequencing, were associated with genome-wide and gene-specific gene expression and, thus, were evaluated to predict agronomic traits. In human genetics, several studies have shown that phenotypic variation is more likely to be caused by structural variants (SV) than by single nucleotide variants. However, accurate while cost-efficient discovery of SV in complex genomes remains challenging. The objectives of our study were to (i) facilitate SV discovery studies by benchmarking SV callers and their combinations with respect to their sensitivity and precision to detect SV in the barley genome, (ii) characterize the occurrence and distribution of SV clusters in the genomes of 23 barley inbreds that are the parents of a unique resource for mapping quantitative traits, the double round robin population, (iii) quantify the association of SV clusters with transcript abundance, and (iv) evaluate the use of SV clusters for the prediction of phenotypic traits. In our computer simulations based on a sequencing coverage of 25x, a sensitivity > 70% and precision > 95% was observed for all combinations of SV types and SV length categories if the best combination of SV callers was used. We observed a significant (P < 0.05) association of gene-associated SV clusters with global gene-specific gene expression. Furthermore, about 9% of all SV clusters that were within 5 kb of a gene were significantly (P < 0.05) associated with the gene expression of the corresponding gene. The prediction ability of SV clusters was higher compared to that of single-nucleotide polymorphisms from an array across the seven studied phenotypic traits. These findings suggest the usefulness of exploiting SV information when fine mapping and cloning the causal genes underlying quantitative traits as well as the high potential of using SV clusters for the prediction of phenotypes in diverse germplasm sets.


Assuntos
Hordeum , Variação Biológica da População , Expressão Gênica , Pool Gênico , Hordeum/genética
14.
Mol Ecol ; 31(21): 5581-5601, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35984725

RESUMO

Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.


Assuntos
Malus , Malus/genética , Domesticação , Pool Gênico , Irã (Geográfico) , Melhoramento Vegetal
15.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562944

RESUMO

This study was undertaken to investigate the diversity and population structure of 83 spring barley (Hordeum vulgare L.) cultivars, which corresponded to 120 years of this crop's breeding in Poland. The analysis was based on 11,655 DArTseq-derived SNPs evenly distributed across seven barley chromosomes. Five groups were assigned in the studied cultivars according to the period of their breeding. A decrease in observed heterozygosity within the groups was noted along with the progress in breeding, with a simultaneous increase in the inbreeding coefficient value. As a result of breeding, some of the unique allelic variation present in old cultivars was lost, but crosses with foreign materials also provided new alleles to the barley gene pool. It is important to mention that the above changes affected different chromosomes to varying degrees. The internal variability of the cultivars ranged from 0.011 to 0.236. Internal uniformity was lowest among the oldest cultivars, although some highly homogeneous ones were found among them. This is probably an effect of genetic drift or selection during their multiplications and regenerations in the period from breeding to the time of analysis. The population genetic structure of the studied group of cultivars appears to be quite complex. It was shown that their genetic makeup consists of as many as eleven distinct gene pools. The analysis also showed traces of directed selection on chromosomes 3H and 5H. Detailed data analysis confirmed the presence of duplicates for 11 cultivars. The performed research will allow both improvement of the management of barley genetic resources in the gene bank and the reuse of this rich and forgotten variability in breeding programs and research.


Assuntos
Hordeum , Pool Gênico , Variação Genética , Genótipo , Hordeum/genética , Melhoramento Vegetal , Polônia
16.
Curr Biol ; 32(13): 2858-2870.e7, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35617951

RESUMO

Huns, Avars, and conquering Hungarians were migration-period nomadic tribal confederations that arrived in three successive waves in the Carpathian Basin between the 5th and 9th centuries. Based on the historical data, each of these groups are thought to have arrived from Asia, although their exact origin and relation to other ancient and modern populations have been debated. Recently, hundreds of ancient genomes were analyzed from Central Asia, Mongolia, and China, from which we aimed to identify putative source populations for the above-mentioned groups. In this study, we have sequenced 9 Hun, 143 Avar, and 113 Hungarian conquest period samples and identified three core populations, representing immigrants from each period with no recent European ancestry. Our results reveal that this "immigrant core" of both Huns and Avars likely originated in present day Mongolia, and their origin can be traced back to Xiongnus (Asian Huns), as suggested by several historians. On the other hand, the "immigrant core" of the conquering Hungarians derived from an earlier admixture of Mansis, early Sarmatians, and descendants of late Xiongnus. We have also shown that a common "proto-Ugric" gene pool appeared in the Bronze Age from the admixture of Mezhovskaya and Nganasan people, supporting genetic and linguistic data. In addition, we detected shared Hun-related ancestry in numerous Avar and Hungarian conquest period genetic outliers, indicating a genetic link between these successive nomadic groups. Aside from the immigrant core groups, we identified that the majority of the individuals from each period were local residents harboring "native European" ancestry.


Assuntos
Pool Gênico , Genética Populacional , Haplótipos , Humanos , Hungria
17.
Plant Sci ; 319: 111199, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487648

RESUMO

Wild species related to domesticated crops (crop wild relatives, or CWRs) represent a high level of genetic diversity that provides a practical gene pool for crop pre-breeding employed to address climate change and food demand challenges globally. Nevertheless, rapid identifying and visual tracking of alien chromosomes and sequences derived from CWRs have been a technical challenge for crop chromosome engineering. Here, a species-specific oligonucleotide (oligo) pool was developed by using the reference genome of Cucumis hystrix (HH, 2n = 2x = 24), a wild species carrying many favorable traits and interspecific compatibility with cultivated cucumber (C. sativus, CC, 2n = 2x = 14). These synthetic double-stranded oligo probes were applied to validate the assembly and characterize the chromosome architectures of C. hystrix, as well as to rapidly identify C. hystrix-chromosomes in diverse C. sativus-hystrix chromosome-engineered germplasms, including interspecific hybrid F1 (HC), synthetic allopolyploids (HHCC, CHC, and HCH) and alien additional lines (CC-H). Moreover, a ∼2Mb of C. hystrix-specific sequences, introduced into cultivated cucumber, were visualized by CWR-specific oligo-painting. These results demonstrate that the CWR-specific oligo-painting technique holds broad applicability for chromosome engineering of numerous crops, as it allows rapid identification of alien chromosomes, reliable detection of homoeologous recombination, and visual tracking of the introgression process. It is promising to achieve directed and high-precision crop pre-breeding combined with other breeding techniques, such as CRISPR/Cas9-mediated chromosome engineering.


Assuntos
Cucumis sativus , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Cucumis sativus/genética , Pool Gênico , Espécies Introduzidas , Melhoramento Vegetal/métodos
18.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456371

RESUMO

According to the written historical sources, the Gepids were a Germanic tribe that settled in the Carpathian Basin during the Migration Period. They were allies of the Huns, and an independent Gepid Kingdom arose after the collapse of the Hun Empire. In this period, the Carpathian Basin was characterized by so-called row-grave cemeteries. Due to the scarcity of historical and archaeological data, we have a poor knowledge of the origin and composition of these barbarian populations, and this is still a subject of debate. To better understand the genetic legacy of migration period societies, we obtained 46 full mitogenome sequences from three Gepid cemeteries located in Transylvania, Romania. The studied samples represent the Classical Gepidic period and illustrate the genetic make-up of this group from the late 5th and early 6th centuries AD, which is characterized by cultural markers associated with the Gepid culture in Transylvania. The genetic structure of the Gepid people is explored for the first time, providing new insights into the genetic makeup of this archaic group. The retrieved genetic data showed mainly the presence of Northwestern European mitochondrial ancient lineages in the Gepid group and all population genetic analyses reiterated the same genetic structure, showing that early ancient mitogenomes from Europe were the major contributors to the Gepid maternal genetic pool.


Assuntos
Pool Gênico , Genética Populacional , Arqueologia , Cemitérios , Humanos
19.
Can J Vet Res ; 86(2): 140-146, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35388231

RESUMO

The genetic identity of Russian indigenous populations of the dark forest honeybee (Apis mellifera mellifera) is gradually being lost due to spontaneous hybridization and gene introgression from other subspecies, which are transferred into the forest and foreststeppe zones for commercial beekeeping. The objective of this study was to evaluate the effectiveness of various conservation and beekeeping practices in the complex biosphere reserve "Bashkir Urals" (the Southern Urals) in conserving the gene pool of the indigenous Burzyan bee population. We discovered that the variant Q of the COI-COII locus of mitochondrial DNA, which dominates in other bee subspecies, is absent in colonies in the remote landscape zones of this reserve. This haplotype occurs with a relatively low frequency in borts (natural tree hollows) and colods (manmade hollow pieces of logs hung on trees), which are used in wild-hive beekeeping. The proportion of the genetic marker is significantly higher in apiaries, as well as in borts and colods in parts of the reserve without strict conservation regimes. When using 9 microsatellite loci, a tendency was found to increase allelic diversity in subpopulations with a higher occurrence of the haplotype Q. Based on the patterns revealed, ways are discussed for improving measures to conserve the gene pool of the bee population.


L'identité génétique des populations indigènes russes d'abeilles noires de la forêt (Apis mellifera mellifera) se perd progressivement en raison de l'hybridation spontanée et de l'introgression de gènes d'autres sous-espèces, qui sont transférées dans les zones forestières et de steppe forestière pour l'apiculture commerciale. L'objectif de cette étude était d'évaluer l'efficacité de diverses pratiques de conservation et d'apiculture dans la réserve de biosphère complexe « Bashkir Oural ¼ (le sud de l'Oural) dans la conservation du patrimoine génétique de la population d'abeilles indigènes Burzyan. Nous avons constaté que la variante Q du locus COI-COII de l'ADN mitochondrial, qui domine chez les autres sous-espèces d'abeilles, est absente dans les colonies des zones paysagères reculées de cette réserve. Cet haplotype est rencontré avec une fréquence relativement faible dans les borts (creux d'arbres naturels) et les colods (morceaux de bûches creux artificiels accrochés aux arbres), qui sont utilisés dans l'apiculture sauvage. La proportion du marqueur génétique est significativement plus élevée dans les ruchers, ainsi que dans les borts et les colods dans les parties de la réserve sans régimes de conservation stricts. Lors de l'utilisation de neuf loci microsatellites, une tendance a été constatée à augmenter la diversité allélique dans les sous-populations avec une occurrence plus élevée de l'haplotype Q. Sur la base des modèles révélés, des moyens sont discutés pour améliorer les mesures visant à conserver le pool génétique de la population d'abeilles.(Traduit par Docteur Serge Messier).


Assuntos
DNA Mitocondrial , Pool Gênico , Animais , Abelhas/genética , DNA Mitocondrial/genética , Florestas , Repetições de Microssatélites/genética , Federação Russa
20.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35363317

RESUMO

Hybridization occupies a central role in many fundamental evolutionary processes, such as speciation or adaptation. Yet, despite its pivotal importance in evolution, little is known about the actual prevalence and distribution of current hybridization across the tree of life. Here we develop and implement a new statistical method enabling the detection of F1 hybrids from single-individual genome sequencing data. Using simulations and sequencing data from known hybrid systems, we first demonstrate the specificity of the method, and identify its statistical limits. Next, we showcase the method by applying it to available sequencing data from more than 1,500 species of Arthropods, including Hymenoptera, Hemiptera, Coleoptera, Diptera, and Archnida. Among these taxa, we find Hymenoptera, and especially ants, to display the highest number of candidate F1 hybrids, suggesting higher rates of recent hybridization between previously isolated gene pools in these groups. The prevalence of F1 hybrids was heterogeneously distributed across ants, with taxa including many candidates tending to harbor specific ecological and life-history traits. This work shows how large-scale genomic comparative studies of recent hybridization can be implemented, uncovering the determinants of first-generation hybridization across whole taxa.


Assuntos
Formigas , Animais , Formigas/genética , Pool Gênico , Genoma , Genômica , Hibridização Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...