Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.167
Filtrar
1.
Carbohydr Res ; 523: 108730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543000

RESUMO

Despite the many health benefits of wild blackthorn fruits, their use is negligible and little explored. Preliminary results suggest that this fruit is a rich source of natural antioxidants. Antioxidant active fraction, extracted from wild blackthorn fruits by cold water extraction (Cw), was subjected to ion-exchange chromatography, which gave ten fractions after a successive elution with water, sodium chloride and sodium hydroxide solutions. Fraction eluted by water contained an arabinan of a low molecular weight (Mw = 5000). Its chemical and spectroscopic studies have revealed a highly branched structure with backbone composed of 1,5-linked α-l-arabinofuranose residues; about 76% of them are branched dominantly through O3 and much less through O2, however, some arabinose units (∼8%) were fully branched. In addition to terminal α-L-Araf, the presence of ß-L-Araf unit was also identified in blackthorn L-arabinan. Antioxidant activity tests of Cw ion exchange fractions revealed significant effects only of fractions eluted with 1 M sodium chloride (6F) and sodium hydroxide (7F) solutions, while phenolic free arabinan did not possess this effect. Phenolic compounds linked via α-l-arabinosyl side chains appear to be responsible for the antioxidant effect of two Cw fractions.


Assuntos
Antioxidantes , Prunus , Antioxidantes/farmacologia , Frutas/química , Prunus/química , Cloreto de Sódio , Hidróxido de Sódio , Polissacarídeos/química , Fenóis
2.
Sci Rep ; 12(1): 20796, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460731

RESUMO

Modern people who value healthy eating habits have shown increasing interest in plum (Prunus mume) fruits, primarily owing to their nutritiousness and proven efficacy. As consumption increases, it becomes important to monitor work to prevent Prunus mume fruits from falling out. Moreover, determining the growth status of Prunus mume is also crucial and is attracting increasing attention. In this study, convolutional neural network (CNN)-based deep learning object detection was developed using RGBD images collected from Prunus mume farms. These RGBD images consider various environments, including the depth information of objects in the outdoor field. A faster region-based convolutional neural network (R-CNN), EfficientDet, Retinanet, and Single Shot Multibox Detector (SSD) were applied for detection, and the performance of all models was estimated by comparing their respective computing speeds and average precisions (APs). The test results show that the EfficientDet model is the most accurate, and SSD MobileNet is the fastest among the four models. In addition, the algorithm was developed to acquire the growth status of P. mume fruits by applying the coordinates and score values of bounding boxes to the depth map. Compared to the diameters of the artificial Prunus mume fruits used as the experimental group, the calculated diameters were very similar to those of the artificial objects. Collectively, the results demonstrate that the CNN-based deep learning Prunus mume detection and growth estimation method can be applied to real farmlands.


Assuntos
Prunus domestica , Prunus , Humanos , Frutas , Redes Neurais de Computação , Algoritmos
3.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499268

RESUMO

Polyamines (PA) play an important role in the growth, development and stress resistance of plants, and arginine decarboxylase (ADC) is one of the key enzymes in the biosynthetic pathway of polyamines. Previously, the transcriptional regulation of the 'Manaohong' cherry under the shelter covering was carried out, and the PA synthase-related genes, particularly the ADC gene, were differentially expressed as exposure to drought stress. However, the mechanisms of how ADC is involved in the response of cherry to abiotic stress (especially drought stress) are still unknown. In the present work, the full-length coding sequence of this gene was isolated and named CpADC. Bioinformatics analysis indicated that the coding sequence of CpADC was 2529 bp in length. Cluster analysis showed that CpADC had the highest homologies with those of sweet cherry (Prunus avium, XP_021806331) and peach (Prunus persica, XP_007200307). Subcellular localization detected that the CpADC was localized in the plant nucleus. The qPCR quantification showed that CpADC was differentially expressed in roots, stems, leaves, flower buds, flowers, and fruits at different periods. Drought stress treatments were applied to both wild-type (WT) and transgenic Arabidopsis lines, and relevant physiological indicators were measured, and the results showed that the putrescine content of transgenic Arabidopsis was higher than that of WT under high-temperature treatment. The results showed that the MDA content of WT was consistently higher than that of transgenic plants and that the degree of stress in WT was more severe than in transgenic Arabidopsis, indicating that transgenic CpADC was able to enhance the stress resistance of the plants. Both the transgenic and WT plants had significantly higher levels of proline in their leaves after the stress treatment than before, but the WT plant had lower levels of proline than that of transgenic Arabidopsis in both cases. This shows that the accumulation of proline in the transgenic plants was higher than that in the wild type under drought and high and low-temperature stress, suggesting that the transgenic plants are more stress tolerant than the WT. Taken together, our results reveal that, under drought stress, the increase in both expressions of CpADC gene and Put (putrescine) accumulation regulates the activity of ADC, the content of MDA and Pro to enhance the drought resistance of Arabidopsis thaliana.


Assuntos
Arabidopsis , Prunus , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Prunus/genética , Putrescina/metabolismo , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555203

RESUMO

Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.


Assuntos
Perfilação da Expressão Gênica , Prunus , Carboidratos , Flores/genética , Regulação da Expressão Gênica de Plantas , Prunus/genética , Açúcares , Transcriptoma
5.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555736

RESUMO

Autophagy is a lysosomal degradation and recycling process involved in tumor progression and drug resistance. The aim of this work was to inhibit autophagy and increase apoptosis in a 3D model of human colorectal cancer by combined treatment with our patented natural product Prunus spinosa + nutraceutical activator complex (PsT + NAC®) and 5-fluorouracil (5-FU). By means of cytotoxic evaluation (MTT assay), cytofluorimetric analysis, light and fluorescence microscopy investigation and Western blotting evaluation of the molecular pathway PI3/AKT/mTOR, Caspase-9, Caspase-3, Beclin1, p62 and LC3, we demonstrated that the combination PsT + NAC® and 5-FU significantly reduces autophagy by increasing the apoptotic phenomenon. These results demonstrate the importance of using non-toxic natural compounds to improve the therapeutic efficacy and reduce the side effects induced by conventional drugs in human colon cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo , Prunus , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Apoptose , Autofagia , Linhagem Celular Tumoral
6.
BMC Genomics ; 23(1): 745, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348277

RESUMO

BACKGROUND: Plums are one of the most important economic crops of the Rosaceae family and are produced all over the world. China has many local varieties, but the genomic information is limited for genetic studies. Here, we first sequenced, assembled, and analyzed the plastomes of twelve plum cultivars and developed molecular markers to distinguish them. RESULTS: The twelve plastomes of plum cultivars have a circular structure of 157,863-157,952 bp containing a large single-copy region (LSC) of 86,109-86,287 bp, a small copy region (SSC) of 18,927-19,031 bp, and two inverted repeats (IR) of 26,353-26,387 bp each. The plastomes of plum cultivars encode 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. We detected 50, 54, 54, 53, 53, 50, 54, 54, 54, 49, 50, 54 SSRs in the twelve analyzed varieties, respectively. For repeat sequences, we identified 553 tandem repeats, 204 direct repeats, and 270 palindromic repeats. We also analyzed the expansion/contraction of IR regions. The genes rpl22, rps19, rpl2, ycf1, ndhF, and the trnH span on or near the boundary of IR and single-copy regions. Phylogenetic analysis showed that the twelve cultivars were clustered with the P. salicina and P. domestica. We developed eight markers LZ01 to LZ08 based on whole plastomes and nuclear genes and validated them successfully with six repetitions. CONCLUSIONS: The results obtained here could fill in the blanks of the plastomes of these twelve plum cultivars and provide a wider perspective based on the basis of the plastomes of Prunus to the molecular identification and phylogenetic construction accurately. The analysis from this study provides an important and valuable resource for studying the genetic basis for agronomic and adaptive differentiation of the Prunus species.


Assuntos
Prunus domestica , Prunus , Rosaceae , Filogenia , Prunus domestica/genética , Prunus/genética , Rosaceae/genética , Sequência de Bases
7.
Viruses ; 14(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36366423

RESUMO

As part of a virome characterization of Prunus species, a novel cheravirus was discovered in two wild species, Prunus brigantina and P. mahaleb, and in an apricot (P. armeniaca) accession. The sequence of the two genomic RNAs was completed for two isolates. The Pro-Pol conserved region showed 86% amino acid (aa) identity with the corresponding region of trillium govanianum cheravirus (TgCV), a tentative Cheravirus member, whereas the combined coat proteins (CPs) shared only 40% aa identity with TgCV CPs, well below the species demarcation threshold for the genus. This suggests that the new virus should be considered a new species for which the name alpine wild prunus virus (AWPV) is proposed. In parallel, the complete genome sequence of stocky prune virus (StPV), a poorly known cheravirus for which only partial sequences were available, was determined. A phylogenetic analysis showed that AWPV, TgCV and StPV form a distinct cluster, away from other cheraviruses.


Assuntos
Prunus , Secoviridae , Vírus , Filogenia , Genoma Viral , RNA Viral/genética , Doenças das Plantas , Secoviridae/genética , Vírus/genética
8.
Toxins (Basel) ; 14(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36355976

RESUMO

The misidentification between edible and poisonous plants is an increasing problem because of the new trend to collect wild plants, especially by amateur collectors who do not have the botanical skills to distinguish between edible and toxic species. Moreover, morphologically similar species are sometimes responsible for accidental contamination or used in the intentional adulteration of products for human and animal consumption. Laurus nobilis L. (laurel) and Prunus laurocerasus L. (cherry laurel) are typical ornamental shrubs of the Mediterranean region. Laurel is considered a non-toxic plant, widely used as flavorings. Conversely, cherry laurel leaves, morphologically similar to those of laurel, contain toxic cyanogenic glycosides. Considering this, the aim of this study was to carry out an in-depth evaluation of laurel and cherry laurel leaves by using light and scanning electron microscopy coupled with three step phytochemical analyses (qualitative and quantitative colorimetric assays and liquid chromatography). This allowed to highlight the distinguishing features of plant species investigated features such as the venation pattern, presence/absence of nectaries, calcium oxalate crystals, secretory idioblasts, and cyanogenic glycosides. Concluding, this multidisciplinary approach can be useful for the identification of plants but also fragments or pruning residues containing cyanogenic glycosides, in quality control tests, intoxications, and criminal cases.


Assuntos
Jardins , Prunus , Animais , Humanos , Folhas de Planta/química , Plantas Tóxicas , Compostos Fitoquímicos/análise
9.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361622

RESUMO

In China, Prunus mume is a famous flowering tree that has been cultivated for 3000 years. P. mume grows in tropical and subtropical regions, and most varieties lack cold resistance; thus, it is necessary to study the low-temperature response mechanism of P. mume to expand the scope of its cultivation. We used the integrated transcriptomic and metabolomic analysis of a cold-resistant variety of P. mume 'Meiren', to identify key genes and metabolites associated with low temperatures during flowering. The 'Meiren' cultivar responded in a timely manner to temperature by way of a low-temperature signal transduction pathway. After experiencing low temperatures, the petals fade and wilt, resulting in low ornamental value. At the same time, in the cold response pathway, the activities of related transcription factors up- or downregulate genes and metabolites related to low temperature-induced proteins, osmotic regulators, protective enzyme systems, and biosynthesis and metabolism of sugars and acids. Our findings promote research on the adaptation of P. mume to low temperatures during wintering and early flowering for domestication and breeding.


Assuntos
Prunus , Prunus/genética , Transcriptoma , Temperatura , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Metaboloma
10.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361999

RESUMO

A precise, rapid and straightforward approach to chromosome identification is fundamental for cytogenetics studies. However, the identification of individual chromosomes was not previously possible for Chinese cherry or other Prunus species due to the small size and similar morphology of their chromosomes. To address this issue, we designed a pool of oligonucleotides distributed across specific pseudochromosome regions of Chinese cherry. This oligonucleotide pool was amplified through multiplex PCR with specific internal primers to produce probes that could recognize specific chromosomes. External primers modified with red and green fluorescence tags could produce unique signal barcoding patterns to identify each chromosome concomitantly. The same oligonucleotide pool could also discriminate all chromosomes in other Prunus species. Additionally, the 5S/45S rDNA probes and the oligo pool were applied in two sequential rounds of fluorescence in situ hybridization (FISH) localized to chromosomes and showed different distribution patterns among Prunus species. At the same time, comparative karyotype analysis revealed high conservation among P. pseudocerasus, P. avium, and P. persica. Together, these findings establish this oligonucleotide pool as the most effective tool for chromosome identification and the analysis of genome organization and evolution in the genus Prunus.


Assuntos
Prunus avium , Prunus , Hibridização in Situ Fluorescente , Prunus/genética , Prunus avium/genética , Cariótipo , Oligonucleotídeos
11.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362061

RESUMO

Mutation is a source of genetic diversity widely used in breeding programs for the acquisition of agronomically interesting characters in commercial varieties of the Prunus species, as well as in the rest of crop species. Mutation can occur in nature at a very low frequency or can be induced artificially. Spontaneous or bud sport mutations in somatic cells can be vegetatively propagated to get an individual with the mutant phenotype. Unlike animals, plants have unlimited growth and totipotent cells that let somatic mutations to be transmitted to the progeny. On the other hand, in vitro tissue culture makes it possible to induce mutation in plant material and perform large screenings for mutant's selection and cleaning of chimeras. Finally, targeted mutagenesis has been boosted by the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 and Transcription activator-like effector nuclease (TALEN) editing technologies. Over the last few decades, environmental stressors such as global warming have been threatening the supply of global demand for food based on population growth in the near future. For this purpose, the release of new varieties adapted to such changes is a requisite, and selected or generated Prunus mutants by properly regulated mechanisms could be helpful to this task. In this work, we reviewed the most relevant mutations for breeding traits in Prunus species such as flowering time, self-compatibility, fruit quality, and disease tolerance, including new molecular perspectives in the present postgenomic era including CRISPR/Cas9 and TALEN editing technologies.


Assuntos
Edição de Genes , Prunus , Animais , Sistemas CRISPR-Cas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Prunus/genética , Prunus/metabolismo , Melhoramento Vegetal , Mutação , Endonucleases/metabolismo , Genoma de Planta
12.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362427

RESUMO

Microbial inoculants, as harmless, efficient, and environmentally friendly plant growth promoters and soil conditioners, are attracting increasing attention. In this study, the effects of Bacillus velezensis YH-18 and B. velezensis YH-20 on Prunus davidiana growth and rhizosphere soil bacterial community in continuously cropped soil were investigated by inoculation tests. The results showed that in a pot seedling experiment, inoculation with YH-18 and YH-20 resulted in a certain degree of increase in diameter growth, plant height, and leaf area at different time periods of 180 days compared with the control. Moreover, after 30 and 90 days of inoculation, the available nutrients in the soil were effectively improved, which protected the continuously cropped soil from acidification. In addition, high-throughput sequencing showed that inoculation with microbial inoculants effectively slowed the decrease in soil microbial richness and diversity over a one-month period. At the phylum level, Proteobacteria and Bacteroidetes were significantly enriched on the 30th day. At the genus level, Sphingomonas and Pseudomonas were significantly enriched at 15 and 30 days, respectively. These bacterial phyla and genera can effectively improve the soil nutrient utilization rate, antagonize plant pathogenic bacteria, and benefit the growth of plants. Furthermore, inoculation with YH-18 and inoculation with YH-20 resulted in similar changes in the rhizosphere microbiome. This study provides a basis for the short-term effect of microbial inoculants on the P. davidiana rhizosphere microbiome and has application value for promoting the cultivation and production of high-quality fruit trees.


Assuntos
Inoculantes Agrícolas , Prunus , Rizosfera , Solo , Microbiologia do Solo , Raízes de Plantas , Bactérias , Plantas
13.
BMC Plant Biol ; 22(1): 499, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36284302

RESUMO

BACKGROUND: Prunus mume is an early spring flower of Rosaceae, which owns high application value in gardens. Being an excellent ornamental trait, the double flower trait has always been one of the important breeding goals of plant breeders. However, the key regulatory genes of double flower traits of P. mume are still unclear at present. RESULTS: The floral organs' morphological differences of 20 single and 20 double flower cultivars of P. mume were compared firstly. And it was found that double flower trait of P. mume were often accompanied by petaloid stamen, multiple carpels and an increase in the total number of floral organs. Then, transcriptome sequencing of two representative cultivars P. mume 'Danban Lve' and P. mume 'Xiao Lve' were conducted at 3 Stage of flower bud development with distinct morphological differentiation. 3256 differentially expression genes (DEGs) were detected, and 20 candidate genes for double flower trait of P. mume were screened out including hub genes PmAP1-1 and PmAG-2 based on DEGs function analysis and WGCNA analysis. And it was found that epigenetic and hormone related genes may also play an important role in the process of double flower. CONCLUSIONS: This study suggested that the double flower trait of P.mume is more like accumulation origin based on morphological observation. 20 genes and co-expression network related to the formation of double flower P. mume were preliminarily screened through transcriptomics analysis. The results provided a reference for further understanding of the molecular mechanism of double flower trait in P. mume.


Assuntos
Prunus , Prunus/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Flores , Perfilação da Expressão Gênica , Hormônios/metabolismo , Transcriptoma
14.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233277

RESUMO

Prunus mume, a famous perennial ornamental plant and fruit tree in Asia, blooms in winter or early spring in the Yangtze River area. The flowering time directly determines its ornamental and economic value, so it is of great significance to study the molecular mechanism of flowering time. SQUAMOSA PROMOTER BINDING PROTEIN (SBP), often regulated by miR156, is an important flowering regulator, although its function is unknown in P. mume. Here, 11 miR156 precursors were analyzed and located in five chromosomes of the P. mume genome. The expression pattern showed that PmSBP1/6 was negatively correlated with miR156. The promoters of PmSBP1/6 were specifically expressed in the apical meristem. Overexpression of PmSBP1/6 in tobacco promoted flowering and changed the length ratio of pistil and stamen. Moreover, PmSBP1 also affected the number and vitality of pollen and reduced the fertility of transgenic tobacco. Furthermore, ectopic expression of PmSBP1/6 caused up-regulated expression of endogenous SUPPRESSOR OF OVEREXPRESSION OF CO1 (NtSOC1). The yeast-one hybrid assay showed that PmSBP1 was bonded to the promoters of PmSOC1s. In conclusion, a miR156-PmSBP1-PmSOC1s pathway was formed to participate in the regulation of flowering time in P. mume, which provided references for the molecular mechanism of flowering time regulation and molecular breeding of P. mume.


Assuntos
MicroRNAs , Prunus , Proteínas de Transporte/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Prunus/genética , Prunus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
PLoS One ; 17(10): e0275587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227955

RESUMO

Successive plantings of Prunus species produce suboptimal growth and yield in many California soils due to a poorly understood soilborne disease complex, Prunus replant disease (PRD). We explored the hypothesis that PRD is mediated by microbial taxa in roots of Nemaguard peach, a rootstock for almond and other stone fruits. In a greenhouse bioassay, portions of 10 replant soils were treated with fumigation or pasteurization or left untreated as a control before being planted with peach seedlings. Ten weeks after planting, seedlings were considered PRD-affected if their top fresh weights in the control were significantly reduced, compared to the weights in pasteurization and fumigation treatments; plants with equivalent top weights in all treatments were considered to be non-affected. The roots were washed from the soil, frozen, extracted for total DNA, and used for metabarcoding of rRNA gene amplicons from bacteria, fungi, and oomycetes. High-throughput amplicon sequencing revealed that root microbial community shifts resulted from preplant treatments, and specific taxa were associated with PRD induction among controls. Random forest (RF) analysis discriminated effectively between PRD-affected and non-affected root communities. Among the 30 RF top-ranked amplicon sequence variant (ASV) predictors, 26 were bacteria, two were oomycetes, and two were fungi. Among them, only Streptomyces scabiei, Steroidobacter denitrificans, Streptomyces bobili, and Pythium mamillatum had root abundances ≥5% that were either associated positively (former two ASVs) or negatively (latter two) with PRD. Thus, our findings were consistent with microbial mediation of PRD in roots and suggested taxa that may be involved in the mediation.


Assuntos
Microbiota , Oomicetos , Prunus persica , Prunus , Bactérias/genética , Fungos , Microbiota/genética , Prunus/microbiologia , Plântula , Solo , Microbiologia do Solo
16.
Oxid Med Cell Longev ; 2022: 3088827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120599

RESUMO

A simple, efficient, and ecofriendly method was employed to synthesize TiO2/ZrO2/SiO2 ternary nanocomposites using Prunus × yedoensis leaf extract (PYLE) that shows improved photocatalytic and antibacterial properties. The characterization of the obtained nanocomposites was done by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopic (EDS) analysis. The synthesized ternary nanocomposites with nanoscale pore diameters were investigated for the elimination of Reactive Red 120 (RR120) dye. The obtained results showed about 96.2% removal of RR120 dye from aqueous solution under sunlight irradiation. Furthermore, it shows promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The improved photocatalytic and antibacterial activity of TiO2/ZrO2/SiO2 may bring unique insights into the production of ternary nanocomposites and their applications in the environment and biomedical field.


Assuntos
Nanocompostos , Prunus , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Nanocompostos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Dióxido de Silício/química , Titânio
17.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142832

RESUMO

The Gibberellic Acid Stimulated Arabidopsis/Gibberellin Stimulated Transcript (GASA/GAST) gene family is a group of plant-specific genes encoding cysteine-rich peptides essential to plant growth, development, and stress responses. Although GASA family genes have been identified in various plant species, their functional roles in Prunus mume are still unknown. In this study, a total of 16 PmGASA genes were identified via a genome-wide scan in Prunus mume and were grouped into three major gene clades based on the phylogenetic tree. All PmGASA proteins possessed the conserved GASA domain, consisting of 12-cysteine residues, but varied slightly in protein physiochemical properties and motif composition. With evolutionary analysis, we observed that duplications and purifying selection are major forces driving PmGASA family gene evolution. By analyzing PmGASA promoters, we detected a number of hormonal-response related cis-elements and constructed a putative transcriptional regulatory network for PmGASAs. To further understand the functional role of PmGASA genes, we analyzed the expression patterns of PmGASAs across different organs and during various biological processes. The expression analysis revealed the functional implication of PmGASA gene members in gibberellic acid-, abscisic acid-, and auxin-signaling, and during the progression of floral bud break in P. mume. To summarize, these findings provide a comprehensive understanding of GASA family genes in P. mume and offer a theoretical basis for future research on the functional characterization of GASA genes in other woody perennials.


Assuntos
Arabidopsis , Prunus , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Prunus/metabolismo
18.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077445

RESUMO

SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis 'Somei-yoshino' and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis 'Somei-yoshino' and provide more reference information of the function of SPL gene in flowering.


Assuntos
Arabidopsis , Oryza , Prunus , Arabidopsis/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Agric Food Chem ; 70(40): 12865-12877, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173088

RESUMO

Wild pest-resistant germplasms employ secondary metabolites to withstand insect attacks. A close wild relative of the cultivated peach, Prunus davidiana, displays strong resistance to green peach aphids by utilizing metabolites to cope with aphid infestation; however, the underlying mechanism of aphid resistance remains mostly unknown. Here, metabolomic analysis was performed to explore the changes in metabolite levels in P. davidiana after aphid infestation. The data revealed that betulin is a key defensive metabolite in peaches that protects against aphids and possesses potent aphidicidal activity. Further toxicity tests demonstrated that betulin was toxic to pests but not to beneficial insects. Additionally, transcriptomic and phylogenetic analyses revealed that the cytochrome P450 gene PpCYP716A1 was responsible for betulin synthesis─this finding was confirmed by the heterologous expression of this gene. This study revealed a strategy whereby plants harness defense metabolites to develop resistance to pests. These findings may facilitate controlling such pests.


Assuntos
Afídeos , Prunus , Animais , Sistema Enzimático do Citocromo P-450/genética , Filogenia , Prunus/genética , Triterpenos
20.
BMC Plant Biol ; 22(1): 395, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945501

RESUMO

BACKGROUND: Mei (Prunus mume) is the only woody plant in the genus Prunus with a floral fragrance, but the underlying mechanisms of aroma compound biosynthesis are unclear despite being a matter of considerable interest. RESULTS: The volatile contents of the petals of two cultivars with significantly different aromas, Prunus mume 'Xiao Lve' and Prunus mume 'Xiangxue Gongfen', were characterised by GC-MS at different flowering periods, and a total of 44 volatile compounds were detected. Among these, the main substances forming the typical aroma of P. mume were identified as eugenol, cinnamyl acetate, hexyl acetate and benzyl acetate, with variations in their relative concentrations leading to sensory differences in the aroma of the two cultivars. We compiled a transcriptome database at key stages of floral fragrance formation in the two cultivars and used it in combination with differential analysis of floral volatiles to construct a regulatory network for the biosynthesis of key aroma compounds. The results indicated that PmPAL enzymes and PmMYB4 transcription factors play important roles in regulating the accumulation of key biosynthetic precursors to these compounds. Cytochrome P450s and short-chain dehydrogenases/reductases might also influence the biosynthesis of benzyl acetate by regulating production of key precursors such as benzaldehyde and benzyl alcohol. Furthermore, by analogy to genes with verified functions in Arabidopsis, we predicted that three PmCAD genes, two 4CL genes, three CCR genes and two IGS genes all make important contributions to the synthesis of cinnamyl acetate and eugenol in P. mume. This analysis also suggested that the downstream genes PmBGLU18-like, PmUGT71A16 and PmUGT73C6 participate in regulation of the matrix-bound and volatile states of P. mume aroma compounds. CONCLUSIONS: These findings present potential new anchor points for further exploration of floral aroma compound biosynthesis pathways in P. mume, and provide new insights into aroma induction and regulation mechanisms in woody plants.


Assuntos
Prunus , Eugenol/análise , Eugenol/metabolismo , Perfilação da Expressão Gênica , Odorantes/análise , Prunus/genética , Prunus/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...