RESUMO
Sonodynamic therapy (SDT) relies heavily on the presence of oxygen to induce cell death. Its effectiveness is thus diminished in the hypoxic regions of tumor tissue. To address this issue, the exploration of ultrasound-based synergistic treatment modalities has become a significant research focus. Here, we report an ultrasonic cavitation effect enhanced sonodynamic and 1208 nm photo-induced cancer treatment strategy based on thermoelectric/piezoelectric oxygen-defect bismuth oxychloride nanosheets (BNs) to realize the high-performance eradication of tumors. Upon ultrasonic irradiation, the local high temperature and high pressure generated by the ultrasonic cavitation effect combined with the thermoelectric and piezoelectric effects of BNs create a built-in electric field. This facilitates the separation of carriers, increasing their mobility and extending their lifetimes, thereby greatly improving the effectiveness of SDT and NIR-â ¡ phototherapy on hypoxia. The Tween-20 modified BNs (TBNs) demonstrate â¼88.6 % elimination rate against deep-seated tumor cells under hypoxic conditions. In vivo experiments confirm the excellent antitumor efficacy of TBNs, achieving complete tumor elimination within 10 days with no recurrences. Furthermore, due to the high X-ray attenuation of Bi and excellent NIR-â ¡ absorption, TBNs enable precise cancer diagnosis through photoacoustic (PA) imaging and computed tomography (CT).
Assuntos
Bismuto , Neoplasias da Mama , Oxigênio , Terapia por Ultrassom , Bismuto/química , Feminino , Animais , Neoplasias da Mama/terapia , Terapia por Ultrassom/métodos , Oxigênio/química , Camundongos , Camundongos Endogâmicos BALB C , Humanos , Linhagem Celular Tumoral , Raios Infravermelhos , Nanoestruturas/química , Fototerapia/métodosRESUMO
Detection of bruising in living animal victims of abuse can be challenging due to animal temperament and anatomy. Visual assessment, combined with physical and serum biochemical evaluation, can fail to detect injuries. However, development and validation of a noninvasive, antemortem method for detecting bruising in domestic species could have important medicolegal implications. Key clinical message: Thermal imaging utilizing infrared wavelengths can assist in detection of trauma in cases of animal abuse where no visible injuries are apparent, aiding in providing appropriate medical treatment and guidance for the legal system.
Thermographie infrarouge pour la détection de traumatismes contondants lors d'enquêtes sur la maltraitance des animauxLa détection des ecchymoses chez les animaux vivants victimes de maltraitance peut s'avérer difficile en raison du tempérament et de l'anatomie de l'animal. L'évaluation visuelle, combinée à l'évaluation physique et une analyse biochimique sérique, peut ne pas détecter les blessures. Cependant, le développement et la validation d'une méthode ante-mortem non invasive pour détecter les meurtrissures chez les espèces domestiques pourraient avoir d'importantes implications médico-légales.Message clinique clé :L'imagerie thermique utilisant des longueurs d'onde infrarouges peut aider à détecter les traumatismes dans les cas de maltraitance animale où aucune blessure visible n'est apparente, contribuant ainsi à fournir un traitement médical approprié et à guider le système judiciaire.(Traduit par Dr Serge Messier).
Assuntos
Bem-Estar do Animal , Termografia , Ferimentos não Penetrantes , Animais , Cães/lesões , Contusões/veterinária , Contusões/diagnóstico , Raios Infravermelhos , Termografia/veterinária , Termografia/métodos , Ferimentos não Penetrantes/veterinária , Ferimentos não Penetrantes/diagnóstico por imagemRESUMO
Biomedical-device-associated infection (BAI) is undoubtedly a major concern and a serious challenge in modern medicine. Therefore, the development of biomedical materials that are capable of resisting or killing bacteria is of great importance. In this work, a croconaine-functionalized polymer with antifouling and near-infrared (NIR) photothermal bactericidal properties was prepared and facilely modified on polypropylene (PP) to combat medical device infections. Croconaine dye is elaborately modified as a "living" initiator, termed CR-4EBiB, for preparing amphiphilic block polymers by atom transfer radical polymerization (ATRP). In the formed polymer coating, the hydrophobic block can strongly adhere to the surface of the PP substrate, whereas the hydrophilic block is located on the outer layer by solvent-induced resistance to bacterial adhesion. Under the irradiation of an NIR laser (808 nm), the croconaine dye in the coating achieved maximum conversion of light to heat to effectively kill E. coli, S. aureus, and methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile and promising strategy for the development of implantable antibacterial biomedical materials.
Assuntos
Antibacterianos , Escherichia coli , Raios Infravermelhos , Staphylococcus aureus Resistente à Meticilina , Polipropilenos , Polipropilenos/química , Polipropilenos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Propriedades de Superfície , Polímeros/química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Incrustação Biológica/prevenção & controleRESUMO
BACKGROUND: Drug-induced liver injury (DILI) is the most important standard for the entrance of clinical drugs into the pharmaceutical market. The elevation of superoxide anion (O2â¢-) during drug metabolism can mediate apoptosis of hepatocytes and further generation of liver damage. Therefore, developing an effective imaging method for evaluating O2â¢- levels during DILI is of great importance. However, current reported O2â¢- fluorescent probes either use short excitation wavelengths or a single intensity detection system, limiting the accurate quantification of O2â¢- in deep tissue in vivo. RESULTS: We developed a NIR-excited ratiometric nanoprobe (CyD-UCNPs) by assembly of O2â¢--sensitive hemicyanine dyes (CyD) on the surface of Tm/Er-codoped upconversion nanoparticles (UCNPs) with the assistance of α-cyclodextrin, which exhibited a robust "turn-on" ratiometric sensing signal. In vitro experiments indicated that CyD-UCNPs respond well to O2â¢- with high selectivity. Furthermore, by taking advantage of the outstanding optical properties produced by the luminescent resonance energy transfer between the UCNPs and CyD upon the excitation of 980 nm, the ratiometric upconversion luminescence signal of CyD-UCNPs was successfully utilized to monitor the fluctuation of O2â¢- levels under phorbol-12-myristate-13-acetate (PMA)/cisplatin-induced oxidative stress in living cells, liver tissues, and zebrafish. More importantly, endogenous change in O2â¢- levels in the liver sites of mice during DILI and its prevention with L-carnitine was visualized using CyD-UCNPs. SIGNIFICANCE: This study provides a ratiometric NIR-excited imaging strategy for investigating the correlation between O2â¢- levels and DILI and its prevention, which is significant for early diagnosis of DILI and preclinical screening of anti-hepatotoxic drugs in vivo.
Assuntos
Carbocianinas , Doença Hepática Induzida por Substâncias e Drogas , Corantes Fluorescentes , Raios Infravermelhos , Nanopartículas , Superóxidos , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Animais , Superóxidos/análise , Superóxidos/metabolismo , Superóxidos/química , Camundongos , Corantes Fluorescentes/química , Carbocianinas/química , Nanopartículas/química , Humanos , Peixe-Zebra , Imagem Óptica , Transdução de Sinais/efeitos dos fármacosRESUMO
Near-infrared (NIR) fluorescent probes with aggregation-induced emission (AIE) properties are of great significance in cell imaging and cancer therapy. However, the complexity of its synthesis, poor photostabilities, and expensive raw materials still pose some obstacles to their practical application. This study reported an AIE luminescent material with red emission and its application in in vitro imaging and photodynamic therapy (PDT) study. This material has the characteristics of simple synthesis, large Stokes shift, good photostabilities, and excellent lipid droplets-specific testing ability. Interestingly, this red-emitting material can effectively produce reactive oxygen species (ROS) under white light irradiation, further achieving PDT-mediated killing of cancer cells. In conclusion, this study demonstrates a simple approach to synthesize NIR AIE probes with both imaging and therapeutic effects, providing an ideal architecture for constructing long-wavelength emission AIE materials.
Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Gotículas Lipídicas , Fotoquimioterapia , Espécies Reativas de Oxigênio , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Gotículas Lipídicas/química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica , Estrutura Molecular , Células HeLaRESUMO
BACKGROUND: The quantitative interpretation of the radiometric information extracted from infrared (IR) images in individuals with and without type 2 diabetes mellitus (DM2) is an open problem yet to be solved. This is of particular value given that DM2 is a worldwide health problem and onset for evolution toward diabetic foot disease (DFD). Since DM2 causes changes at the vascular and neurological levels, the metabolic heat distribution on the outer skin is modified as a consequence of such alterations. Of particular interest in this contribution are those alterations displayed over the skin's heat patterns at the lower limbs. At the core of such alterations is the deterioration of the vascular and neurological networks responsible for procuring systemic thermoregulation. It is within this context that IR imaging is introduced as a likely aiding tool to assist with the clinical diagnosis of DM2 at stages early enough to prevent the evolution of the DFD. METHODS: IR images of lower limbs are acquired from a cohort of individuals clinically diagnosed with and without DM2. Additional inclusion criteria for patients are to be free from any visible wound or tissue-related trauma (e.g., injuries, edema, and so forth), and also free from non-metabolic comorbidities. All images and data are equally processed and analyzed using indices that evaluate the spatial and temporal evolution of temperature distribution in lower limbs. We studied the temporal response of individuals' legs after inducing an external stimulus. For this purpose, we combine the information of the asymmetry and thermal response index (ATR) and the thermal response index (TRI), computed using images at different times, improving the results previously obtained individually with ATR and TRI. RESULTS: A novel representation of the information extracted from IR images of the lower limbs in individuals with and without DM2 is presented. This representation was built using the ATR and TRI indices for the anterior and posterior views (PVs), individually and combining the information from both views. In all cases, the information of each index and each view presents linearity properties that allow said information to be interpreted quantitatively in a well-defined and limited space. This representation, built in a polar coordinate space, allows obtaining sensitivity values of 86%, 97%, and 97%, and specificity values of 83%, 72%, and 78% for the anterior view (AV), the PV, and the combined views, respectively. Additionally, it was observed that the angular variable that defines this new representation space allows to significantly (p < 0.01) differentiate the groups, while correlating with clinical variables of interest, such as glucose and glycated hemoglobin. CONCLUSION: The linearity properties that exist between the ATR and TRI indices allow a quantitative interpretation of the information extracted from IR images of the lower extremities of individuals with and without DM2, and allow the construction of a representation space that eliminates possible ambiguities in the interpretation, while simplifying it, making it accessible for clinical use.
Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Raios Infravermelhos , Extremidade Inferior , Humanos , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Feminino , Extremidade Inferior/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pé Diabético/diagnóstico por imagem , Pé Diabético/fisiopatologia , Termografia/métodos , Idoso , Adulto , Temperatura Cutânea/fisiologiaRESUMO
Background: Effective innate immunity activation could dramatically improve the anti-tumor efficacy and increase the beneficiary population of immunotherapy. However, the anti-tumor effect of unimodal immunotherapy is still not satisfactory. Methods: Herein, a novel relay-type innate immunity activation strategy based on photo-immunotherapy mediated by a water-soluble aggregation-induced emission luminogen, PEG420-TQ, with the assistant of toll-like receptor 7 (TLR-7) agonist, imiquimod (R837), was developed and constructed. Results: The strategy could promote tumor cells to undergo immunogenic cell death (ICD) induced by the well-designed PEG420-TQ@R837 (PTQ@R) nanoplatform under light irradiation, which in turn enhanced the infiltration of immune cells and the activation of innate immune cells to achieve the first innate immunity activation. The second innate immunity activation was subsequently achieved by drug delivery of R837 via apoptotic bodies (ApoBDs), further enhancing the anti-tumor activity of infiltrated immune cells. Conclusion: The strategy ultimately demonstrated robust innate immunity activation and achieved excellent performance against tumor growth and metastasis. The construction of the relay-type innate immunity activation strategy could provide a new idea for the application of immunotherapy in clinical trials.
Assuntos
Imiquimode , Imunidade Inata , Imunoterapia , Imunidade Inata/efeitos dos fármacos , Animais , Imunoterapia/métodos , Camundongos , Imiquimode/uso terapêutico , Imiquimode/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Água/química , Receptor 7 Toll-Like/agonistas , Feminino , Fototerapia/métodos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Morte Celular Imunogênica/efeitos dos fármacos , Raios InfravermelhosRESUMO
BACKGROUND: Five-guaranteed elderly individuals are a special group of the elderly Chinese population faced with unique challenges; these individuals lack any financial resources (including support by relatives), and are solely reliant on the government to provide food, clothing, medical care, and housing as well as burials. In this article, we aim to investigate mood problems (depression, anxiety) and cognitive functioning in Five-guaranteed elderly individuals, and to validate the effectiveness of two promising interventions, graphene far-infrared intervention (GFII; an exploratory and noninvasive technique) and social network intervention (SNI), for elderly people to lay the foundation for future social service work. METHODS: To address the emotional and cognitive difficulties experienced by this special group, we designed this study, which is the first to apply GFII in this population. We also administered SNI given the social isolation of these individuals, in addition to a corresponding control group. 108 elderly individuals in 3 elder care facilities were screened to evaluate eligibility to participate in the current study, including 44 from Facility A (allocated to the GFII group), 43 from Facility B (allocated to the SNI group), and 21 from Facility C (allocated to the control group). GFII lasts for four weeks, with professionally trained carers putting on and removing intervention caps for half an hour each day. SNI lasts for three weeks, three times a week, and consists of a total of nine themed activities. The length of an activity is 90 min. We also did pre- and post-test comparisons of depression, anxiety and cognition in each group of older adults. RESULTS: The results showed that GFII led to immediate improvements in anxiety and cognitive impairment in the five-guaranteed elderly individuals, and the improvement in cognitive function was sustained over time. Moreover, SNI group showed significant improvements in cognitive function after the intervention period. CONCLUSIONS: The GFII is a promising intervention that can be applied to intervene in cognitive and mood disorders in older adults. The GFII has short-term interventions for anxiety in older adults, but long-term effects for cognitive impairment. SNI also had an interventional effect on cognition.
Assuntos
Ansiedade , Demência , Depressão , Grafite , Humanos , Idoso , Masculino , Feminino , Demência/terapia , Demência/psicologia , Depressão/terapia , Depressão/psicologia , Ansiedade/terapia , Ansiedade/psicologia , Idoso de 80 Anos ou mais , Apoio Social , Raios Infravermelhos , Rede SocialRESUMO
Infrared thermography may be an alternative technology for measuring the amount of CH4 produced and has the advantages of low cost, speed and efficiency in obtaining results. The study's objective was to determine if the infrared thermography is adequate for predicting the emission of CH4 in hair sheep and the best time after feeding to carry out the measurement. Twelve Santa Inês lambs (females, non-pregnant, with twelve months old and mean body weight of 39.3 ± 2.1 kg) remained for two days in respirometric chambers, in a semi-closed system, to determine the CH4 production. The animals were divided into two treatments, according to the diet provided. During this period, seven thermographic photographs were taken, at times - 1 h, -0.5 h, 0 h, 0.5 h, 1 h, 2 h, 3 h, 5 h, and 7 h, according to the feeding time, defined as 0 h. CH4 production was measured over 24 h. Thermographic images measured the maximum, minimum, average and point temperatures at the left and right flanks. The temperature difference between the left and right flanks (left minus right) was calculated each time. Pearson correlation coefficients, multiple regression and principal component analysis were carried out in SAS®. The best prediction of emission intensity of CH4 (kg of CH4 per dry matter intake) was obtained at 3 h after feeding: CH4/DMI = 13.9016-0,38673 * DifP2 + 3.39089 * DifMed2 (R² = 0.48), using the difference between left and right flanks for point and average temperature measures. Therefore, infrared thermography can be used as an indicator of CH4 production in hair sheep three hours after feeding.
Assuntos
Metano , Carneiro Doméstico , Termografia , Animais , Termografia/veterinária , Termografia/métodos , Metano/análise , Metano/metabolismo , Feminino , Carneiro Doméstico/fisiologia , Ração Animal/análise , Dieta/veterinária , Raios Infravermelhos , Ovinos/fisiologiaRESUMO
Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.
Assuntos
Cálcio , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/efeitos da radiação , Células Receptoras Sensoriais/metabolismo , Cálcio/metabolismo , Camundongos , Linhagem Celular , Espectrometria por Raios X , Microscopia de Força Atômica , Potássio/metabolismo , Potássio/química , Lidocaína/farmacologiaRESUMO
Alzheimer's disease, a prevalent neurodegenerative condition primarily affecting older adults, remains incurable. Its principle pathological hallmark is the accelerated accumulation of amyloid ß (Aß) protein. This study investigates the potential of photobiomodulation using near infrared light to counteract Aß1-42-induced synaptic degeneration and neurotoxicity. We focused on the effect of 808 nm near-infrared laser diode (LD) on Aß1-42 cytotoxicity in primary cultured cortical neurons. We assessed cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, observing substantial benefits from LD irradiation with a power of 10 mW and a dose of 30 J. Cells exposed to Aß1-42 exhibited morphological changes indicative of synaptic damage and a significant decrease in the number of postsynaptic density protein-95 (PSD-95) contacts, which were significantly improved with near-infrared LD therapy. Furthermore, this therapy reduced Aß and phosphorylated tau (P-tau) protein accumulation. Additionally, near-infrared LD irradiation substantially lessened the Aß1-42-induced rise in glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) in astrocytes and microglia. Remarkably, near-infrared LD irradiation effectively inhibited phosphorylation of key proteins involved in Aß1-42-induced necroptosis, namely Receptor-interacting protein kinase-3 (RIP3) and Mixed Lineage Kinase domain-Like protein (MLKL). Our findings suggest that near-infrared LD treatment significantly reduces neurodegeneration by reducing glial overactivation and neuronal necroptosis triggered by Aß1-42. Thus, near-infrared LD treatment emerges as a promising approach for slowing or treating Alzheimer's disease, offering new avenues in its management.
Assuntos
Peptídeos beta-Amiloides , Sobrevivência Celular , Raios Infravermelhos , Neurônios , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Neurônios/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ratos , Lasers Semicondutores , Proteínas tau/metabolismo , Terapia com Luz de Baixa Intensidade , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos da radiação , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/efeitos da radiaçãoRESUMO
BACKGROUND: Enamel is highly transparent at short wavelength infrared imaging (SWIR) wavelengths allowing the detection of dental decay without the need for ionizing radiation. The purpose of this study was to use SWIR imaging methods including cross polarization optical coherence tomography (CP-OCT), occlusal transillumination (SWIR-OT), proximal transillumination (SWIR-PT), and occlusal reflectance (SWIR-R) to image interproximal lesions in vivo and compare the sensitivity with radiography. METHODS: Participants (n = 30) aged 18-80 each with a radiopositive interproximal lesion scheduled for restoration were enrolled in the study. Studies have shown that the opposing proximal surfaces across the contact will likely also have lesions. SWIR images were acquired of the adjoining teeth at each contact with an interproximal lesion scheduled for restoration. Lesion presence and depth were assessed on each side of the contact for radiography and each SWIR imaging method. Lesions on radiographs and in CP-OCT images were identified by a single examiner while lesions in SWIR images were identified by a contrast threshold via semi-automatic image segmentation. RESULTS: All SWIR imaging methods had significantly higher sensitivity (P < 0.05) than radiographs for the detection of interproximal lesions on the teeth opposite those restored. CP-OCT and SWIR-R imaging methods had significantly higher sensitivity than the other methods. SWIR imaging methods showed significantly higher lesion contrast than radiography. CONCLUSIONS: SWIR imaging methods can be used to detect interproximal lesions on posterior teeth with higher diagnostic performance than radiographs. CP-OCT appears well suited as a potential gold standard for the detection of interproximal lesions and assessment of their severity in vivo.
Assuntos
Cárie Dentária , Tomografia de Coerência Óptica , Transiluminação , Humanos , Tomografia de Coerência Óptica/métodos , Pessoa de Meia-Idade , Idoso , Adolescente , Idoso de 80 Anos ou mais , Adulto , Cárie Dentária/diagnóstico por imagem , Cárie Dentária/patologia , Adulto Jovem , Transiluminação/métodos , Raios Infravermelhos , Feminino , Masculino , Esmalte Dentário/diagnóstico por imagem , Esmalte Dentário/patologia , Sensibilidade e Especificidade , Processamento de Imagem Assistida por Computador/métodosRESUMO
Despite the prevalent of hexagonal, tetragonal, and triangular pore structures in two-dimensional covalent organic frameworks (2D COFs), the pentagonal pores remain conspicuously absent. We herein present the Cairo pentagonal tessellated COFs, achieved through precisely chosen geometry and metrics of the linkers, resulting in unprecedented mcm topology. In each pentagonal structure, porphyrin units create four uniform sides around 15.5 Å with 90° angles, while tetrabiphenyl unit establish a bottom edge about 11.6 Å with 120° angles, aligning precisely with the criteria of Cairo Pentagon. According to the narrow bandgap and strong near-infrared (NIR) absorbance, as-synthesized COFs exhibit the efficient singlet oxygen (1O2) generation and photothermal conversion, resulting in NIR photothermal combined photodynamic therapy to guide cancer cell apoptosis. Mechanistic studies reveal that the good 1O2 production capability upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. The implementation of pentagonal Cairo tessellations in this work provides a promising strategy for diversifying COFs with new topologies, along with multimodal NIR phototherapy.
Assuntos
Apoptose , Raios Infravermelhos , Fotoquimioterapia , Oxigênio Singlete , Humanos , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/química , Porfirinas/química , Animais , Peroxidação de Lipídeos , Linhagem Celular Tumoral , Ferroptose , Fototerapia/métodos , Camundongos , Glutationa/química , Glutationa/metabolismo , Fármacos Fotossensibilizantes/química , Neoplasias/terapia , Neoplasias/metabolismoRESUMO
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a disease that causes an abnormal accumulation of fat in the liver, triggering inflammation and fibrosis, the mechanism of which is not fully understood and for which there is a lack of specific drug therapy. Far-infrared radiation (FIR) has demonstrated evident therapeutic efficacy across various diseases, and novel nanomaterial graphene patches can emit it through electric heating. This study aimed to investigate the potential protective effects of FIR against MAFLD. Mice were fed with a MCD diet to mimic MAFLD progression, and histopathology analysis, biochemical analysis, RT-qPCR, and Western blotting analysis were performed to assess the effect of FIR on MAFLD in vivo. The effect of FIR treatment on MAFLD in vitro was investigated by biochemical analysis and gene expression profiling of hepatocytes. Mice subjected to the MCD diet and treated with FIR exhibited reduced hepatic lipid deposition, inflammation, fibrosis and liver damage. The therapeutic effect exerted by FIR in mice may be caused by the enhancement of AMPK phosphorylation and inhibition of the TGFß1-SMAD2/3 pathway. Besides, FIR intervention alleviated MAFLD in hepatocytes in vitro and the results were verified by gene expression profiling. Our results revealed a promising potential of FIR as a novel therapeutic approach for MAFLD.
Assuntos
Hepatócitos , Raios Infravermelhos , Cirrose Hepática , Animais , Camundongos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Hepatócitos/metabolismo , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos da radiação , Transdução de Sinais , Proteína Smad3/metabolismo , Proteína Smad2/metabolismo , FosforilaçãoRESUMO
The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2ã-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.
Assuntos
Cobre , Peróxido de Hidrogênio , Inflamação , Nanopartículas Metálicas , Platina , Peróxido de Hidrogênio/metabolismo , Platina/química , Cobre/química , Nanopartículas Metálicas/química , Inflamação/metabolismo , Animais , Camundongos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Selênio/química , Humanos , Raios Infravermelhos , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7RESUMO
Photothermal therapy (PTT) for cancers guided by optical imaging has recently shown great potential for precise diagnosis and efficient therapy. The second near-infrared window (NIR-II, 1000-1700 nm) fluorescence imaging (FLI) is highly desirable owing to its good spatial and temporal resolution, deep tissue penetration, and negligible tissue toxicity. Organic small molecules are attractive as imaging and treatment agents in biomedical research because of their low toxicity, fast clearance rate, diverse structures, ease of modification, and excellent biocompatibility. Various organic small molecules have been investigated for biomedical applications. However, there are few reports on the use of croconaine dyes (CRs), especially NIR-II emission CRs. To our knowledge, there have been no prior reports of NIR-II emissive small organic photothermal agents (SOPTAs) based on CRs. Herein, we report a croconaine dye (CR-TPE-T)-based nanoparticle (CR NP) with absorption and fluorescence emission in the NIR-I and NIR-II windows, respectively. The CR NPs exhibited intense NIR absorption, outstanding photothermal properties, and good biological compatibility. In vivo studies showed that CR NPs not only achieved real-time, noninvasive NIR-II FLI of tumors, but also induced significant tumor ablation with laser irradiation guided by imaging, without apparent side effects, and promoted the formation of antitumor immune memory in a colorectal cancer model. In addition, the CR NPs displayed efficient inhibition of breast tumor growth, improved longevity of mice and triggered efficient systemic immune responses, which further inhibited tumor metastasis to the lungs. Our study demonstrates the great potential of CRs as therapeutic agents in the NIR-II region for cancer diagnosis.
Assuntos
Camundongos Endogâmicos BALB C , Nanopartículas , Imagem Óptica , Terapia Fototérmica , Animais , Terapia Fototérmica/métodos , Camundongos , Feminino , Imagem Óptica/métodos , Linhagem Celular Tumoral , Nanopartículas/química , Nanopartículas/uso terapêutico , Humanos , Corantes Fluorescentes/química , Raios Infravermelhos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapiaRESUMO
PURPOSE OF REVIEW: Atherosclerosis, a highly pathogenic and lethal disease, is difficult to locate accurately via conventional imaging because of its scattered and deep lesions. However, second near-infrared (NIR-II) nanomaterials show great application potential in the tracing of atherosclerotic plaques due to their excellent penetration and angiographic capabilities. RECENT FINDINGS: With the development of nanotechnology, among many nanomaterials available for the visual diagnosis and treatment of cardiovascular diseases, optical nanomaterials provide strong support for various biomedical applications because of their advantages, such as noninvasive, nondestructive and molecular component imaging. Among optical nanomaterials of different wavelengths, NIR-II-range (900 ~ 1700 nm) nanomaterials have been gradually applied in the visual diagnosis and treatment of atherosclerosis and other vascular diseases because of their deep biological tissue penetration and limited background interference. This review explored in detail the prospects and challenges of the biological imaging and clinical application of NIR-II nanomaterials in treating atherosclerosis.
Assuntos
Aterosclerose , Nanoestruturas , Aterosclerose/diagnóstico por imagem , Humanos , Nanoestruturas/química , Animais , Raios Infravermelhos , Placa Aterosclerótica/diagnóstico por imagem , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodosRESUMO
Hydrogen sulfide (H2S) is a poisonous pollutant that endangers the environment, and H2S is also produced during food spoilage. Herein, we constructed a dicyanoisophorone-based near-infrared (NIR) fluorescent probe (DCID) to detect H2S. DCID exhibited significant turn-on fluorescence at 700 nm with a low limit of detection (LOD = 74 nM), large Stokes shift (220 nm), prominent selectivity, and response time (100 s) toward H2S. Importantly, the DCID probe had powerful applications in the detection of H2S in environmental samples and food spoilage. In addition, based on DCID-loaded test strips and combined a smartphone sensing platform, which provided a portable and convenient approach for the detection of H2S.
Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Corantes Fluorescentes/química , Limite de Detecção , Contaminação de Alimentos/análise , Espectrometria de Fluorescência , Poluentes Químicos da Água/análise , Raios InfravermelhosRESUMO
BACKGROUND: Bisulfite (HSO3-) serves as a bleaching agent, antioxidant, antimicrobial, and regulator of enzymatic reactions in biosystem. However, abnormal levels of bisulfite can be detrimental to health. Hypochlorous acid (HOCl), which acts as bioactive small molecules, is crucial for maintaining normal biological functions in living organisms. Disruption of its equilibrium can lead to oxidative stress and various diseases. Therefore, it's essential to monitor the fluctuations of HOCl and HSO3- at cellular and in vivo levels to study their physiological and pathological functions. RESULTS: This study constructed a novel NIR bifunctional colorimetric fluorescent probe using thienocoumarin-indanedione structures to identify hypochlorite (ClO-) and bisulfite (HSO3-). By using CSO-IO to recognize HSO3- and HOCl, two distinct products were generated, displaying green and blue fluorescence, respectively. This property effectively allows for the simultaneous dual-functional detection of HSO3- (LOD: 113 nM) and HOCl (LOD: 43 nM). SIGNIFICANCE: In this work, the biocompatible molecule CSO-IO has been effectively designed to detect HOCl/HSO3- in living cells and zebrafish. As a result, the dual-functional fluorescent probe has the potential to be utilized as a molecular tool to detect HSO3- derived compounds and HOCl simultaneously within the complex biological system.
Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Sulfitos , Peixe-Zebra , Ácido Hipocloroso/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Sulfitos/análise , Sulfitos/química , Animais , Humanos , Imagem Óptica , Raios Infravermelhos , CamundongosRESUMO
Photobiomodulation, utilising non-ionising light in the visible and near-infrared (NIR) spectrum, has been suggested as a potential method for enhancing tissue repair, reducing inflammation and possibly mitigating cancer-therapy-associated side effects. NIR light is suggested to be absorbed intracellularly, mainly by chromophores within the mitochondria. This study examines the impact of 734 nm NIR light on cellular senescence. Cancer (MCF7 and A549) and non-cancer (MCF10A and IMR-90) cell populations were subjected to 63 mJ/cm2 NIR-light exposure for 6 days. Senescence levels were quantified by measuring active senescence-associated beta-galactosidase. Exposure to NIR light significantly increases senescence levels in cancer (10.0%-203.2%) but not in non-cancer cells (p > 0.05). Changes in senescence were associated with significant modulation of mitochondrial homeostasis, including increased levels of reactive oxygen species (p < 0.05) and mitochondrial membrane potential (p < 0.05) post-NIR-light treatment. These results suggest that NIR light modulates cellular chemistry, arresting the proliferation of cancer cells via senescence induction while sparing non-cancer cells.