RESUMO
Acne is one of the most common dermatological conditions, peaking during adolescence and early adulthood, affecting about 85% of individuals aged 12-24. Although often associated with teenage years, acne can occur at any age, impacting over 25% of women and 12% of men in their forties. Treatment strategies vary depending on the severity, including the use of topical gels or creams containing benzoyl peroxide and retinoids, antibiotics, and systemic or topical isotretinoin. However, these treatments can cause irritation, allergies, and other toxic side effects. Currently, there is no natural-based alternative for antibacterial photodynamic therapy targeting acne using marine drugs or extracts. Through a bioguided screening approach, we identified the ethanol extract of Skeletonema marinoi as highly phototoxic against three bacterial species associated with acne-Cutibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis. This extract exhibited phototoxicity in planktonic bacteria under white and red light, disrupted bacterial biofilms, reduced sebum production but also showed phototoxicity in keratinocytes, highlighting the importance of the specific targeting of treatment areas. Further investigations, including fractionation and high-resolution structural analysis, linked the observed phototoxicity to a high concentration of pheophorbide a in the extract. Given its notable in vitro efficacy, this extract holds promising potential for clinical evaluation to manage mild acne. This discovery paves the way for further exploration of Skeletonema pigment extracts, extending their potential applications beyond acne phototherapy to include dermocosmetics, veterinary medicine, and other phototherapy uses.
Assuntos
Acne Vulgar , Staphylococcus epidermidis , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Humanos , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Etanol/química , Propionibacteriaceae/efeitos dos fármacos , Fotoquimioterapia/métodos , Phaeophyceae/química , Queratinócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , FemininoRESUMO
This study is focused on the utilization of naturally occurring salicylic acid and nicotinamide (vitamin B3) in the development of novel sustainable Active Pharmaceutical Ingredients (APIs) with significant potential for treating acne vulgaris. The study highlights how the chemical structure of the cation significantly influences surface activity, lipophilicity, and solubility in aqueous media. Furthermore, the new ionic forms of APIs, the synthesis of which was assessed with Green Chemistry metrics, exhibited very good antibacterial properties against common pathogens that contribute to the development of acne, resulting in remarkable enhancement of biological activity ranging from 200 to as much as 2000 times when compared to salicylic acid alone. The molecular docking studies also revealed the excellent anti-inflammatory activity of N-alkylnicotinamide salicylates comparable to commonly used drugs (indomethacin, ibuprofen, and acetylsalicylic acid) and were even characterized by better IC50 values than common anti-inflammatory drugs in some cases. The derivative, featuring a decyl substituent in the pyridinium ring of nicotinamide, exhibited efficacy against Cutibacterium acnes while displaying favorable water solubility and improved wettability on hydrophobic surfaces, marking it as particularly promising. To investigate the impact of the APIs on the biosphere, the EC50 parameter was determined against a model representative of crustaceansâArtemia franciscana. The majority of compounds (with the exception of the salt containing the dodecyl substituent) could be classified as "Relatively Harmless" or "Practically Nontoxic", indicating their potential low environmental impact, which is essential in the context of modern drug development.
Assuntos
Acne Vulgar , Antibacterianos , Simulação de Acoplamento Molecular , Niacinamida , Acne Vulgar/tratamento farmacológico , Niacinamida/química , Niacinamida/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Solubilidade , Salicilatos/química , Salicilatos/farmacologia , Testes de Sensibilidade Microbiana , Sais/química , Propionibacteriaceae/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ânions/química , Ácido Salicílico/química , Ácido Salicílico/farmacologiaRESUMO
Acne is a chronic inflammatory skin condition that involves Cutibacterium acnes (C. acnes), which is classified into six main phylotypes (IA1, IA2, IB, IC, II and III). Acne development is associated with loss of C. acnes phylotype diversity, characterised by overgrowth of phylotype IA1 relative to other phylotypes. It was also shown that purified extracellular vesicles (EVs) secreted by C. acnes can induce an acne-like inflammatory response in skin models. We aimed to determine if the inflammatory profile of EVs secreted by C. acnes phylotype IA1 from an inflammatory acne lesion was different from C. acnes phylotype IA1 from normal skin, thus playing a direct role in the severity of inflammation. EVs were produced in vitro after culture of two clinical strains of C. acnes phylotype IA1, T5 from normal human skin and A47 from an inflammatory acne lesion, and then incubated with either human immortalised keratinocytes, HaCaT cells, or skin explants obtained from abdominoplasty. Subsequently, quantitative PCR (qPCR) was performed for human ß-defensin 2 (hBD2), cathelicidin (LL-37), interleukin (IL)-1ß, IL-6, IL-8, IL-17α and IL-36γ, and ELISA for IL-6, IL-8 and IL-17α. We found that EVs produced in vitro by C. acnes derived from inflammatory acne lesions significantly increased the pro-inflammatory cytokines and anti-microbial peptides at both transcriptional and protein levels compared with EVs derived from normal human skin. We show for the first time that C. acnes EVs from inflammatory acne play a crucial role in acne-associated inflammation in vitro and that C. acnes phylotype IA1 collected from inflammatory acne lesion and normal skin produce different EVs and inflammatory profiles in vitro.
Assuntos
Acne Vulgar , Vesículas Extracelulares , Queratinócitos , Propionibacterium acnes , Humanos , Vesículas Extracelulares/metabolismo , Acne Vulgar/microbiologia , Queratinócitos/microbiologia , Pele/microbiologia , Inflamação/microbiologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células HaCaT , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , PropionibacteriaceaeRESUMO
BACKGROUND: The bacterial persistence, responsible for therapeutic failures, can arise from the biofilm formation, which possesses a high tolerance to antibiotics. This threat often occurs when a bone and joint infection is diagnosed after a prosthesis implantation. Understanding the biofilm mechanism is pivotal to enhance prosthesis joint infection (PJI) treatment and prevention. However, little is known on the characteristics of Cutibacterium acnes biofilm formation, whereas this species is frequently involved in prosthesis infections. METHODS: In this study, we compared the biofilm formation of C. acnes PJI-related strains and non-PJI-related strains on plastic support and textured titanium alloy by (i) counting adherent and viable bacteria, (ii) confocal scanning electronic microscopy observations after biofilm matrix labeling and (iii) RT-qPCR experiments. RESULTS: We highlighted material- and strain-dependent modifications of C. acnes biofilm. Non-PJI-related strains formed aggregates on both types of support but with different matrix compositions. While the proportion of polysaccharides signal was higher on plastic, the proportions of polysaccharides and proteins signals were more similar on titanium. The changes in biofilm composition for PJI-related strains was less noticeable. For all tested strains, biofilm formation-related genes were more expressed in biofilm formed on plastic that one formed on titanium. Moreover, the impact of C. acnes internalization in osteoblasts prior to biofilm development was also investigated. After internalization, one of the non-PJI-related strains biofilm characteristics were affected: (i) a lower quantity of adhered bacteria (80.3-fold decrease), (ii) an increase of polysaccharides signal in biofilm and (iii) an activation of biofilm gene expressions on textured titanium disk. CONCLUSION: Taken together, these results evidenced the versatility of C. acnes biofilm, depending on the support used, the bone environment and the strain.
Assuntos
Biofilmes , Infecções Relacionadas à Prótese , Titânio , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas à Prótese/microbiologia , Humanos , Aderência Bacteriana , Propionibacteriaceae/fisiologia , Propionibacteriaceae/genética , Propionibacteriaceae/efeitos dos fármacos , Próteses e Implantes/microbiologia , Osso e Ossos/microbiologia , Plásticos , Ligas , Propriedades de SuperfícieRESUMO
Oleum cinnamomi (OCM) is a volatile component of the Cinnamomum cassia Presl in the Lauraceae family, which displays broad-spectrum antibacterial properties. It has been found that OCM has a significant inhibitory effect against Cutibacterium acnes (C. acnes), but the precise target and molecular mechanism are still not fully understood. In this study, the antibacterial activity of OCM against C. acnes and its potential effect on cell membranes were elucidated. Metabolomics methods were used to reveal metabolic pathways, and proteomics was used to explore the targets of OCM inhibiting C. acnes. The yield of the OCM was 3.3% (w/w). A total of 19 compounds were identified, representing 96.213% of the total OCM composition, with the major constituents being phenylpropanoids (36.84%), sesquiterpenoids (26.32%), and monoterpenoids (15.79%). The main component identified was trans-cinnamaldehyde (85.308%). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of OCM on C. acnes were 60 µg/mL and 180 µg/mL, respectively. The modified proteomics results indicate that cinnamaldehyde was the main bioactive ingredient within OCM, which covalently modifies the ABC transporter adenosine triphosphate (ATP)-binding protein and nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase, hindering the amino acid transport process, and disrupting the balance between NADH and nicotinamide adenine dinucleoside phosphorus (NAD+), thereby hindering energy metabolism. We have reported for the first time that OCM exerts an antibacterial effect by covalent binding of cinnamaldehyde to target proteins, providing potential and interesting targets to explore new control strategies for gram-positive anaerobic bacteria.
Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Propionibacteriaceae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteômica/métodos , Acroleína/análogos & derivados , Acroleína/farmacologia , Acroleína/química , Metabolômica/métodosRESUMO
Cutibacterium acnes is abundant and commonly exists as a superficial bacteria on human skin. Recently, the resistance of C. acnes to antimicrobial agents has become a serious concern, necessitating the development of alternative pharmaceutical products with antimicrobial activity against C. acnes. To address this need, we evaluated the antimicrobial activity of CKR-13-a mutant oligopeptide of FK-13 with increased net charge and theoretical α-helical content-against C. acnes in modified Gifu Anaerobic Medium broth by determining the minimum inhibitory concentration (MIC). CKR-13 exerted greater antimicrobial activity against C. acnes than FK-13 in the broth at pH 7.0. The antimicrobial activity of CKR-13 with RXM against C. albicans was pH-dependent. The ionization of CKR-13 and pH-dependent growth delay of C. albicans was suggested to be associated with the increase in CKR-13 antimicrobial activity.
Assuntos
Candida albicans , Testes de Sensibilidade Microbiana , Oligopeptídeos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Candida albicans/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Propionibacteriaceae/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
Acne vulgaris, a chronic inflammatory skin disease with a high prevalence worldwide, necessitates reliable preclinical models for both understanding its pathogenesis and evaluating potential anti-acne therapies. This study aims to establish a robust mouse model using intracutaneous injection of Cutibacterium acnes bacterial suspension. Three hairless mouse strains (SKH-hr1, SKH-hr2 brown, and SKH-hr2 + ApoE) were systematically compared to ascertain the stains most closely resembling acne in humans. Various assessments, including photo documentation, biophysical evaluation, blood analysis, and histopathology, were conducted. Despite all strains exhibiting acne-like lesions, SKH-hr1 mice emerged as the most suitable model, demonstrating the most satisfactory results across multiple criteria. This research underscores the significance of employing hairless mice strains as models in acne studies to enhance and facilitate the development of effective therapeutic interventions.
Assuntos
Acne Vulgar , Modelos Animais de Doenças , Camundongos Pelados , Animais , Acne Vulgar/microbiologia , Camundongos , Propionibacterium acnes , Feminino , Pele/microbiologia , Pele/patologia , Masculino , Propionibacteriaceae/patogenicidadeRESUMO
Ulnar-shortening osteotomy is a reliable solution to treat ulnar impaction syndrome, but it has a significant rate of nonunion as a known complication. Generally nonunion after the procedure is attributed to noninfectious causes. When infections happen, they follow the microbiological trends of nonunions elsewhere in the body. We present a case of ulnar-shortening osteotomy using an oblique-cut osteotomy system that resulted in septic nonunion. At the time of revision surgery, Cutibacterium acnes and Staphylococcus hominis were isolated from the osteotomy site. The patient was successfully treated using intravenous antibiotics and the two-stage Masquelet technique and eventually went on to bony union. As C acnes is rarely encountered in this context, this report highlights the need to consider all possible pathogens in the workup of a potentially septic nonunion. Surgeons should consider bacteria such as C acnes that require prolonged incubation for isolation from cultures, which may not be part of many institutions' usual protocol. [Orthopedics. 2024;47(4):e211-e213.].
Assuntos
Antibacterianos , Osteotomia , Humanos , Osteotomia/efeitos adversos , Antibacterianos/uso terapêutico , Ulna/cirurgia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Fraturas não Consolidadas/cirurgia , Fraturas não Consolidadas/microbiologia , Masculino , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção da Ferida Cirúrgica/diagnóstico , Infecção da Ferida Cirúrgica/etiologia , Feminino , Reoperação , Adulto , Propionibacteriaceae/isolamento & purificaçãoRESUMO
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Assuntos
Biofilmes , Biofilmes/crescimento & desenvolvimento , Propionibacteriaceae/genética , Propionibacteriaceae/fisiologia , Propionibacteriaceae/isolamento & purificação , Humanos , Técnicas de Cocultura , Regulação Bacteriana da Expressão Gênica , Perfilação da Expressão Gênica , Hibridização in Situ FluorescenteRESUMO
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can misidentify Cutibacterium namnetense and Cutibacterium modestum as Cutibacterium acnes. We now describe how such MALDI-TOF MS misidentification explains previous reports of C. acnes isolates that could not be characterised using a multiplex PCR phylotyping assay.
Assuntos
Reação em Cadeia da Polimerase Multiplex , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Humanos , Filogenia , Propionibacteriaceae/genética , Propionibacteriaceae/classificação , Propionibacteriaceae/isolamento & purificação , Erros de Diagnóstico , Técnicas de Tipagem Bacteriana/métodosRESUMO
BACKGROUND: Cutibacterium acnes, a common anaerobic platelet concentrate (PC) contaminant, has been associated with rare mild adverse transfusion reactions and is often considered a harmless commensal. Notably, C. acnes can cause chronic infections and has been shown to induce the release of proinflammatory cytokines by immune cells. Since elevated concentrations of proinflammatory factors in PCs have been linked to noninfectious adverse reactions, this study aimed to assess whether C. acnes could elicit the release and accumulation of proinflammatory factors during PC storage, thereby enhancing the risk of such reactions. STUDY DESIGN/METHODS: Four ABO-matched buffy coat PCs were pooled and split into six units, each were inoculated with either saline (negative control), a Staphylococcus aureus isolate (positive control, 30 colony forming units [CFU]/unit), or four C. acnes PC isolates (10 CFU/mL) and stored at 20-24°C with agitation. Bacterial counts, platelet activation, and concentration of proinflammatory factors were assessed on days 0, 3, and 5. N = 3. RESULTS: C. acnes counts remained stable, while S. aureus proliferated reaching 108CFU/mL by the end of PC storage. By day 5, no significant differences in platelet activation or proinflammatory cytokine profiles were observed in C. acnes-contaminated PCs compared to the negative control (p > .05), while there was a significant increase (p ≤ .05) in sCD40L concentration (day 3), and platelet activation and IL-8 concentration (day 5) in S. aureus-contaminated units. DISCUSSION: C. acnes contamination does not promote the accumulation of proinflammatory factors in the absence of proliferation during storage and may not enhance the risk of inflammatory reactions when transfused to patients.
Assuntos
Plaquetas , Preservação de Sangue , Staphylococcus aureus , Humanos , Plaquetas/microbiologia , Propionibacteriaceae , Citocinas/sangue , Citocinas/metabolismo , Ativação Plaquetária , Transfusão de Plaquetas/efeitos adversos , Inflamação/microbiologiaRESUMO
Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
Assuntos
Acne Vulgar , Dermatite Atópica , Queratinócitos , Propionibacterium acnes , Pele , Humanos , Pele/microbiologia , Dermatite Atópica/microbiologia , Dermatite Atópica/genética , Queratinócitos/microbiologia , Acne Vulgar/microbiologia , Propionibacterium acnes/genética , Genômica , Genoma Bacteriano , Staphylococcus epidermidis/genética , Transcriptoma , Fatores de Virulência/genética , Propionibacteriaceae/genética , Metaboloma , Metabolômica , Microbiota/genética , MultiômicaRESUMO
Cutibacterium acnes is an opportunistic pathogen recognized as a contributing factor to acne vulgaris. The accumulation of keratin and sebum plugs in hair follicles facilitates C. acnes proliferation, leading to inflammatory acne. Although numerous antimicrobial cosmetic products for acne-prone skin are available, their efficacy is commonly evaluated against planktonic cells of C. acnes. Limited research has assessed the antimicrobial effects on microorganisms within keratin and sebum plugs. This study investigates whether an antibacterial toner can penetrate keratin and sebum plugs, exhibiting bactericidal effects against C. acnes. Scanning electron microscopy and next-generation sequencing analysis of the keratin and sebum plug suggest that C. acnes proliferate within the plug, predominantly in a biofilm-like morphology. To clarify the potential bactericidal effect of the antibacterial toner against C. acnes inside keratin and sebum plugs, we immersed the plugs in the toner, stained them with LIVE/DEAD BacLight Bacterial Viability Kit to visualize microorganism viability, and observed them using confocal laser scanning microscopy. Results indicate that most microorganisms in the plugs were killed by the antibacterial toner. To quantitatively evaluate the bactericidal efficacy of the toner against C. acnes within keratin and sebum, we immersed an artificial plug with inoculated C. acnes type strain and an isolate collected from acne-prone skin into the toner and obtained viable cell counts. The number of the type strain and the isolate inside the artificial plug decreased by over 2.2 log and 1.2 log, respectively, showing that the antibacterial toner exhibits bactericidal effects against C. acnes via keratin and sebum plug penetration.
Assuntos
Acne Vulgar , Antibacterianos , Queratinas , Sebo , Sebo/metabolismo , Antibacterianos/farmacologia , Humanos , Queratinas/metabolismo , Acne Vulgar/microbiologia , Acne Vulgar/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Propionibacteriaceae/efeitos dos fármacos , Propionibacteriaceae/metabolismo , Propionibacteriaceae/genética , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/metabolismo , Folículo Piloso/microbiologia , Folículo Piloso/metabolismo , Microscopia Eletrônica de VarreduraRESUMO
Cutibacterium are part of the human skin microbiota and are opportunistic microorganisms that become pathogenic in immunodeficient states. These lipophilic bacteria willingly inhabit areas of the skin where sebaceous glands are abundant; hence, there is a need to thoroughly understand their metabolism. Lipids are no longer considered only structural elements but also serve as signaling molecules and may have antigenic properties. Lipidomics remains a major research challenge, mainly due to the diverse physicochemical properties of lipids. Therefore, this study aimed to perform a large comparative lipidomic analysis of eight representatives of the Cutibacterium genus, including four phylotypes of C. acnes and two strains of C. granulosum, C. avidum, and C. namnetense. Lipidomic analysis was performed by liquid chromatographyâmass spectrometry (LC-MS) in both positive and negative ion modes, allowing the detection of the widest range of metabolites. Fatty acid analysis by gas chromatographyâmass spectrometry (GC-MS) corroborated the lipidomic data. As a result, 128 lipids were identified, among which it was possible to select marker compounds, some of which were characteristic even of individual C. acnes phylotypes. These include phosphatidylcholine PC 30:0, sphingomyelins (SM 33:1, SM 35:1), and phosphatidylglycerol with an alkyl ether substituent PG O-32:0. Moreover, cardiolipins and fatty acid amides were identified in Cutibacterium spp. for the first time. This comparative characterization of the cutibacterial lipidome with the search for specific molecular markers reveals its diagnostic potential for clinical microbiology. IMPORTANCE: Cutibacterium (previously Propionibacterium) represents an important part of the human skin microbiota, and its role in clinical microbiology is growing due to opportunistic infections. Lipidomics, apart from protein profiling, has the potential to prove to be a useful tool for defining the cellular fingerprint, allowing for precise differentiation of microorganisms. In this work, we presented a comparative analysis of lipids found in eight strains of the genus Cutibacterium, including a few C. acnes phylotypes. Our results are one of the first large-scale comprehensive studies regarding the bacterial lipidome, which also enabled the selection of C. acnes phylotype-specific lipid markers. The increased role of lipids not only as structural components but also as diagnostic markers or potential antigens has led to new lipid markers that can be used as diagnostic tools for clinical microbiology. We believe that the findings in our paper will appeal to a wide range of researchers.
Assuntos
Lipidômica , Propionibacteriaceae , Humanos , Propionibacteriaceae/classificação , Propionibacteriaceae/química , Propionibacteriaceae/isolamento & purificação , Propionibacteriaceae/genética , Cromatografia Líquida , Lipídeos/análise , Lipídeos/química , Pele/microbiologia , Pele/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Graxos/análise , Ácidos Graxos/química , Espectrometria de MassasRESUMO
BACKGROUND: Abundant evidence suggests that chronic inflammation is linked to prostate cancer and that infection is a possible cause of prostate cancer. METHODS: To identify microbiota or pathogens associated with prostate cancer, we investigated the transcriptomes of 20 human prostate cancer tissues. We performed de novo assembly of nonhuman sequences from RNA-seq data. RESULTS: We identified four bacteria as candidate microbiota in the prostate, including Moraxella osloensis, Uncultured chroococcidiopsis, Cutibacterium acnes, and Micrococcus luteus. Among these, C. acnes was detected in 19 of 20 prostate cancer tissue samples by immunohistochemistry. We then analyzed the gene expression profiles of prostate epithelial cells infected in vitro with C. acnes and found significant changes in homologous recombination (HR) and the Fanconi anemia pathway. Notably, electron microscopy demonstrated that C. acnes invaded prostate epithelial cells and localized in perinuclear vesicles, whereas analysis of γH2AX foci and HR assays demonstrated impaired HR repair. In particular, BRCA2 was significantly downregulated in C. acnes-infected cells. CONCLUSIONS: These findings suggest that C. acnes infection in the prostate could lead to HR deficiency (BRCAness) which promotes DNA double-strand breaks, thereby increasing the risk of cancer development.
Assuntos
Células Epiteliais , Próstata , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/microbiologia , Neoplasias da Próstata/patologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células Epiteliais/metabolismo , Próstata/microbiologia , Próstata/patologia , Próstata/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Propionibacteriaceae/patogenicidadeRESUMO
Among 5 types of the Christie-Atkins-Munch-Petersen factor (CAMP) of Cutibacterium acnes, CAMP1 is highly expressed in phylotype II as well as IB, and thought to be a virulence factor of opportunistic but fatal blood, soft tissue, and implant-related infections. The target of a human single-chain variable antibody fragment (scFv), recently isolated from a phage display library, has been identified as CAMP1 of phylotype II, using immunoprecipitation followed by mass spectrometry, phage display peptide biopanning, 3D-modelling, and ELISA. The IgG1 format of the antibody could enhance phagocytosis of C. acnes DMST 14916 by THP-1 human monocytes. Our results suggest that the antibody-dependent phagocytosis process is mediated by the caveolae membrane system and involves the induction of IL-1ß. This is the first report on the study of a human antibody against CAMP1 of C. acnes phylotype II, of which a potential use as therapeutic antibody against virulence C. acnes infection is postulated.
Assuntos
Imunoglobulina G , Macrófagos , Fagocitose , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Imunoglobulina G/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Células THP-1 , Fatores de Virulência/imunologia , Anticorpos Antibacterianos/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Anticorpos de Cadeia Única/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Propionibacteriaceae/imunologiaRESUMO
BACKGROUND: Shoulder periprosthetic joint infection is most commonly caused by Cutibacterium. Effective removal of these bacteria from the skin is difficult because Cutibacterium live protected in the dermal sebaceous glands beneath the skin surface to which surgical preparation solutions, such as chlorhexidine gluconate (CHG), are applied. There is conflicting evidence on the additional benefit of using hydrogen peroxide (H2O2) as an adjunct to CHG in eliminating Cutibacterium from the skin. A previous study demonstrated that after CHG skin preparation, repopulation of Cutibacterium from sebaceous glands onto the skin surface occurs in 90% of shoulders by 60 minutes after application. The objective of this randomized controlled study was to determine the effectiveness of adding H2O2 to CHG in reducing skin Cutibacterium. METHODS: Eighteen male volunteers (36 shoulders) were recruited for this study. The 2 shoulders of each volunteer were randomized to receive the control preparation ("CHG-only" - 2% CHG in 70% isopropyl alcohol alone) or the study preparation ("H2O2+CHG" - 3% H2O2 followed by 2% CHG in 70% isopropyl alcohol). Skin swabs were taken from each shoulder prior to skin preparation and again at 60 minutes after preparation. Swabs were cultured for Cutibacterium and observed for 14 days. Cutibacterium skin load was reported using a semiquantitative system based on the number of quadrants growing on the culture plate. RESULTS: Prior to skin preparation, 100% of the CHG-only shoulders and 100% of the H2O2+CHG shoulders had positive skin surface cultures for Cutibacterium. Repopulation of Cutibacterium on the skin at 60 minutes occurred in 78% of CHG-only and 78% of H2O2+CHG shoulders (P = 1.00). Reduction of Cutibacterium skin levels occurred in 56% of CHG-only and 61% of H2O2+CHG shoulders (P = .735). Cutibacterium levels were significantly decreased from before skin preparation to 60 minutes after preparation in both the CHG-only (2.1 ± 0.8 to 1.3 ± 0.9, P = .003) and the H2O2+CHG groups (2.2 ± 0.7 to 1.4 ± 0.9, P < .001). Substantial skin surface levels of Cutibacterium were present at 60 minutes after both preparations. CONCLUSIONS: In this randomized controlled study, there was no additional benefit of using hydrogen peroxide as an adjunct to chlorhexidine gluconate skin preparation in the reduction of cutaneous Cutibacterium levels. Neither preparation was able to eliminate repopulation of Cutibacterium on the skin surface from the dermal sebaceous glands.
Assuntos
Anti-Infecciosos Locais , Clorexidina , Peróxido de Hidrogênio , Pele , Humanos , Clorexidina/análogos & derivados , Clorexidina/administração & dosagem , Clorexidina/farmacologia , Masculino , Peróxido de Hidrogênio/administração & dosagem , Anti-Infecciosos Locais/administração & dosagem , Adulto , Pele/microbiologia , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Relacionadas à Prótese/microbiologia , Cuidados Pré-Operatórios/métodos , Propionibacteriaceae/efeitos dos fármacosRESUMO
BACKGROUND: Skin 16S microbiome diversity analysis indicates that the Staphylococcus genus, especially Staphylococcus aureus (S. aureus), plays a crucial role in the inflammatory lesions of acne. However, current animal models for acne do not fully replicate human diseases, especially pustular acne, which limits the development of anti-acne medications. AIMS: The aim is to develop a mouse model for acne, establishing an animal model that more closely mimics the clinical presentation of pustular acne. This will provide a new research platform for screening anti-acne drugs and evaluating the efficacy of clinical anti-acne experimental treatments. METHODS: Building upon the existing combination of acne-associated Cutibacterium acnes (C. acnes) with artificial sebum, we will inject a mixture of S. aureus and C. acnes locally into the dermis in a 3:7 ratio. RESULTS: We found that the acne animal model with mixed bacterial infection better replicates the dynamic evolution process of human pustular acne. Compared to the infection with C. acnes alone, mixed bacterial infection resulted in pustules with a distinct yellowish appearance, resembling pustular acne morphology. The lesions exhibited redness, vascular dilation, and noticeable congestion, along with evident infiltration of inflammatory cells. This induced higher levels of inflammation, as indicated by a significant increase in the secretion of inflammatory factors such as IL-1ß and TNF-α. CONCLUSION: This model can reflect the clinical symptoms and development of human pustular acne, overcoming the limitations of animal models commonly used in basic research to study this situation. It provides support for foundational research and the development of new acne medications.
Assuntos
Acne Vulgar , Modelos Animais de Doenças , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Animais , Camundongos , Injeções Intradérmicas , Staphylococcus aureus/isolamento & purificação , Propionibacterium acnes/isolamento & purificação , Humanos , Pele/microbiologia , Pele/patologia , Propionibacteriaceae/isolamento & purificaçãoRESUMO
Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1)â acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (ß-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2)â combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3)â bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4)â stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.
Assuntos
Parede Celular , Oligossacarídeos , Parede Celular/química , Parede Celular/imunologia , Estereoisomerismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Camundongos , Propionibacteriaceae/química , Animais , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/síntese química , Glicosilação , HumanosRESUMO
Bacterial flora are present in various parts of the human body, including the intestine, and are thought to be involved in the etiology of various diseases such as multiple sclerosis, intestinal diseases, cancer, and uterine diseases. In recent years, the presence of bacterial 16S rRNA genes has been revealed in blood, which was previously thought to be a sterile environment, and characteristic blood microbiomes have been detected in various diseases. However, the mechanism and the origin of the bacterial information are unknown. In this study, we performed 16S rRNA metagenomic analysis of bacterial DNA in serum extracellular vesicles from five healthy donors and seven patients with renal cell carcinoma and detected Cutibacterium acnes DNA as a characteristic bacterial DNA in the serum extracellular vesicles of patients with renal cell carcinoma. In addition, C. acnes DNA was significantly reduced in postoperative serum extracellular vesicles from patients with renal cell carcinoma compared with that in preoperative serum extracellular vesicles from these patients and was also detected in tumor tissue and extracellular vesicles from tumor tissue-associated microbiota, suggesting an association between C. acnes extracellular vesicles and renal cell carcinoma. C. acnes extracellular vesicles were taken up by renal carcinoma cells to enhance their proliferative potential. C. acnes extracellular vesicles also exhibited tumor-promoting activity in a mouse model of renal cancer allografts with enhanced angiogenesis. These results suggest that extracellular vesicles released by C. acnes localized in renal cell carcinoma tissues act in a tumor-promoting manner.