Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.430
Filtrar
1.
Water Res ; 233: 119805, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868119

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.


Assuntos
Compostos de Amônio , Água Subterrânea , Purificação da Água , Manganês/química , Ferro , Compostos de Amônio/química , Amônia , Quartzo , Ecossistema , Água Subterrânea/química , Filtração/métodos , Purificação da Água/métodos
2.
Environ Health ; 22(1): 25, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907865

RESUMO

BACKGROUND: The inflammatory responses are central components of diseases associated with particulate matter (PM) exposure, including systemic diseases such as cardiovascular diseases (CVDs). The aim of this study was to determine if exposure to PM, including respirable dust or quartz in the iron foundry environment mediates systemic inflammatory responses, focusing on the NLRP3 inflammasome and novel or established inflammatory markers of CVDs. METHODS: The exposure to PM, including respirable dust, metals and quartz were determined in 40 foundry workers at two separate occasions per worker. In addition, blood samples were collected both pre-shift and post-shift and quantified for inflammatory markers. The respirable dust and quartz exposures were correlated to levels of inflammatory markers in blood using Pearson, Kendall τ and mixed model statistics. Analyzed inflammatory markers included: 1) general markers of inflammation, including interleukins, chemokines, acute phase proteins, and white blood cell counts, 2) novel or established inflammatory markers of CVD, such as growth/differentiation factor-15 (GDF-15), CD40 ligand, soluble suppressor of tumorigenesis 2 (sST2), intercellular/vascular adhesion molecule-1 (ICAM-1, VCAM-1), and myeloperoxidase (MPO), and 3) NLRP3 inflammasome-related markers, including interleukin (IL)-1ß, IL-18, IL-1 receptor antagonist (IL-1Ra), and caspase-1 activity. RESULTS: The average respirator adjusted exposure level to respirable dust and quartz for the 40 foundry workers included in the study was 0.65 and 0.020 mg/m3, respectively. Respirable quartz exposure correlated with several NLRP3 inflammasome-related markers, including plasma levels of IL-1ß and IL-18, and several caspase-1 activity measures in monocytes, demonstrating a reverse relationship. Respirable dust exposure mainly correlated with non-inflammasome related markers like CXCL8 and sST2. CONCLUSIONS: The finding that NLRP3 inflammasome-related markers correlated with PM and quartz exposure suggest that this potent inflammatory cellular mechanism indeed is affected even at current exposure levels in Swedish iron foundries. The results highlight concerns regarding the safety of current exposure limits to respirable dust and quartz, and encourage continuous efforts to reduce exposure in dust and quartz exposed industries.


Assuntos
Poluentes Ocupacionais do Ar , Doenças Cardiovasculares , Exposição Ocupacional , Humanos , Quartzo/análise , Exposição Ocupacional/análise , Interleucina-18 , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Poeira/análise , Biomarcadores , Material Particulado , Ferro , Caspases , Exposição por Inalação/análise , Poluentes Ocupacionais do Ar/análise
3.
Anal Chim Acta ; 1244: 340857, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737146

RESUMO

ß-amyloid peptide (Aß) aggregates are regarded as a typical neuropathology hallmark for the diagnosis of Alzheimer's disease (AD). Aß40 aggregates include soluble oligomers (Aß40O) and insoluble fibrils (Aß40F). Both of them can simultaneously bind to two different kinds of its aptamer (Apt1 and Apt2). As a mass-sensitive sensing platform, quartz crystal microbalance (QCM) converts changes in mass on the Au chip surface into frequency shift. Here, a dual-aptamer assisted Aß40 aggregates assay was developed. Taking Aß40O detection as an example, Apt2 was modified on the surface of Au chip by Au-S bond. Subsequently, the solution consisted of Aß40O and gold nanoparticles-Apt1 (AuNPs-Apt1) were injected into the QCM chamber. As a result, Aß40O was specifically recognized and captured by Apt2. AuNPs-Apt1 were also combined on the surface of the Au chip because Aß40O can simultaneously bind to Apt1. Then, a significant frequency shift occurred because of the large weight of AuNPs. Similarly, this procedure can be used to detect Aß40F. This QCM biosensor was able to detect Aß40O with a range of 0.2-10 pM with a detection limit of 0.11 pM, while the linear range for Aß40F was 0.1-10 pM with a detection limit of 0.02 pM. This QCM biosensor was simple and highly sensitive, which provided a new method for Aß40 aggregates detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Peptídeos beta-Amiloides/química , Ouro/química , Nanopartículas Metálicas/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Quartzo
4.
Environ Pollut ; 322: 121218, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764377

RESUMO

Lead (Pb) metal accumulation in surrounding environments can cause serious threats to human health, causing liver and kidney function damage. This work explored the potential of applying the MICP technology to remediate Pb-rich water bodies and Pb-contaminated loess soil sites. In the test tube experiments, the Pb immobilization efficiency of above 85% is attained through PbCO3 and Pb(CO3)2(OH)2 precipitation. Notwithstanding that, in the loess soil column tests, the Pb immobilization efficiency decreases with the increase in depth and could be as low as approximately 40% in the deep ground. PbCO3 and Pb(CO3)2(OH)2 precipitation has not been detected as the majority of Pb2+ combines with -OH (hydroxyl group) when subjected to 500 mg/kg Pb2+. The alkaline front promotes the chemisorption of Pb2+ with CO32- reducing the depletion of quartz mineral close to the surface. However, OH- is in shortage in the deep ground retarding the Pb immobilization. The Pb immobilization efficiency thus decreases with the increase in depth. Quartz and albite minerals, when subjected to 16,000 mg/kg Pb2+, appear not to intervene in the chemisorption with Pb2+ where the chemisorption of Pb2+ with CO32- plays a major role in the Pb immobilization. Compared to the nanoscale urease applied to the enzyme-induced carbonate precipitation (EICP) technology, the micrometer scale ureolytic bacteria penetrate into the deep ground with difficulty. The 'size' issue remains to be addressed in near future.


Assuntos
Chumbo , Poluentes do Solo , Humanos , Solo , Quartzo , Carbonatos , Minerais , Carbonato de Cálcio
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768297

RESUMO

Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.


Assuntos
Titânio , Raios Ultravioleta , Vácuo , Azul de Metileno , Quartzo , Propriedades de Superfície
6.
J Environ Manage ; 335: 117516, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840999

RESUMO

The present study aimed to investigate the application of a multilayer quartz sand substrate horizontal subsurface flow constructed wetland (HSFCW) for campus sewage treatment. It aimed to assess the pollutant removal efficiency and anti-clogging performance under the suggested maximum organic loading rate (250 g/m2/d). The results of the multilayer HSFCW (CW6) were compared to the mololayer HSFCW (CW1) for the removal of the chemical oxygen demand (COD), solid accumulation, and microbial communities. During operation, the combination conditions of high hydraulic loading rate (HLR) with low COD concentration were better for COD removal under a high organic loading rate (OLR) of 200-300 g/m2/d. The maximum removal rate reached 80.4% in CW6 under high HLR, which was 13.8% higher than that in CW1, showing better adsorption and biodegradation ability of organic matter. Impressive clogging resistance capacity was found in CW6 due to the lower contents of the insoluble organic matter (IOM) that are prone to clogging, indicating full degradation of organic matters, particularly IOM, in CW6 under high HLR. Less abundance of unclassified Chitinophagaceae (under low HLR), Pedobacter and Saccharibacteria_genera_incertae_sedis (under high HLR) in CW6, which contributed to aerobic membrane fouling, helped to prevent clogging. Moreover, Brevundimonas, Cloacibacterium, Citrobacter, Luteimonas contributed to IOM degradation, thus further enhancing the anti-clogging performance. In view of the better clogging resistance performance, the application of CW6 operated under high HLR and low COD concentrations was recommended to achieve economical, efficient, and steady COD removal for domestic sewage treatment in long-term operation.


Assuntos
Areia , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Esgotos , Quartzo , Carbono , Áreas Alagadas , Nitrogênio
7.
Talanta ; 257: 124325, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787686

RESUMO

Procalcitonin is a blood protein and precursor of the hormone calcitonin. The procalcitonin level increases due to bacterial infections, sepsis, and other related pathologies. Here, we present a simple biosensor for procalcitonin assay suitable for point-of-care tests as an alternative to the current laboratory methods. The biosensor was based on a QCM piezoelectric sensor and a conjugate of gold nanoparticles-antibodies conjugate. It was suitable for the procalcitonin assay in biological samples and fully correlated to the standard ELISA method, and it did not suffer false positive or negative results or interferences. The detection limit was equal to 37.8 ng/l and the quantification limit to 104 ng/l for a sample of 25 µl. The dynamic range of the assay was 37.8 ng/l to 30.0 µg/l. The practical relevance of the biosensor is expected considering the findings, and the possible application of the assay principle for the development of biosensors for other markers is inferred.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Pró-Calcitonina , Técnicas de Microbalança de Cristal de Quartzo/métodos , Ouro/química , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Quartzo
8.
Chemosphere ; 322: 138130, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36780995

RESUMO

The environmental impact of nanoplastics has gradually attracted widespread attention; however, nanoplastics of polyvinyl chloride, one of the most commonly used plastics, have not yet been studied. In this study, we investigated the transport, long-term release behavior, and particle fracture of polyvinyl chloride nanoplastics (PVC NPs) in saturated quartz sand with different metal cations, ionic concentrations, input concentrations, and sand grain sizes by determining breakthrough, long-term release, and particle size distribution curves. The breakthrough curves and retention profiles were simulated by a mathematical model. The transport of PVC NPs increased with increased input concentration and sand grain size, which could be predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) and colloid filtration theories. Increased ionic concentration and metal cation valence could restrain the transport of PVC NPs in saturated quartz sand owing to the decreased energy barrier between PVC NPs and sand grains. The total released amount of PVC NPs in the long-term release tests with different experimental conditions ranged from 3.91 to 21.95%. Increased sand grain size and decreased metal cation valence and ionic concentration resulted in an increased released amount of retained PVC NPs in saturated quartz sand, indicating increased release ability and mobility. The particle fracture results indicated that the PVC NPs were not broken down during long-term release under the experimental conditions of this research. This opens up a completely new and meaningful study of whether nanoplastics are broken down into smaller nanoplastics during their long-term release under various conditions.


Assuntos
Quartzo , Areia , Microplásticos , Cloreto de Polivinila , Tamanho da Partícula , Porosidade , Cátions , Metais , Concentração Osmolar , Dióxido de Silício
9.
Environ Monit Assess ; 195(2): 313, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662307

RESUMO

In this study, a green, simple and effective preconcentration method named as spray-assisted fine droplet formation-liquid phase microextraction (SAFDF-LPME) before the flame atomic absorption spectrophotometry (FAAS) measurement for cobalt determination was developed. The method reduces the external dispersive solvent usage by using a simple spraying apparatus to obtain fine droplets of the extraction solvent. SAFDF-LPME method also consists of simultaneous complexation and extraction which indicates the environmental benevolence of the developed method. This method minimized the relative errors with high repeatability and accuracy by reducing the experimental steps. The influential parameters such as buffer type, buffer solution volume, extraction solvent/ligand solution volume (spraying cycle), and mixing period were systematically optimized by the univariate optimization procedure. With the optimum parameters applied, the detection power of the FAAS system was enhanced to about 110-folds with respect to 2.2 ng mL-1 detection limit calculated for the proposed method. Bottled drinking water samples from Fiji Islands were used to demonstrate the applicability of the developed method for the accurate determination of trace cobalt in real sample matrices. Percent recovery results obtained between 95.5 and 88.5% showed the suitability of the developed method in the determination of cobalt at trace levels even in complex sample matrices.


Assuntos
Água Potável , Microextração em Fase Líquida , Poluentes Químicos da Água , Espectrofotometria Atômica/métodos , Microextração em Fase Líquida/métodos , Cobalto/análise , Fiji , Quartzo , Limite de Detecção , Monitoramento Ambiental/métodos , Solventes , Poluentes Químicos da Água/análise
10.
Am J Ind Med ; 66(3): 199-212, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36705259

RESUMO

BACKGROUND: In metal and nonmetal (M/NM) mines in the United States, respirable crystalline silica (RCS) exposures are a recognized health hazard and a leading indicator of respiratory disease. This study describes hazardous exposures that exceed occupational exposure limits and examines patterns of hazardous RCS exposure over time among M/NM miners to better inform the need for interventions. METHODS: Data for this study were obtained from the Mine Safety and Health Administration (MSHA) Open Government Initiative Portal for the years 2000-2019, examining respirable dust samples with MSHA-measured quartz concentration >1%. Descriptive statistics for RCS were analyzed for M/NM miners by year, mine type, sector, commodity, occupation, and location in a mine. RESULTS: This study found the overall geometric mean (GM) for personal exposures to RCS was 28.9 µg/m3 (geometric standard deviation: 2.5). Exposures varied significantly by year, mine type, sector, commodity, occupation, and location in a mine. Overall, the percentages of exposures above the MSHA permissible exposure limit (PEL for respirable dust with >1% quartz, approximately 100 µg/m3 RCS) and the National Institute for Occupational Safety and Health RCS recommended exposure limit (REL, 50 µg/m3 ) were 11.8% and 27.3%, respectively. GM exposures to RCS in 2018 (45.9 µg/m3 ) and 2019 (52.9 µg/m3 ) were significantly higher than the GM for all years prior. The overall 95th percentile of RCS exposures from 2000 to 2019 was 148.9 µg/m3 , suggesting a substantial risk of hazardous exposures above the PEL and REL during the entire period analyzed. CONCLUSIONS: The prevalence of high exposures to RCS among M/NM miners continues in the past 20 years and may be increasing in certain settings and occupations. Further research and intervention of the highest exposures are needed to minimize the risks of acquiring silica-induced respiratory diseases.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Estados Unidos/epidemiologia , Humanos , Quartzo/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Dióxido de Silício/análise , Poeira/análise , Mineração , Metais , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Monitoramento Ambiental
11.
Proc Natl Acad Sci U S A ; 120(3): e2216311120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623181

RESUMO

It has recently been suggested that deformed crustal plateaus on Venus may be composed of felsic (silica-rich) rocks, possibly supporting the idea of an ancient ocean there. However, these plateaus have a tendency to collapse owing to flow of the viscous lower crust. Felsic minerals, especially water-bearing ones, are much weaker and thus lead to more rapid collapse, than more mafic minerals. We model plateau topographic evolution using a non-Newtonian viscous relaxation code. Despite uncertainties in the likely crustal thickness and surface heat flux, we find that quartz-dominated rheologies relax too rapidly to be plausible plateau-forming material. For plateaus dominated by a dry anorthite rheology, survival is possible only if the background crustal thickness is less than 29 km, unless the heat flux on Venus is less than the radiogenic lower bound of 34 [Formula: see text]. Future spacecraft determinations of plateau crustal thickness and mineralogy will place firmer constraints on Venus's heat flux.


Assuntos
Bivalves , Vênus , Animais , Temperatura Alta , Quartzo , Reologia
12.
Environ Int ; 172: 107732, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680803

RESUMO

Desert dust is increasingly recognized as a major air pollutant affecting respiratory health. Since desert dust exposure cannot be regulated, the hazardousness of its components must be understood to enable health risk mitigation strategies. Saharan dust (SD) comprises about half of the global desert dust and contains quartz, a toxic mineral dust that is known to cause severe lung diseases via oxidative stress and activation of the NLRP3 inflammasome-interleukin-1ß pathway. We aimed to assess the physicochemical and microbial characteristics of SD responsible for toxic effects. Also, we studied the oxidative and pro-inflammatory potential of SD in alveolar epithelial cells and the activation of the NLRP3 inflammasome in macrophage-like cells in comparison to quartz dusts and synthetic amorphous silica (SAS). Characterization revealed that SD contained Fe, Al, trace metals, sulfate, diatomaceous earth, and endotoxin and had the capacity to generate hydroxyl radicals. We exposed A549 lung epithelial cells and wild-type and NLRP3-/- THP-1 macrophage-like cells to SD, three well-investigated quartz dusts, and SAS. SD induced oxidative stress in A549 cells after 24 h more potently than the quartz dusts. The quartz dusts and SAS upregulated interleukin 8 expression after 4 h and 24 h while SD only caused a transient upregulation. SD, the quartz dusts, and SAS induced interleukin-1ß release from wild-type THP-1 cells>20-fold stronger than from NLRP3-/- THP-1 cells. Interleukin-1ß release was lower for SD, in which microbial components including endotoxin were heat-destructed. In conclusion, microbial components in SD are pivotal for its toxicity. In the epithelium, the effects of SD contrasted with crystalline and amorphous silica in terms of potency and persistence. In macrophages, the strong involvement of the NLRP3 inflammasome emphasizes the acute and chronic health risks associated with desert dust exposure.


Assuntos
Poeira , Quartzo , Citocinas/metabolismo , Endotoxinas , Inflamassomos/metabolismo , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Quartzo/toxicidade , Dióxido de Silício/toxicidade , Humanos , Células A549
13.
Ann Work Expo Health ; 67(3): 392-401, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36594971

RESUMO

While between- and within-worker variability have been studied quite extensively, hardly any research is available that examines long-term trends in the variability of occupational exposure. In this first study on trends in occupational exposure variability temporal changes in the variability of respirable dust and respirable quartz concentrations within the European industrial minerals sector were demonstrated. Since 2000 the European Industrial Minerals Association's Dust Monitoring Program (IMA-DMP) has systematically collected respirable dust and respirable quartz measurements. The resulting IMA-DMP occupational exposure database contains at present approximately 40 000 personal full-shift measurements, collected at 177 sites owned by 39 companies, located in 23 European countries. Repeated measurements of workers performing their duties within a specific site-job-campaign combination allowed estimation of within- and between-worker variability in exposure concentrations. Overall day-to-day variability predominated the between-worker variability for both respirable dust concentrations and quartz concentrations. The within-worker variability in concentrations by job was two to three times higher for respirable quartz than for respirable dust. The median between-worker variability in respirable dust concentrations was low and further reduced over time. For quartz concentrations the same phenomenon albeit somewhat less strong was observed. In contrast, for the within-worker variability in concentrations downward and upward temporal trends were apparent for both respirable dust and respirable quartz. The study shows that the (relative) size of temporal variability is large and unpredictable and therefore regular measurement campaigns are needed to ascertain compliance to occupational exposure limit values.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Poeira/análise , Quartzo/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Dióxido de Silício/análise , Minerais , Poluentes Ocupacionais do Ar/análise
14.
Chemosphere ; 313: 137512, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495971

RESUMO

Knowledge of the fate and transport of nanoscale zero-valent iron (nZVI) in saturated porous media is crucial to the development of in situ remediation technologies. This work systematically compared the retention and transport of carboxymethyl cellulose (CMC) modified nZVI (CMC-nZVI) and sulfidated nZVI (CMC-S-nZVI) particles in saturated columns packed with quartz sand of various grain sizes and different surface metal oxide coatings. Grain size reduction had an inhibitory effect on the transport of CMC-S-nZVI and CMC-nZVI due to increasing immobile zone deposition and straining in the columns. Metal oxide coatings had minor effect on the transport of CMC-S-nZVI and CMC-nZVI because the sand surface was coated by the free CMC in the suspensions, reducing the electrostatic attraction between the nZVI and surface metal oxides. CMC-S-nZVI displayed greater breakthrough (C/C0 = 0.82-0.90) and higher mass recovery (84.9%-89.3%) than CMC-nZVI (C/C0 = 0.70-0.80 and mass recovery = 70.9%-79.6%, respectively) under the same experimental conditions. A mathematical model based on the advection-dispersion equation simulated the experimental data of nZVI breakthrough curves very well. Findings of this study suggest sulfidation could enhance the transport of CMC-nZVI in saturated porous media with grain and surface heterogeneities, promoting its application in situ remediation.


Assuntos
Ferro , Nanopartículas Metálicas , Porosidade , Areia , Quartzo , Carboximetilcelulose Sódica
15.
Chemosphere ; 313: 137617, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563727

RESUMO

Graphene-based membranes (GBM) will migrate in the soil and enter the groundwater system or plant roots, which will eventually pose potential risks to human beings. The migration mechanism of GBM depends on the interface behavior of complex soil components. Herein, we use molecular dynamics (MD) simulations to probe the interface behavior between GBM and three type minerals (quartz, calcite and kaolinite). Based on the investigation of binding energy, maximum pulling force and barrier energy, the order of the difficulty of GBM adsorption and desorption on the three minerals from small to large is roughly: quartz, calcite and kaolinite respectively. The graphene-oxide (GO), improves the binding energy and energy barrier, making GBM difficult to migrate in soil. Remarkably, a larger GBM sheet and high velocity external load improve GBM migration in soil to a certain extent. These investigations give the dynamic information on the GBM/mineral interaction and provide nanoscale insights into the migration mechanisms of GBM in soil.


Assuntos
Grafite , Humanos , Grafite/química , Solo/química , Caulim/química , Quartzo , Minerais/química , Carbonato de Cálcio/química , Adsorção
16.
Environ Sci Technol ; 57(1): 76-84, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36519925

RESUMO

Saltation is an important wind erosion process that can cause the modification and breakdown of particles by aeolian abrasion. It is recognized that microplastic particles can be transported by wind, but the effect of saltation on microplastic properties is unknown. This study examined the impact of simulated saltation alongside quartz grains on the size, shape, and surface properties of spherical microplastic beads. The diameter of the microplastics was reduced by 30-50% over 240-300 h of abrasion with a mass loss of c. 80%. For abrasion periods up to 200 h, the microplastic beads remained spherical with minimal change to overall shape. Over 95% of the fragments of plastic removed from the surface of the microbeads during the abrasion process had a diameter of ≤10 µm. In addition, during the abrasion process, fine particles derived from breakdown of the quartz grains became attached to the surfaces of the microbeads resulting in a reduction in carbon and an increase in silicon detected on the particle surface. The results suggest that microplastics may be mechanically broken down during aeolian saltation and small fragments produced have the potential for long distance transport as well as being within the size range for human respiration.


Assuntos
Microplásticos , Plásticos , Humanos , Quartzo
17.
Environ Res ; 216(Pt 4): 114837, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400223

RESUMO

Nitrate pollution of groundwater has become an increasingly serious environmental problem that poses a great threat to aquatic ecosystems and to human health. Previous studies have shown that solid-phase humin (HM) can act as an additional electron donor to support microbial denitrification in the bioremediation of nitrate-contaminated groundwater where electron donor is deficient. However, the electron-donating capacities of HMs vary widely. In this study, we introduced ferrihydrite and prepared ferrihydrite-humin (Fh-HM) coprecipitates via biotic means to strengthen their electron-donating capacities. The spectroscopic results showed that the crystal phase of Fh did not change after coprecipitation with HM in the presence of Shewanella oneidensis MR-1, and iron may have complexed with the organic groups of HM. The Fh-HM coprecipitate prepared with an optimal initial Fh-HM mass ratio of 14:1 enhanced the microbial denitrification of Pseudomonas stutzeri with an electron-donating capacity 2.4-fold higher than that of HM alone, and the enhancement was not caused by greater bacterial growth. The alginate bead embedding assay indicated that the oxidation pathway of Fh-HM coprecipitate was mainly through direct contact between P. stutzeri and the coprecipitate. Further analyses suggested that quinone and organic-complexed Fe were the main electron-donating fractions of the coprecipitate. The results of the column experiments demonstrated that the column filled with Fh-HM-coated quartz sand exhibited a higher denitrification rate than the one filled with quartz sand, indicating its potential for practical applications.


Assuntos
Pseudomonas stutzeri , Humanos , Pseudomonas stutzeri/metabolismo , Nitratos/química , Desnitrificação , Elétrons , Areia , Quartzo/metabolismo , Ecossistema , Compostos Férricos/química , Oxirredução , Compostos Orgânicos
18.
J Biomed Mater Res A ; 111(4): 440-450, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36537182

RESUMO

Polymer-protein hybrids can be deployed to improve protein solubility and stability in denaturing environments. While previous work used robotics and active machine learning to inform new designs, further biophysical information is required to ascertain structure-function behavior. Here, we show the value of tandem small-angle x-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) experiments to reveal detailed polymer-protein interactions with horseradish peroxidase (HRP) as a test case. Of particular interest was the process of polymer-protein complex formation under thermal stress whereby SAXS monitors formation in solution while QCMD follows these dynamics at an interface. The radius of gyration (Rg ) of the protein as measured by SAXS does not change significantly in the presence of polymer under denaturing conditions, but thickness and dissipation changes were observed in QCMD data. SAXS data with and without thermal stress were utilized to create bead models of the potential complexes and denatured enzyme, and each model fit provided insight into the degree of interactions. Additionally, QCMD data demonstrated that HRP deforms by spreading upon surface adsorption at low concentration as shown by longer adsorption times and smaller frequency shifts. In contrast, thermally stressed and highly inactive HRP had faster adsorption kinetics. The combination of SAXS and QCMD serves as a framework for biophysical characterization of interactions between proteins and polymers which could be useful in designing polymer-protein hybrids.


Assuntos
Polímeros , Técnicas de Microbalança de Cristal de Quartzo , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Proteínas/química , Peroxidase do Rábano Silvestre , Quartzo/química
19.
J Mater Chem B ; 11(3): 640-647, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36538007

RESUMO

Composites have been widely applied in various industries and are beneficial in attaining complicated functionalities. Particularly, for dental fiber posts or orthopedic implants, the composites should have excellent mechanical properties and good imaging effects for visualization in vivo. The traditional method to improve mechanical strength and visibility by adding reinforcing fillers and radiopacifiers is complicated and has poor distributions and long production times. Hence, fabricating an integrated reinforced filler with radiopacity is of considerable economic and social significance. After ball-milling and sintering quartz fiber (QF) and bismuth trioxide (Bi2O3), a multifunctional filler (QF-Bi2SiO5) is fabricated to impart excellent flexural strengths and high X-ray imaging qualities to the composites. A composite made of epoxy resin (EP) and QF-Bi2SiO5 has a high bending strength (126.87 ± 6.78 MPa) and bending modulus (3649.31 ± 343.87 MPa), which are attributed to the tight mechanical interlock between EP and micro/nano structures of QF-Bi2SiO5. The QF-Bi2SiO5/EP composite shows good X-ray imaging quality owing to the Bi2SiO5 crystal. Furthermore, the mechanical and imaging performances of various composites with commercial fillers were compared with that of the QF-Bi2SiO5/EP composite. No filler was found that can perform both functions as well as QF-Bi2SiO5. Hence, the fabricated composites containing micro/nano structured QF-Bi2SiO5 fillers have the potential to be used in a variety of fields requiring mechanical strength and X-ray imaging capability.


Assuntos
Resinas Compostas , Resistência à Flexão , Quartzo , Resinas Epóxi , Raios X , Teste de Materiais , Propriedades de Superfície , Materiais Dentários
20.
Environ Sci Pollut Res Int ; 30(12): 34069-34084, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504302

RESUMO

The geochemical cycling of vanadium (V) in mining areas has attracted much attention. However, little knowledge was about the effects of tailing colloids on the fate and transport of vanadium in tailing reservoirs which was ignored before. This study investigated the interactions of tailing colloids from vanadium-titanium magnetite with vanadium. Colloid characterization, tailing leaching, adsorption, and column experiments of single and cotransport of tailing colloid with V were conducted. Results show that 98.08% V in the vanadium-titanium magnetite tailing was in the residual state with limited leachable V under various conditions. The adsorption of V to the tailing colloid was via electrostatic attraction and surface complexation on the heterogeneously distributed sorption sites on the colloid surface. The adsorption control step was the diffusion of V into the tailing colloid pores. The increase in pH and the decrease in ionic strength (IS) promoted the single transport of tailing colloid and V in quartz sand columns. In cotransport scenarios, V promoted the transport of tailing colloids via the surface coating effect. In contrast, the transport of V was retarded by the adsorbed tailing colloid on the quartz sand surface. The pre-adsorbed V in the column enhanced the subsequent transport of tailing colloids by electrical repulsion, while the pre-adsorbed tailing colloids facilitated the subsequent transport of V via cotransport of the released colloids with V. The high mobility of the tailing colloid and V and their cotransport in the porous media highly demonstrated the potential V pollution pathways that need to be taken into account.


Assuntos
Quartzo , Areia , Óxido Ferroso-Férrico , Titânio , Vanádio/química , Adsorção , Coloides/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...