RESUMO
In patients with diabetic kidney disease (DKD), the estimated glomerular filtration rate (eGFR) or creatinine clearance rate (Ccr) is always used as an index of decline in renal function. However, there are few animal models of DKD that could be used to evaluate renal function based on GFR or Ccr. For this reason, it is desirable to develop animal models to assess renal function, which could also be used for the evaluation of novel therapeutic agents for DKD. Therefore, we aimed to develop such animal model of DKD by using spontaneously hypertensive rat (SHR)/NDmcr-cp (cp/cp) rats with the characteristics of obese type 2 diabetes and metabolic syndrome. As a result, we have found that unilateral nephrectomy (UNx) caused a chronic Ccr decline, development of glomerular sclerosis, tubular lesions, and tubulointerstitial fibrosis, accompanied by renal anemia. Moreover, losartan-mixed diet suppressed the Ccr decline in UNx-performed SHR/NDmcr-cp rats (UNx-SHR/cp rats), with improvement in renal anemia and histopathological changes. These results suggest that UNx-SHR/cp rats could be used as a DKD model for evaluating the efficacy of therapeutic agents based on suppression of renal function decline.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Síndrome Metabólica , Ratos , Animais , Ratos Endogâmicos SHR , LosartanRESUMO
BACKGROUND: Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS: Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS: Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS: These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão , Ratos , Animais , Pressão Sanguínea , Ratos Endogâmicos SHR , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , Ratos Endogâmicos WKY , Rim/metabolismo , Estresse do Retículo EndoplasmáticoRESUMO
CONTEXT: Previous studies have highlighted significant therapeutic effects of Qiqilian (QQL) capsule on hypertension in spontaneously hypertensive rats (SHRs); however, its underlying molecular mechanism remains unclear. OBEJECTIVE: We investigated the potential mechanism by which QQL improves hypertension-induced vascular endothelial dysfunction (VED). MATERIALS AND METHODS: In vivo, SHRs were divided into four groups (20 per group) and were administered gradient doses of QQL (0, 0.3, 0.6, and 1.2 g/kg) for 8 weeks, while Wistar Kyoto rats were used as normal control. The vascular injury extent, IL-1ß and IL-18 levels, NLRP3, ASC and caspase-1 contents were examined. In vitro, the effects of QQL-medicated serum on angiotensin II (AngII)-induced inflammatory and autophagy in human umbilical vein endothelial cells (HUVECs) were assessed. RESULT: Compared with the SHR group, QQL significantly decreased thickness (125.50 to 105.45 µm) and collagen density (8.61 to 3.20%) of arterial vessels, and reduced serum IL-1ß (96.25 to 46.13 pg/mL) and IL-18 (345.01 to 162.63 pg/mL) levels. The NLRP3 and ACS expression in arterial vessels were downregulated (0.21- and 0.16-fold, respectively) in the QQL-HD group compared with the SHR group. In vitro, QQL treatment restored NLRP3 and ASC expression, which was downregulated approximately 2-fold compared with that of AngII-induced HUVECs. Furthermore, QQL decreased LC3II and increased p62 contents (p < 0.05), indicating a reduction in autophagosome accumulation. These effects were inhibited by the autophagy agonist rapamycin and enhanced by the autophagy inhibitor chloroquine. CONCLUSION: QQL effectively attenuated endothelial injury and inflammation by inhibiting AngII-induced excessive autophagy, which serves as a potential therapeutic strategy for hypertension.
Assuntos
Hipertensão , Inflamassomos , Animais , Humanos , Ratos , Células Endoteliais da Veia Umbilical Humana , Hipertensão/tratamento farmacológico , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKYRESUMO
Since 2015, the National Institutes of Health has called for its funded preclinical research to include both male and female subjects. However, much of the basic animal research that has studied heart rate and blood pressure in the past has used male rats. Male rats have been preferred for these studies to avoid the possible complicating effects of the female estrous cycle. The aim of the current study was to determine whether blood pressure and heart rates vary as a function of the estrous cycle phase of young normotensive Wistar-Kyoto (WKY) and Spontaneously Hypertensive (SHR) female rats. Blood pressure and heart rate were measured at the same time of day throughout the estrous cycle by using a noninvasive tail cuff sphygmomano- metric technique. As expected, 16-wk-old female SHR rats had higher blood pressure and heart rates than did age-matched female WKY rats. However, no significant differences in mean, systolic, or diastolic arterial blood pressure or heart rate were detected across the different stages of the estrous cycle in either strain of female rats. Consistent with previous reports, heart rates were higher and showed less variation in the hypertensive SHR female rats as compared with the normotensive WKY female rats. These results indicate that studies measuring blood pressure and heart rate can include young female SHR and WKY rats with no effect of estrous cycle stage.
Assuntos
Hipertensão , Ratos , Masculino , Feminino , Animais , Pressão Sanguínea , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Frequência CardíacaRESUMO
Background Cardiac metabolic abnormalities are present in heart failure. Few studies have followed metabolic changes accompanying diastolic and systolic heart failure in the same model. We examined metabolic changes during the development of diastolic and severe systolic dysfunction in spontaneously hypertensive rats (SHR). Methods and Results We serially measured myocardial glucose uptake rates with dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography in vivo in 9-, 12-, and 18-month-old SHR and Wistar Kyoto rats. Cardiac magnetic resonance imaging determined systolic function (ejection fraction) and diastolic function (isovolumetric relaxation time) and left ventricular mass in the same rats. Cardiac metabolomics was performed at 12 and 18 months in separate rats. At 12 months, SHR hearts, compared with Wistar Kyoto hearts, demonstrated increased isovolumetric relaxation time and slightly reduced ejection fraction indicating diastolic and mild systolic dysfunction, respectively, and higher (versus 9-month-old SHR decreasing) 2-[18F] fluoro-2-deoxy-d-glucose uptake rates (Ki). At 18 months, only few SHR hearts maintained similar abnormalities as 12-month-old SHR, while most exhibited severe systolic dysfunction, worsening diastolic function, and markedly reduced 2-[18F] fluoro-2-deoxy-d-glucose uptake rates. Left ventricular mass normalized to body weight was elevated in SHR, more pronounced with severe systolic dysfunction. Cardiac metabolite changes differed between SHR hearts at 12 and 18 months, indicating progressive defects in fatty acid, glucose, branched chain amino acid, and ketone body metabolism. Conclusions Diastolic and severe systolic dysfunction in SHR are associated with decreasing cardiac glucose uptake, and progressive abnormalities in metabolite profiles. Whether and which metabolic changes trigger progressive heart failure needs to be established.
Assuntos
Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Tomografia Computadorizada por Raios X , Ratos Endogâmicos WKY , Glucose , Desoxiglucose , Pressão SanguíneaRESUMO
Thermogenesis in brown adipose tissue (BAT) uses intracellular triglycerides, circulating free fatty acids and glucose as the main substrates. The objective of the current study was to analyse the role of CD36 fatty acid translocase in regulation of glucose and fatty acid utilisation in BAT. BAT isolated from spontaneously hypertensive rat (SHR) with mutant Cd36 gene and SHR-Cd36 transgenic rats with wild type variant was incubated in media containing labeled glucose and palmitate to measure substrate incorporation and oxidation. SHR-Cd36 versus SHR rats showed significantly increased glucose incorporation into intracellular lipids associated with reduced glycogen synthase kinase 3ß (GSK-3ß) protein expression and phosphorylation and increased oxidation of exogenous palmitate. It can be concluded that CD36 enhances glucose transport for lipogenesis in BAT by suppressing GSK-3ß and promotes direct palmitate oxidation.
Assuntos
Tecido Adiposo Marrom , Glucose , Ratos , Animais , Ratos Endogâmicos SHR , Tecido Adiposo Marrom/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glucose/metabolismo , Ratos Transgênicos , Ácidos Graxos/metabolismo , Palmitatos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismoRESUMO
The spontaneously hypertensive rats (SHRs) have enhanced palatability for NaCl taste as measured by the increased number of hedonic versus aversive responses to intraoral infusion (1 mL/1 min) of 0.3 M NaCl, in a taste reactivity test in euhydrated condition or after 24 h of water deprivation + 2 h of partial rehydration (WD-PR). SHRs also ingested more sucrose than normotensive rats, without differences in quinine hydrochloride intake. Here, we investigated the palatability of SHRs (n = 8-10) and normotensive Holtzman rats (n = 8-10) to sucrose and quinine sulphate infused intraorally in the same conditions that NaCl palatability was increased in SHRs. SHRs had similar number of hedonic responses to 2% sucrose in euhydrated condition (95 ± 19) or after WD-PR (142 ± 25), responses increased when compared with normotensive rats in euhydrated condition (13 ± 3) or after WD-PR (21 ± 6). SHRs also showed increased number of aversive responses to 1.4 mM quinine sulphate compared with normotensive rats, whether in euhydrated condition (86 ± 6, vs. normotensive: 54 ± 7) or after WD-PR (89 ± 9, vs. normotensive: 40 ± 9). The results suggest that similar to NaCl taste, sweet taste responses are increased in SHRs and resistant to challenges in bodily fluid balance. They also showed a more intense aversive response in SHRs to bitter taste compared with normotensives. This suggests that the enhanced response of SHRs to taste rewards does not correspond to a decreased response to a typical aversive taste.
Assuntos
Quinina , Cloreto de Sódio , Ratos , Animais , Ratos Endogâmicos SHR , Cloreto de Sódio/farmacologia , Quinina/farmacologia , Paladar/fisiologia , Ratos Sprague-Dawley , Sacarose/farmacologiaRESUMO
OBJECTIVE: We applied the method of non-invasive ultrasound (US) neuromodulation to regulate blood pressure (BP) by stimulating the solitary tract nucleus (NTS) of spontaneously hypertensive rats (SHRs). METHODS: The rats were exposed to US stimulation for 20 mins every day for two months. Morphology and function of the hypertensive target organs (heart and kidney) were then examined by echocardiography and immunohistochemical staining. C-fos immunofluorescence assays were used to evaluate neuronal activity in the US stimulated areas and to explore related neural pathways. Moreover, the effects of US stimulation on biochemical indicators angiotensinII (ANGII), aldosterone (Aldo), endothelin-1 (ET-1), atrial natriuretic factor (ANF), cortisol (Cor) in SHRs were detected. In addition, HE, TUNEL, and Nissl staining were performed to evaluate the safety of long-term transcranial US stimulation. RESULTS: After two months of US stimulation, systolic blood pressure (SBP) decreased from 170 ± 1.1 mmHg to 158 ± 1.8 mmHg, p < 0.01. What's more, US stimulation effectively inhibited the pathological process of target organs from both morphological and functional levels. With US stimulation, neuronal activities were also significantly enhanced in the NTS, ventrolateral periaqueductal gray (vlPAG), and the caudal ventrolateral medulla (CVLM) region. And US stimulation did not cause brain tissue damage. Meanwhile, the plasma levels of ANF, ANGII, Aldo, and Cor content were inhibited. CONCLUSION: US stimulation of the NTS could significantly lower BP in SHRs. SIGNIFICANCE: Non-invasive transcranial US stimulation acting on the NTS might be a potential therapeutic intervention due to its efficacy and safety.
Assuntos
Hipertensão , Núcleo Solitário , Ratos , Animais , Núcleo Solitário/metabolismo , Ratos Endogâmicos SHR , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/fisiologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Qingda granule (QDG) exhibits significant therapeutic effects on high blood pressure, vascular dysfunction, and elevated proliferation of vascular smooth muscle cells by inhibiting multiple pathways. However, the effects and underlying mechanisms of QDG treatment on hypertensive vascular remodeling are unclear. AIM OF THE STUDY: The aim of this study was to determine the role of QDG treatment in hypertensive vascular remodeling in vivo and in vitro. MATERIALS AND METHODS: An ACQUITY UPLC I-Class system coupled with a Xevo XS quadrupole time of flight mass spectrometer was used to characterize the chemical components of QDG. Twenty-five spontaneously hypertensive rats (SHR) were randomly divided into five groups, including SHR (equal volume of double distilled water, ddH2O), SHR + QDG-L (0.45 g/kg/day), SHR + QDG-M (0.9 g/kg/day), SHR + QDG-H (1.8 g/kg/day), and SHR + Valsartan (7.2 mg/kg/day) groups. QDG, Valsartan, and ddH2O were administered intragastrically once a day for 10 weeks. For the control group, ddH2O was intragastrically administered to five Wistar Kyoto rats (WKY group). Vascular function, pathological changes, and collagen deposition in the abdominal aorta were evaluated using animal ultrasound, hematoxylin and eosin and Masson staining, and immunohistochemistry. Isobaric tags for relative and absolute quantification (iTRAQ) was performed to identify differentially expressed proteins (DEPs) in the abdominal aorta, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Cell Counting Kit-8 assays, phalloidin staining, transwell assays, and western-blotting were performed to explore the underlying mechanisms in primary isolated adventitial fibroblasts (AFs) stimulated with transforming growth factor-ß 1 (TGF-ß1) with or without QDG treatment. RESULTS: Twelve compounds were identified from the total ion chromatogram fingerprint of QDG. In the SHR group, QDG treatment significantly attenuated the increased pulse wave velocity, aortic wall thickening, and abdominal aorta pathological changes and decreased Collagen I, Collagen III, and Fibronectin expression. The iTRAQ analysis identified 306 DEPs between SHR and WKY and 147 DEPs between QDG and SHR. GO and KEGG pathway analyses of the DEPs identified multiple pathways and functional processes involving vascular remodeling, including the TGF-ß receptor signaling pathway. QDG treatment significantly attenuated the increased cell migration, actin cytoskeleton remodeling, and Collagen I, Collagen III, and Fibronectin expression in AFs stimulated with TGF-ß1. QDG treatment significantly decreased TGF-ß1 protein expression in abdominal aortic tissues in the SHR group and p-Smad2 and p-Smad3 protein expression in TGF-ß1-stimulated AFs. CONCLUSIONS: QDG treatment attenuated hypertension-induced vascular remodeling of the abdominal aorta and phenotypic transformation of adventitial fibroblasts, at least partly by suppressing TGF-ß1/Smad2/3 signaling.
Assuntos
Hipertensão , Fator de Crescimento Transformador beta1 , Ratos , Animais , Ratos Endogâmicos WKY , Fator de Crescimento Transformador beta1/metabolismo , Fibronectinas/metabolismo , Remodelação Vascular , Análise de Onda de Pulso , Ratos Endogâmicos SHR , Colágeno Tipo I/metabolismo , Fibroblastos , Valsartana/metabolismo , Valsartana/farmacologia , Valsartana/uso terapêuticoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Compound Qidan Formula is composed of traditional Chinese herbs and has a good curative effect in the clinical application of cardiovascular diseases such as heart failure. However, its potential molecular mechanisms of action remain highly unknown. AIM OF THE STUDY: To observe the effect of Compound Qidan Formula on cardiac function in rats with HFpEF induced by hypertension and diabetes mellitus, and to explore its mechanism from Ang â ¡/TGF-ß1/Smads signaling pathway. MATERIALS AND METHODS: A total of 50 SPF-grade spontaneously hypertensive rats (SHR) aged 14 weeks, fed with a high-fat and high-sucrose diet for 16 weeks, and after 2 weeks of a high-fat and high-sucrose diet, 1% streptozotocin (25 mg/kg body weight)was injected intraperitoneally to establish a rat model of HFpEF induced by hypertension and diabetes mellitus. After 8 weeks of intragastric administration, the changes in cardiac morphology and function were evaluated by echocardiography after anesthesia; the heart tissue was taken and embedded in paraffin for Masson staining, and the pathomorphological changes of left atrial tissue were observed under the optical microscope; the mRNA transcription levels of Ang â ¡, AT1R, TGF-ß1, Smad2, Smad3, MMP-9 and TIMP-1in left atrial tissue of rats were detected by RT-PCR; and the protein expressions were detected by Western blot. RESULTS: Compared with the SHR-DM group, the QD-Low and QD-High groups significantly decreased the left atrial (LA) anteroposterior diameter and interventricular septal thickness (IVST) and improved the peak velocity of mitral valve blood flow in early diastolic period (E), maximum mitral valve blood flow in systolic period (A), mitral ring myocardial movement velocity in early diastolic period (e') and E/e' ratio; the QD-High group significantly improved the E/A ratio, left atrial ejection fraction (LAEF) and left ventricular ejection fraction(LVEF). Masson staining showed that compared with the WKY group, the SHR-DM group had obvious myocardial histomorphological lesions. Compared with the SHR-DM group, the Compound Qidan Formula groups significantly improved cardiomyocyte hypertrophy and disordered arrangement and inhibited myocardial fibrosis; the mRNA expression levels of Ang â ¡, AT1R, TGF-ß1, Smad2, Smad3, and MMP-9 in myocardial tissue of Compound Qidan Formula groups were significantly decreased, and the mRNA expression level of TIMP-1 was significantly increased. The protein expression levels of Ang â ¡, TGF-ß1, P-Smad2/3, and MMP-9 were significantly decreased. CONCLUSION: Compound Qidan Formula, composed of traditional Chinese herbs, can significantly improve cardiac function, improve atrial and ventricular remodeling, and prevent myocardial fibrosis and hypertrophy in rats with HFpEF induced by hypertension and diabetes mellitus. The mechanism may be related to regulating the Ang â ¡/TGF-ß1/Smad2/3 signaling pathway.
Assuntos
Fibrilação Atrial , Cardiomiopatias , Diabetes Mellitus , Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Volume Sistólico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Ratos Endogâmicos WKY , Função Ventricular Esquerda , Transdução de Sinais , Ratos Endogâmicos SHR , Cardiomiopatias/metabolismo , Fibrose , Hipertrofia , RNA MensageiroRESUMO
Chronic pain and attention-deficit hyperactivity disorder (ADHD) frequently coexist. However, the common pathology is still unclear. Attenuated noradrenergic endogenous analgesia can produce acute pain chronification, and dysfunction of noradrenergic systems in the nervous system is relevant to ADHD symptoms. Noxious stimuli-induced analgesia (NSIA) is measured to estimate noradrenergic endogenous analgesia in spontaneously hypertensive rats (SHR) as an ADHD model and control. Recovery of pain-related behaviors after paw incision was assessed. Contributions of noradrenergic systems were examined by in vivo microdialysis and immunohistochemistry. The SHR showed attenuated NSIA and needed a more extended period for recovery from acute pain. These results suggest ADHD patients exhibit acute pain chronification due to pre-existing attenuated noradrenergic endogenous analgesia. Immunohistochemistry suggests abnormal noradrenaline turnover and downregulation of the target receptor (alpha2a adrenoceptor). Standard ADHD treatment with atomoxetine restored NSIA and shortened the duration of hypersensitivity after the surgery in the SHR. NSIA protocol activated the locus coeruleus, the origin of spinal noradrenaline, of both strains, but only the control exhibited an increase in spinal noradrenaline. This result suggests dysfunction in the noradrenaline-releasing process and can be recognized as a novel mechanism of attenuation of noradrenergic endogenous analgesia.
Assuntos
Dor Aguda , Analgesia , Transtorno do Deficit de Atenção com Hiperatividade , Ratos , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Ratos Sprague-Dawley , Norepinefrina , Ratos Endogâmicos SHRRESUMO
PURPOSE: Oral administration of 5-aminolevulinic acid hydrochloride (5-ALA-HCl) has been reported to enhance the hypotensive effects associated with anesthetics, especially in elderly hypertensive patients treated with antihypertensive agents. The present study aimed to clarify the effects of antihypertensive-agent- and anesthesia-induced hypotension by 5-ALA-HCl in spontaneously hypertensive rats (SHRs). METHODS: We measured blood pressure (BP) of SHRs and normotensive Wistar Kyoto (WKY) rats treated with amlodipine or candesartan before and after administration of 5-ALA-HCl. We also investigated the change in BP following intravenous infusion of propofol and intrathecal injection of bupivacaine in relation to 5-ALA-HCl administration. FINDINGS: Oral administration of 5-ALA-HCl significantly reduced BP in SHRs and WKY rats with amlodipine and candesartan. Infusion of propofol significantly reduced BP in SHRs treated with 5-ALA-HCl. Intrathecal injection of bupivacaine significantly declined SBP and DBP in both SHRs and WKY rats treated with 5-ALA-HCl. The bupivacaine-induced decline in SBP was significantly larger in SHRs compared with WKY rats. CONCLUSION: These findings suggest that 5-ALA-HCl does not affect the antihypertensive agents-induced hypotensive effect, but enhances the bupivacaine-induced hypotensive effect, especially in SHRs, indicating that 5-ALA may contribute to anesthesia-induced hypotension via suppression of sympathetic nerve activity in patients with hypertension.
Assuntos
Hipertensão , Hipotensão Controlada , Hipotensão , Propofol , Ratos , Animais , Ratos Endogâmicos SHR , Anti-Hipertensivos/efeitos adversos , Ratos Endogâmicos WKY , Ácido Aminolevulínico/efeitos adversos , Bupivacaína , Propofol/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Hipotensão/induzido quimicamente , Hipotensão/tratamento farmacológico , Anlodipino/efeitos adversosRESUMO
High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders.
Assuntos
Citrus , Hipertensão , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Ratos Endogâmicos SHR , Células Endoteliais , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Solução Salina , Acidente Vascular Cerebral/etiologia , Pressão SanguíneaRESUMO
Hyperactivity of presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) plays a key role in generating excess sympathetic output in hypertension. However, the mechanisms driving hyperactivity of PVN presympathetic neurons in hypertension are unclear. In this study, we determined the role of corticotropin-releasing factor (CRF) in the PVN in augmented glutamatergic input, neuronal excitability and sympathetic outflow in hypertension. The number of CRF or c-Fos immunoreactive neurons and CRF/c-Fos double-labeled neurons in the PVN was significantly greater in spontaneously hypertensive rats (SHRs) than in normotensive Wistar-Kyoto (WKY) rats. Blocking glutamatergic input reduced the CRF-potentiated excitability of spinally projecting PVN neurons. Furthermore, CRF knockdown via Crispr/Cas9 in the PVN decreased the frequencies of spontaneous firing and miniature excitatory postsynaptic currents (mEPSCs) in spinally projecting PVN neurons in SHRs. In addition, the mRNA and protein levels of CRFR1, but not CRFR2, in the PVN were significantly higher in SHRs than in WKY rats. Blocking CRFR1 with NBI-35965, but not blocking CRFR2 with Antisauvagine-30, reduced the frequencies of spontaneous firing and mEPSCs of spinally projecting PVN neurons in SHRs. Also, microinjection of NBI-35965 into the PVN significantly reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized SHRs, but not in WKY rats. However, microinjection of Antisauvagine-30 into the PVN had no effect on ABP or RSNA in WKY rats and SHRs. Our findings suggest that endogenous CRF in the PVN potentiates glutamatergic input and firing activity of PVN presympathetic neurons via CRFR1, resulting in augmented sympathetic outflow in hypertension.
Assuntos
Hormônio Liberador da Corticotropina , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipertensão/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismoRESUMO
Hypertension is the most common cause of left ventricular hypertrophy, contributing to heart failure progression. Candesartan (Cand) is an angiotensin receptor antagonist widely used for hypertension treatment. Structural modifications were previously performed by our group using Zinc (ZnCand) as a strategy for improving its pharmacological properties. The measurements showed that ZnCand exerts a stronger interaction with the angiotensin II receptor, type 1 (AT1 receptor), reducing oxidative stress and intracellular calcium flux, a mechanism implied in cell contraction. These results were accompanied by the reduction of the contractile capacity of mesangial cells. In vivo experiments showed that the complex causes a significant decrease in systolic blood pressure after 8 weeks of treatment in spontaneously hypertensive rats (SHR). The reduction of heart hypertrophy was evidenced by echocardiography, the histologic cross-sectional area of cardiomyocytes, collagen content, the B-type natriuretic peptide (BNP) marker and connective tissue growth factor (CTGF) and the matrix metalloproteinase 2 (MMP-2) expression. Besides, the complex restored the redox status. In this study, we demonstrated that the complexation with Zn(II) improves the antihypertensive and cardiac effects of the parental drug.
Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Ratos , Animais , Metaloproteinase 2 da Matriz , Zinco/farmacologia , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Compostos de Bifenilo/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Ratos Endogâmicos SHR , Miócitos CardíacosRESUMO
Consumption of legumes has been shown to enhance health and lower the risk of cardiovascular disease and specific types of cancer. ACE inhibitors, antioxidants, and synthetic anti-inflammatories are widely used today; however, they have several undesirable side effects. Thus, researchers have focused on finding ACE inhibitors, antioxidant, and anti-inflammatory peptides from natural sources, such as legumes. Recently, in vitro and in vivo research has shown the bioactive peptides generated from legume protein hydrolysates, such as antioxidant, anti-hypertensive, anticancer, anti-proliferative, anti-inflammatory, etc., in the context of different disease mitigation. Therefore, this review aims to describe the recent advances in in vitro and in vivo studies of antioxidant, anti-hypertensive and anti-inflammatory peptides isolated from legume-derived protein hydrolysates. The results indicated that antioxidant legumes peptides are characterized by short-chain sequence amino acids and possess anti-hypertensive properties by reducing systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR).
Assuntos
Anti-Hipertensivos , Fabaceae , Ratos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Hidrolisados de Proteína/química , Antioxidantes/farmacologia , Antioxidantes/química , Fabaceae/metabolismo , Ratos Endogâmicos SHR , Peptídeos/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/químicaRESUMO
OBJECTIVES: Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS: In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4âweeks to 20âmonths) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15âdynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8âweeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4âdynes/cm 2 ) and increased in HUVECs exposed to 15âdynes/cm 2 compared with those under static conditions. CONCLUSION: SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.
Assuntos
Butiril-CoA Desidrogenase , Hipertensão , Ratos , Animais , Camundongos , Humanos , Recém-Nascido , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Remodelação Vascular , Ratos Endogâmicos SHR , Ratos Wistar , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Interferente Pequeno/metabolismo , Camundongos KnockoutRESUMO
OBJECTIVE: In this study, we aimed to investigate the sustainable antihypertensive effects and protection against target organ damage caused by low-intensity focused ultrasound (LIFU) stimulation and the underlying mechanism in spontaneously hypertensive rats (SHRs) model. METHODS AND RESULTS: SHRs were treated with ultrasound stimulation of the ventrolateral periaqueductal gray (VlPAG) for 20âmin every day for 2 months. Systolic blood pressure (SBP) was compared among normotensive Wistar-Kyoto rats, SHR control group, SHR Sham group, and SHR LIFU stimulation group. Cardiac ultrasound imaging and hematoxylin-eosin and Masson staining of the heart and kidney were performed to assess target organ damage. The c-fos immunofluorescence analysis and plasma levels of angiotensin II, aldosterone, hydrocortisone, and endothelin-1 were measured to investigate the neurohumoral and organ systems involved. We found that SBP was reduced from 172â±â4.2âmmHg to 141â±â2.1âmmHg after 1 month of LIFU stimulation, P â<â0.01. The next month of treatment can maintain the rat's blood pressure at 146â±â4.2âmmHg at the end of the experiment. LIFU stimulation reverses left ventricular hypertrophy and improves heart and kidney function. Furthermore, LIFU stimulation enhanced the neural activity from the VLPAG to the caudal ventrolateral medulla and reduced the plasma levels of ANGII and Aldo. CONCLUSION: We concluded that LIFU stimulation has a sustainable antihypertensive effect and protects against target organ damage by activating antihypertensive neural pathways from VLPAG to the caudal ventrolateral medulla and further inhibiting the renin-angiotensin system (RAS) activity, thereby supporting a novel and noninvasive alternative therapy to treat hypertension.
Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Anti-Hipertensivos/uso terapêutico , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hipertensão/tratamento farmacológico , Rim , Pressão SanguíneaRESUMO
The pathogenesis of hypertension is not fully understood; endothelin 1 (EDN1) is involved in developing essential hypertension. EDN1 can promote vascular smooth muscle cell (VSMC) proliferation or hypertrophy through autocrine and paracrine effects. Proliferating smooth muscle cells in the aorta are 'dedifferentiated' cells that cause increased arterial stiffness and remodeling. Male SHRs had higher aortic stiffness than normal control male WKY rats. Male SHR VSMCs expressed high levels of the EDN1 gene, but endothelial cells did not. Therefore, it is necessary to understand the molecular mechanism of enhanced EDN1 expression in SHR VSMCs. We identified POU2F2 and CEBPB as the main molecules that enhance EDN1 expression in male SHR VSMCs. A promoter activity analysis confirmed that the enhancer region of the Edn1 promoter in male SHR VSMCs was from -1309 to -1279 bp. POU2F2 and CEBPB exhibited an additive role in the enhancer region of the EdnET1 promoter. POU2F2 or CEBPB overexpression sufficiently increased EDN1 expression, and co-transfection with the CEBPB and POU2F2 expression plasmids had additive effects on the activity of the Edn1 promoter and EDN1 secretion level of male WKY VSMCs. In addition, the knockdown of POU2F2 also revealed that POU2F2 is necessary to enhance EDN1 expression in SHR VSMCs. The enhancer region of the Edn1 promoter is highly conserved in rats, mice, and humans. POU2F2 and CEBPB mRNA levels were significantly increased in remodeled human VMSCs. In conclusion, the novel regulation of POU2F2 and CEBPB in VSMCs will help us understand the pathogenesis of hypertension and support the development of future treatments for hypertension.