Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60.175
Filtrar
1.
Talanta ; 236: 122870, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635251

RESUMO

Exosomes encapsulate genomic and proteomic biomarkers for non-invasive diagnosis and disease monitoring. However, exosome surface-markers heterogeneity is a major drawback of current isolation methods. Here, we report a direct, one-step exosome sampling technology, ExoPRIME, for selective capture of CD63+ exosome subpopulations using an immune-affinity protocol. Microneedles (300µm × 30 mm), functionalized with anti-CD63 antibodies, were incubated under various experimental conditions in conditioned astrocyte medium and astrocyte-derived exosome suspension. The probe's capture efficiency and specificity were validated using FluoroCet assay, immunofluorescent imaging, and OMICS analyses. Significantly higher exosomes were captured by probes incubated for 16 h at 4 0C in enriched exosomal suspension (23 × 10 6 exosomes per probe) vis-à-vis 2 h at 4 0 C (12 × 10 6) and 16 h at 22 0C (3 × 10 6) in conditioned cell media. Our results demonstrate the application of ExoPRIME over a broad dynamic range of temperature and incubation parameters, offering flexibility for any desired application. ExoPRIME permits the use and re-use of minimal sample volumes (≤200 µL), can be multiplexed in arrays, and integrated into a lab-on-a-chip platform to achieve parallel, high-throughput isolation of different exosome classes in a semi-automated workstation. This platform could provide direct exosomal analysis of biological fluids since it can elegantly interface with existing room-temperature, picomolar-range nucleic acid assays to provide a clinical diagnostic tool at the point of care.


Assuntos
Exossomos , Proteômica , Biomarcadores , Dispositivos Lab-On-A-Chip
2.
Food Chem ; 366: 130596, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34293545

RESUMO

Clarification of the mechanism of heat-induced gel formation by proteins under natural food systems could provide important references for the regulation of food texture. In the present study, the proteins involved in the early stage (heating at 72 °C for 8 min) of egg-white thermal gel (EWG) formation were studied quantitatively through comparative proteomic analysis. We discovered that the abundance of ovalbumin and ovomucoid increased significantly (p < 0.01), whereas that of ovotransferrin, lysozyme, ovomucin (mucin 5B and mucin 6) decreased significantly (p < 0.01), in the supernatant of EWG. If the initial interaction of egg white proteins was altered by ultrasonic pretreatment, the abundance of ovomucin and lysozyme in the supernatant of EWG increased, and was accompanied by the change from a solid gel to a fluid gel. Based on these results, we hypothesize that ovomucin has a key role in the formation and regulation of EWG properties.


Assuntos
Ovomucina , Proteômica , Animais , Galinhas , Conalbumina , Proteínas do Ovo , Ovalbumina
3.
Food Chem ; 366: 130600, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311237

RESUMO

The effect of dual-frequency sequential ultrasonic thawing (DUT) on the quality of quick-frozen small yellow croaker was studied by TMT-labeled quantitative proteomic method. A total number of 75 proteins were identified as differentially abundant proteins (DAPs) in fish meat treated by DUT, while 72 DAPs were in flow water thawing (FWT). The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that the DAPs in the significant enrichment pathway of DUT group were enzymes. Compared with FWT, DUT had a significant effect on the enzyme content. The correlation analyses indicated that 40 DAPs were related with the quality traits. The 11 highly correlated DAPs are expected to be used as potential protein markers for texture profile analyses, color, thawing loss, water-holding capacity, and pH of thawed small yellow croaker quality. These results provide a further understanding of the quality stability of quick-frozen small yellow croaker treated by the DUT.


Assuntos
Perciformes , Proteômica , Animais , Peixes , Genoma , Carne , Perciformes/genética
4.
Food Chem ; 367: 130658, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343808

RESUMO

Camel milk is rich in nutrients and its impact on human medicine and nutrition cannot be ignored. We conducted an in-depth analysis of milk proteins obtained from two camel breed (Camelus bactrianus, CB and Camelus dromedarius, CD). Label-free proteomic technology was performed to analysis the MFGM and whey proteomes of CB and CD milk. In total, 1133 MFGM proteins and 627 whey proteins were identified from camel milk. Results revealed that 216 MFGM proteins and 109 whey proteins were significantly different between them. In addition, the cellular process, cell and binding were the predominately GO annotations of milk proteins. KEGG analysis shown that most proteins were involved in metabolic pathways. Furthermore, many proteins were found to be involved in PI3K/AKT signaling pathway, which could be the possible reason for hypoglycemic effect of camel milk. These results could provide a further understanding for unique biological characteristics of camel milk proteins.


Assuntos
Camelus , Proteoma , Animais , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Proteínas do Leite , Fosfatidilinositol 3-Quinases , Proteômica , Soro do Leite , Proteínas do Soro do Leite
5.
Food Chem ; 366: 130711, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343947

RESUMO

Food protein and peptides are generally considered a source of dietary antioxidants. The antioxidant activity and peptide profiles of four extensive hydrolysates of milk protein concentrate (MPC) were examined using the two-step enzymatic method. The hydrolysis combinations were Alcalase-Flavourzyme (AE), Alcalase-ProteAXH (AH), Alcalase-Protamex (AX) and Alcalase-Protease A 2SD (AD). The results showed that highest degree of hydrolysis corresponded to the AE sample (20.41%). High-efficiency gel-filtration chromatography results indicated that the relative proportions of extensive hydrolysates with molecular weights < 3 kDa were 99.89%, 99.57%, 99.93%, and 99.89% for AX, AE, AD and AH, respectively. The hydrolysates of the MPC exhibited increased radical-scavenging capacity, as evidenced through an analysis with 1,1-diphenyl-2-pycryl-hydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS), reducing power and hydroxyl-radical scavenging activity testing. The main bioactive peptides were identified through EASY-nLC-orbitrap MS/MS and bioinformatics. The study may provide useful information regarding the antioxidant properties of extensive hydrolysates of MPC.


Assuntos
Antioxidantes , Proteínas do Leite , Hidrólise , Hidrolisados de Proteína , Proteômica , Espectrometria de Massas em Tandem
6.
Food Chem ; 367: 130656, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359004

RESUMO

Psidium guajava (guava) exhibits a high content of biomolecules with nutraceutical properties. However, the biochemistry and molecular foundation of guava ripening is unknown. We performed comparative proteomics and metabolomics studies in different fruit tissues at two ripening stages to understand this process in white guava. Our results, suggest the positive contribution of ethylene and abscisic acid (ABA) signaling to the regulation of biochemical changes during guava ripening. We characterized the modulation of several metabolic pathways, including those of sugar and chlorophyll metabolism, abiotic and biotic stress responses, and biosynthesis of carotenoids and secondary metabolites, among others. In addition to ethylene and ABA, we also found a differential accumulation of other growth regulators such as brassinosteroids, cytokinin, methyl-jasmonate, gibberellins and proteins, and discuss their possible implications in the intricate biochemical network associated with guava ripening process. This integrative approach represents a global overview of the metabolic pathway dynamics during guava ripening.


Assuntos
Psidium , Frutas/genética , Giberelinas , Metabolômica , Proteômica
7.
J Colloid Interface Sci ; 606(Pt 2): 1737-1744, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507167

RESUMO

A protein corona forms around nanoparticles when they are intravenously injected into the bloodstream. The composition of the protein corona dictates the interactions between nanoparticles and the biological systems thus their immune evasion, blood circulation, and biodistribution. Here, we report for the first time the impact of nanoparticle stiffness on protein corona formation using a unique emulsion core silica shell nanocapsules library with a wide range of mechanical properties over four magnitudes (700 kPa to 10 GPa). The nanocapsules with different stiffness showed distinct proteomic fingerprints. The protein corona of the stiffest nanocapsules contained the highest amount of complement protein (Complement C3) and immunoglobulin proteins, which contributed to their high macrophage uptake, confirming the important role of nanocapsules stiffness in controlling the protein corona formation thus their in vitro and in vivo behaviors.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Proteômica , Distribuição Tecidual
8.
Sci Total Environ ; 806(Pt 1): 150365, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555611

RESUMO

Hydrogen sulfide (H2S) is a highly toxic gas in many environmental and occupational places. It can induce multiple organ injuries particularly in lung, trachea and liver, but the relevant mechanisms remain poorly understood. In this study, we used a TMT-based discovery proteomics to identify key proteins and correlated molecular pathways involved in the pathogenesis of acute H2S-induced toxicity in porcine lung, trachea and liver tissues. Pigs were subjected to acute inhalation exposure of up to 250 ppm of H2S for 5 h for the first time. Changes in hematology and biochemical indexes, serum inflammatory cytokines and histopathology demonstrated that acute H2S exposure induced organs inflammatory injury and dysfunction in the porcine lung, trachea and liver. The proteomic data showed 51, 99 and 84 proteins that were significantly altered in lung, trachea and liver, respectively. Gene ontology (GO) annotation, KEGG pathway and protein-protein interaction (PPI) network analysis revealed that acute H2S exposure affected the three organs via different mechanisms that were relatively similar between lung and trachea. Further analysis showed that acute H2S exposure caused inflammatory damages in the porcine lung and trachea through activating complement and coagulation cascades, and regulating the hyaluronan metabolic process. Whereas antigen presentation was found in the lung but oxidative stress and cell apoptosis was observed exclusively in the trachea. In the liver, an induced dysfunction was associated with protein processing in the endoplasmic reticulum and lipid metabolism. Further validation of some H2S responsive proteins using western blotting indicated that our proteomics data were highly reliable. Collectively, these findings provide insight into toxic molecular mechanisms that could potentially be targeted for therapeutic intervention for acute H2S intoxication.


Assuntos
Sulfeto de Hidrogênio , Animais , Sulfeto de Hidrogênio/toxicidade , Inflamação , Exposição por Inalação , Estresse Oxidativo , Proteômica , Suínos
9.
Theriogenology ; 177: 94-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687941

RESUMO

Seminal plasma plays an important role in sperm physiology. Seminal plasma proteins vehiculated in microvesicles, carry RNAs and proteins with a potential role in early embryo development. Additionally, proteins present in seminal plasma participate in redox regulation and energy metabolism. In view of these facts, we hypothesized that differences in protein composition of the seminal plasma among stallions may help to explain differences in freeze-ability seen among them. Three independent ejaculates from 10 different stallions of varying breeds were frozen using standard protocols in our laboratory. Aliquots of the ejaculate were separated and stored at -80 °C until further proteomic analysis. Semen analysis was performed using computer assisted sperm analysis and flow cytometry. Significant differences in proteome composition of seminal plasma were observed in the group of stallions showing better motility post thaw. 3116 proteins were identified, and of these, 34 were differentially expressed in stallions with better motility post thaw, 4 of them were also differentially expressed in stallions with different percentages of linearly motile sperm post thaw and 1 protein, Midasin, was expressed in stallions showing high circular velocity post thaw. Seminal plasma proteins may play a major role in sperm functionality; being vehiculated through extracellular vesicles and participating in sperm physiology. Bioinformatic analysis identifies discriminant proteins able to predict the outcome of cryopreservation, identifying potential new biomarkers to assess ejaculate quality.


Assuntos
Preservação do Sêmen , Adenina , Animais , Arginina , Criopreservação/veterinária , Cavalos , Masculino , Metiltransferases , Proteômica , Sêmen , Preservação do Sêmen/veterinária , Proteínas de Plasma Seminal , Motilidade Espermática , Espermatozoides
10.
Environ Pollut ; 292(Pt A): 118305, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626715

RESUMO

Due to the large-scale outbreak of Corona Virus Disease (2019), amounts of disinfecting agents was regularly used in public environments and their potential toxicity towards organisms needed to be appreciated. Thus, one mostly used cationic disinfectant, benzalkonium chlorides (BAC(C12)), was selected to assess its potential toxicity one common cyanobacteria Microcystis aeruginosa (M. aeruginosa) in this study. The aims were to explore the toxic effect and mechanism of BAC (C12) on M. aeruginosa growth within 96 h via morphological, physiological, and the relative and absolute quantification (iTRAQ)-based quantitative proteomics variations. The results found that BAC(C12) significantly inhibited cell density of M. aeruginosa at concentrations from 1 mg/L to 10 mg/L, and the 96-h EC50 value was identified to be 3.61 mg/L. Under EC50 concentration, BAC(C12) depressed the photosynthesis activities of M. aeruginosa exhibited by 36% decline of the maximum quantum yield for primary photochemistry (Fv/Fm) value and denaturation of photosynthetic organelle, caused oxidative stress response displayed by the increase of three indexes including superoxide dismutase (SOD), malondialdehyde (MDA), and the intracellular reactive oxygen species (ROS), and destroyed the integrity of cell membranes demonstrated by TEM images and the increase of ex-cellular substances. Then, the iTRAQ-based proteomic analysis demonstrated that BAC(C12) depressed photosynthesis activities through inhibiting the expressions of photosynthetic protein and photosynthetic electron transport related proteins. The suppression of electron transport also led to the increase of superoxide radicals and then posed oxidative stress on cell. Meantime, the 63.63% ascent of extracellular microcystin production of M. aeruginosa was observed, attributing to the high expression of microcystin synthesis proteins and the damage of cell membrane. In sum, BAC(C12) exposure inhibited the growth of M. aeruginosa mainly by depressing photosynthesis, inducing oxidative stress, and breaking the cell membrane. And, it enhanced the release of microcystin from the cyanobacterial cells via up-regulating the microcystin synthesis proteins and inducing the membrane damage, which could enlarge its toxicity to aquatic species.


Assuntos
Microcystis , Compostos de Benzalcônio , Cloretos , Microcistinas/metabolismo , Microcistinas/toxicidade , Microcystis/metabolismo , Fotossíntese , Proteômica
11.
Biosens Bioelectron ; 195: 113605, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537553

RESUMO

As biological research has synthesized genomics, proteomics, metabolomics, and transcriptomics into systems biology, a new multiomics approach to biological research has emerged. Today, multiomics studies are challenging and expensive. An experimental platform that could unify the multiple omics approaches to measurement could increase access to multiomics data by enabling more individual labs to successfully attempt multiomics studies. Field effect biosensing based on graphene transistors have gained significant attention as a potential unifying technology for such multiomics studies. This review article highlights the outstanding performance characteristics that makes graphene field effect transistor an attractive sensing platform for a wide variety of analytes important to system biology. In addition to many studies demonstrating the biosensing capabilities of graphene field effect transistors, they are uniquely suited to address the challenges of multiomics studies by providing an integrative multiplex platform for large scale manufacturing using the well-established processes of semiconductor industry. Furthermore, the resulting digital data is readily analyzable by machine learning to derive actionable biological insight to address the challenge of data compatibility for multiomics studies. A critical stage of systems biology will be democratizing multiomics study, and the graphene field effect transistor is uniquely positioned to serve as an accessible multiomics platform.


Assuntos
Técnicas Biossensoriais , Grafite , Genômica , Metabolômica , Proteômica , Transistores Eletrônicos
12.
Food Chem ; 370: 131371, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34656021

RESUMO

This study aimed to reveal the molecular mechanisms associated with off-flavor generation in sturgeon fillets treated by low temperature vacuum heating (LTVH). Label-free quantitative proteomics was used to identify 120 favor-related proteins, 27 proteins were screened as differentially expressed for bioinformatics analysis. 17 of KEGG pathways were identified. Particularly, proteins involved in proteasome and peroxisome were highly correlated with off-flavor formation. They were primarily implicated in the structures of proteins, including binding and proteasome pathways. The results indicated that the LTVH reduced the binding sites by down-regulating protease and superoxide dismutase expression. LTVH increased the myofibrillar protein and sulfhydryl content and decreased the total volatile basic nitrogen and thiobarbituric acid reactive substance, which confirmed that protein oxidation was related to off-flavor. This proteomics study provided new insights into the off-flavor of sturgeon with LTVH, and proposed potential link between biological processes and off-flavor formation.


Assuntos
Calefação , Proteômica , Federação Russa , Temperatura , Vácuo
13.
Sci Total Environ ; 803: 149910, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500266

RESUMO

As an important pollutant, perfluorooctane acid (PFOA) has been widely concerned and reported by thousands of times, while less is known about the concentration-response pathway of PFOA. The aim of the present work was to reveal the concentration-response mechanism of PFOA in human cells. Omics results showed that calcium-related pathways play key roles in PFOA injury mechanisms. The results of GO and KEGG analyses showed that the cAMP signaling pathway was presented as the top one in all of the regulatory patterns and concentrations groups of PFOA. In the cAMP signaling pathway, the adenosine A1 receptor (ADORA1) recognized the low concentration of PFOA and induced pathway "Gi-cAMP-PKA" to decrease the concentration of cAMP. This indicated that the low concentration of PFOA may promote breast hyperplasia and inhibit lactation. While adenosine A2A receptor (ADORA2A) recognized the high concentration of PFOA and induced pathway "GS-AC-cAMP-RKA" to increase the concentration of cAMP, induce cell damage and may lead to the deterioration of breast cancer. The results of molecular dynamics simulation showed that PFOA could bind to ADORA1 and ADORA2A, thus cause subsequent signal transduction. Furthermore, considering the strong binding ability of PFOA with ADORA1, PFOA tends to bind to ADORA1 at a low concentration. On the other side, PFOA at high concentration will continue to bind to another receptor protein, ADORA2A, and activate subsequent signaling pathways. Combined analyses of transcriptomic and proteomic revealed that different concentrations of PFOA regulate cellular calcium-related pathways. The cAMP pathway showed a concentration-response effect of PFOA. After treatment with different concentrations of PFOA, ADORA1 and ADORA2A were activated respectively, showing opposite cellular effects, leading to kinds of breast lesions. In the nervous system, PFOA might induce a variety of nervous system diseases. The present work was an exploration on the toxicological mechanism of PFOA, providing important information on the health impacts of PFOA in humans.


Assuntos
Fluorcarbonetos , Proteômica , Feminino , Fluorcarbonetos/toxicidade , Humanos , Simulação de Dinâmica Molecular , Receptor A1 de Adenosina
14.
Sci Total Environ ; 804: 149904, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508929

RESUMO

Pteris cretica var. nervosa is a dominant fern species found in antimony (Sb) mining areas, capable of forming symbiosis with arbuscular mycorrhizal fungi (AMF), especially with those members of the Glomus genus. Despite this fern's relevance and the potential contribution of mycorrhizal symbiosis to phytoremediation, the AMF's impact on P. var. nervosa phytoremediation of Sb remains unknown. Here, we exposed P. var. nervosa to different concentrations of Sb for 6 months. Our results showed that Sb reduced shoot biomass, enlarged the root/shoot ratio, and disrupted the fronds' intracellular structure. AMF inoculation, however, was able to moderate these phenotypic changes and increased the accumulation level of Sb in plants. From a proteomics analysis of this plant's fronds, a total of 283 proteins were identified. Notably, those proteins with catalytic function, carbon fixing and ATP metabolic function were highly enriched. K-means clustering demonstrated protein-changing patterns involved in multiple metabolic pathways during exposure to Sb. Further, these patterns can be moderated by AMF inoculation. Pearson correlations were used to assess the plant biomarkers-soil Sb relationships; This revealed a strong correlation between ribosome alteration and the root/shoot ratio when inoculated with AMF, and a positive correlation between photosynthesis proteins and chlorophyll (SPAD value). Our results indicate AMF could moderate the fronds impairment by maintaining the sufficient protein levels for ribosomal functioning, photosynthesis activity and to counter ROS production. We demonstrate the effective use of AMF associated with P. cretica var. nervosa for Sb phytoremediation and the potential of applying proteomics to better understand the mechanism behind this symbiotic plant physiological response.


Assuntos
Micorrizas , Pteris , Antimônio , Biodegradação Ambiental , Raízes de Plantas , Proteômica
15.
J Hazard Mater ; 421: 126685, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34332485

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are toxic and recalcitrant pollutants, with an urgent need for bioremediation. Systematic biodegradation studies show that surfactant-mediated bioremediation is still poorly understood. Here, we investigated a comprehensive cellular response pattern of the PAH degrading strain B. subtilis ZL09-26 to (non-)green surfactants at the cellular and proteomic levels. Eight characteristic cellular factor investigations and detailed quantitative proteomics analyses were performed to understand the highly enhanced phenanthrene (PHE) degradation efficiency (2.8- to 3-fold improvement) of ZL09-26 by humic acid (HA) or Tween80. The commonly upregulated pathway and proteins (Arginine generation, LacI-family transcriptional regulator, and Lactate dehydrogenase) and various metabolic pathways (such as phenanthrene degradation upstream pathway and central carbon metabolism) jointly govern the change of cellular behaviors and improvement of PHE transport, emulsification, and degradation in a network manner. The obtained molecular knowledge empowers engineers to expand the application of surfactants in the biodegradation of PAHs and other pollutants.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Substâncias Húmicas , Hidrocarbonetos Policíclicos Aromáticos/análise , Polissorbatos , Proteômica
16.
Food Chem ; 372: 130935, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818725

RESUMO

The impacts of cold stress (4 â„ƒ for 0 h, 12 h, 24 h, 36 h and 48 h, respectively) on the components, structural and physical properties of myofibrillar protein (MP) gel from Procambarus clarkii were investigated. The physicochemical analysis indicated the secondary and tertiary structure of MP were unfolding to different degrees after cold stress when compared to the control. The MP gel hardness reached a maximum when the cold stress reached 24 h. Furthermore, the quantitative proteomics results indicated that 20 up-regulated differentially abundant proteins (DAPs) were detected in 24 h when compared to control, specifically include myosin light chain 1 (MLC1) and skeletal muscle actin 6. Additionally, the combined analysis confirmed that MLC1 and skeletal muscle actin 6 might play key roles in hardening shrimp meat under cold stress. The results could provide a theoretical reference for the changes in crayfish muscle quality during cold chain transportation.


Assuntos
Astacoidea , Proteômica , Animais , Astacoidea/genética , Resposta ao Choque Frio , Músculos
17.
Methods Mol Biol ; 2414: 47-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784031

RESUMO

The bacterial cell surface (surfaceome) is the first site encountered by immune cells and is thus an important site for immune recognition. As such, the characterization of bacterial surface proteins can lead to the discovery of novel antigens for potential vaccine development. In this chapter, we describe a rapid 5-min surface shaving proteomics protocol where live bacterial cells are incubated with trypsin and surface peptides are "shaved" off. The shaved peptides are subsequently identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several checkpoints, including colony forming unit (CFU) counts, flow cytometry, and a false positive unshaved control, are introduced to ensure cell viability/membrane integrity are maintained and that proteins identified are true surface proteins. The protein topology of shaved peptides can be bioinformatically confirmed for surface location. Surface shaving facilitates identification of surface proteins expressed under different conditions, by different strains as well as highly abundant essential and immunogenic bacterial surface antigens for potential vaccine development.


Assuntos
Proteômica , Vacinas , Antígenos de Bactérias , Antígenos de Superfície , Bactérias , Proteínas de Bactérias , Cromatografia Líquida , Proteínas de Membrana , Peptídeos , Espectrometria de Massas em Tandem
18.
Chemosphere ; 287(Pt 2): 132185, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34500328

RESUMO

Hydrogen peroxide (H2O2) is an environmental-friendly algicide and it is widely used to control algal blooms in aquatic ecosystems. However, the response of algal cell metabolic characteristics and intracellular protein profile under H2O2 stress is still not well understood. In the present study, the green alga Scenedesmus obliquus was exposed to different concentrations of H2O2 (0, 2, 6, 8 and 10 mg L-1) to evaluate the changes in algal morphological, physiological, and proteomic features to H2O2 exposure. The results showed that 8 mg L-1 of H2O2 could effectively inhibit the cell growth and photosynthetic activity of S. obliquus including chlorophyll-a content and chlorophyll fluorescence parameters. The increased activities of superoxide dismutase (SOD) and catalase (CAT) observed in this study indicate that cells exposure to H2O2 caused oxidative stress. The metabolic activity of S. obliquus was significantly decreased by H2O2 treatment. In terms of proteomic analysis, 251 differentially expressed proteins (DEPs) were successfully identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed significant protein enrichment in the metabolic pathways, photosynthesis, ascorbic acid, and alginate metabolism and phenylpropane biosynthesis of S. obliquus. The analysis of protein-protein interaction system shows that the pathways of photosynthesis and metabolic pathways of S. obliquus were essential to resist oxidative stress. Taking together, these results shed new lights on exploring the cell physiological metabolism and intracellular protein mechanisms of H2O2 inhibition on algal blooms.


Assuntos
Antioxidantes , Scenedesmus , Clorofila , Ecossistema , Peróxido de Hidrogênio/toxicidade , Mapeamento de Peptídeos , Proteômica
19.
Food Chem ; 371: 131206, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619635

RESUMO

A DIA-based quantitative proteomic strategy was used to investigate the effects of different cooking procedures (steaming and boiling) on pork meat quality. Results showed that steamed meats had higher redness, cohesion, springiness, but lower lightness, yellowness, shear force, hardness, chewiness and cooking loss than boiled meats. In total of 1608 proteins were identified and 103 proteins exhibited significant difference (fold change > 1.5, P < 0.05). These DAPs mainly involved in protein structure, metabolic enzyme, protein turnover and oxidation stress. ALDOC, PVALB, PPP1R14C, AMPD1, CRYAB and SOD1 were validated as potential indicators of color variations in cooked meat. CFL1, COL1A1, COL3A1, RTN4, NRAP, NT5C3A, and SOD1 might be potential biomarker for texture changes of cooked meats. Moreover, these validated proteins exhibited significant (P < 0.05) correlation with cooking loss and could be serve as candidate predictors for cooking loss changes of meats in different cooking procedures.


Assuntos
Carne de Porco , Proteômica , Animais , Culinária , Dureza , Carne/análise , Suínos
20.
Chemosphere ; 287(Pt 1): 132028, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34474382

RESUMO

Cyanotoxins including microcystins are increasing globally, escalating health risks to humans and wildlife. Freshwater fish can accumulate and retain microcystins in tissues; however, uptake and depuration studies thus far have not exposed fish to microcystins in its intracellular state (i.e., cell-bound or conserved within cyanobacteria), which is a primary route of exposure in the field, nor have they investigated sublethal molecular-level effects in tissues, limiting our knowledge of proteins responsible for microcystin toxicity pathways in pre-to-postsenescent stages of a harmful algal bloom. We address these gaps with a 2-wk study (1 wk of 'uptake' exposure to intracellular microcystins (0-40 µg L-1) produced by Microcystis aeruginosa followed by 1 wk of 'depuration' in clean water) using Rainbow Trout (Oncorhynchus mykiss) and Lake Trout (Salvelinus namaycush). Liver and muscle samples were collected throughout uptake and depuration phases for targeted microcystin quantification and nontargeted proteomics. For both species, microcystins accumulated at a higher concentration in the liver than muscle, and activated cellular responses related to oxidative stress, apoptosis, DNA repair, and carcinogenicity. However, intraspecific proteomic effects between Rainbow Trout and Lake Trout differed, and interspecific accumulation and retention of microcystins in tissues within each species also differed. We demonstrate that fish do not respond the same to cyanobacterial toxicity within and among species despite being reared in the same environment and diet.


Assuntos
Microcistinas , Microcystis , Animais , Proliferação Nociva de Algas , Humanos , Microcistinas/toxicidade , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...