Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Nat Commun ; 15(1): 7957, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261467

RESUMO

Postprandial IL-1ß surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1ß in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1ß potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPß are rapidly upregulated by IL-1ß and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1ß is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1ß surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1ß levels in obesity blunts this physiological function.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco , Proteína beta Intensificadora de Ligação a CCAAT , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Interleucina-1beta/metabolismo , Humanos , Adipócitos/metabolismo , Adipócitos/citologia , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/citologia , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Masculino , Camundongos Knockout , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Diferenciação Celular/efeitos dos fármacos
2.
Mol Pain ; 20: 17448069241285357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39237258

RESUMO

Background: IL-1ß plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1ß (cIL-1ß) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1ß in nociceptive transduction after tissue injury. Methods: A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1ß, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1ß expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1ß on the activity of spinal dorsal horn neurons. Results: cIL-1ß expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1ß cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1ß expression. Regional anesthesia using local anesthetics prevented cIL-1ß processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. Conclusion: IL-1ß in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1ß causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1ß in the primary afferent neurons is involved in physiological nociceptive signal transduction.


Assuntos
Gânglios Espinais , Interleucina-1beta , Animais , Masculino , Camundongos , Caspase 1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/metabolismo
3.
Nat Commun ; 15(1): 7064, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152100

RESUMO

Cytokine release syndrome (CRS), commonly known as cytokine storm, is an acute systemic inflammatory response that is a significant global health threat. Interleukin-6 (IL-6) and interleukin-1 (IL-1) are key pro-inflammatory cytokines involved in CRS and are hence critical therapeutic targets. Current antagonists, such as tocilizumab and anakinra, target IL-6R/IL-1R but have limitations due to their long half-life and systemic anti-inflammatory effects, making them less suitable for acute or localized treatments. Here we present the de novo design of small protein antagonists that prevent IL-1 and IL-6 from interacting with their receptors to activate signaling. The designed proteins bind to the IL-6R, GP130 (an IL-6 co-receptor), and IL-1R1 receptor subunits with binding affinities in the picomolar to low-nanomolar range. X-ray crystallography studies reveal that the structures of these antagonists closely match their computational design models. In a human cardiac organoid disease model, the IL-1R antagonists demonstrated protective effects against inflammation and cardiac damage induced by IL-1ß. These minibinders show promise for administration via subcutaneous injection or intranasal/inhaled routes to mitigate acute cytokine storm effects.


Assuntos
Síndrome da Liberação de Citocina , Interleucina-6 , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Cristalografia por Raios X , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Interleucina-1/metabolismo , Interleucina-1/antagonistas & inibidores , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/química , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Desenho de Fármacos , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Receptor gp130 de Citocina/química , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Receptores Tipo I de Interleucina-1/metabolismo
4.
Front Immunol ; 15: 1393096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855101

RESUMO

Introduction: Antibody production and the generation of memory B cells are regulated by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in germinal centers. However, the precise role of Tfr cells in controlling antibody production is still unclear. We have previously shown that both Tfh and Tfr cells express the IL-1R1 agonist receptor, whereas only Tfr cells express the IL-1R2 decoy and IL-1Ra antagonist receptors. We aimed to investigate the role of IL-1 receptors in the regulation of B cell responses by Tfh and Tfr. Methods: We generated mice with IL-1 receptors inactivated in Tfh or Tfr and measured antibody production and cell activation after immunisation. Results: While IL-1ß levels are increased in the draining lymph node after immunisation, antigen-specific antibody levels and cell phenotypes indicated that IL-1ß can activate both Tfh and Tfr cells through IL-1R1 stimulation. Surprisingly, expression of IL-1R2 and IL-1Ra on Tfr cells does not block IL-1 activation of Tfh cells, but rather prevents IL-1/IL-1R1-mediated early activation of Tfr cells. IL-1Rs also regulate the antibody response to autoantigens and its associated pathophysiology in an experimental lupus model. Discussion: Collectively, our results show that IL-1 inhibitory receptors expressed by Tfr cells prevent their own activation and suppressive function, thus licensing IL-1-mediated activation of Tfh cells after immunisation. Further mechanistic studies should unravel these complex interactions between IL-1ß and follicular helper and regulatory T cells and provide new avenues for therapeutic intervention.


Assuntos
Centro Germinativo , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Animais , Centro Germinativo/imunologia , Camundongos , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia , Ativação Linfocitária/imunologia , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/imunologia , Camundongos Endogâmicos C57BL , Linfócitos B/imunologia , Linfócitos B/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Interleucina-1/metabolismo , Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/imunologia , Formação de Anticorpos/imunologia
5.
Nat Immunol ; 25(7): 1158-1171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38902519

RESUMO

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.


Assuntos
COVID-19 , Hipocampo , Interleucina-1beta , Transtornos da Memória , Camundongos Endogâmicos C57BL , Neurogênese , SARS-CoV-2 , Animais , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Camundongos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Hipocampo/imunologia , Hipocampo/metabolismo , Transtornos da Memória/imunologia , Neurogênese/imunologia , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Humanos , Microglia/imunologia , Microglia/metabolismo , Modelos Animais de Doenças , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Monócitos/imunologia , Monócitos/metabolismo , Feminino
6.
Immunol Res ; 72(4): 788-796, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38698191

RESUMO

The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1ß standing out as a pivotal cytokine. The excessive presence of IL-1ß disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1ß levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1ß. Several pharmaceuticals have entered the market, aiming to neutralize IL-1ß's biological function through diverse mechanisms. However, the existing IL-1ß inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1ß by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 µg/mL) for 24 h to induce IL-1ß expression and treated with the peptides in different concentrations. IL-1ß levels were assessed using ELISA, and the gene expression of IL-1ß was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1ß levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.


Assuntos
Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Interleucina-1beta/metabolismo , Animais , Camundongos , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Humanos , Peptídeos/farmacologia , Células RAW 264.7 , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ligação Proteica , Lipopolissacarídeos/imunologia
7.
J Med Chem ; 67(10): 8141-8160, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38728572

RESUMO

Human interleukin-1ß (IL-1ß) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1ß binders that interfere with IL-1ß signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening. The utilization of distinct technologies resulted in the identification of new chemical entities exploiting three different sites on IL-1ß, all of them also inhibiting the interaction with the IL-1R1 receptor. Moreover, we identified lysine 103 of IL-1ß as a target residue suitable for the development of covalent, low-molecular-weight IL-1ß antagonists.


Assuntos
Interleucina-1beta , Humanos , Descoberta de Drogas , Interleucina-1beta/metabolismo , Ligantes , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , DNA/química , Biblioteca Gênica
8.
Mol Cell Endocrinol ; 591: 112274, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777211

RESUMO

It has been reported that immune factors are associated with the occurrence of polycystic ovary syndrome (PCOS). Interleukin-1 (IL-1) is a member of the interleukin family that widely participates in the regulation of the inflammatory response in the immune system. In addition, it has been reported that aberrant IL-1 accumulation in serum is associated with the occurrence of PCOS. However, little is known about how IL-1 participates in the pathogenesis of PCOS. In the present study, we demonstrated that the immune microenvironment was altered in follicular fluid from PCOS patients and that the expression levels of two IL-1 cytokines, IL-1α and IL-1ß were increased. Transcriptome analysis revealed that IL-1α and IL-1ß treatment induced primary human granulosa-lutein (hGL) cell inflammatory response and increased the expression of serpin family E member 1 (SERPINE1). Mechanistically, we demonstrated that IL-1α and IL-1ß upregulated SERPINE1 expression through IL-1R1-mediated activation of downstream P50 and P52 signaling pathways in human granulosa cells. Our study highlighted the role of immune state changes in the occurrence of PCOS and provided new insight into the treatment of patients with IL-1-induced ovarian function disorders.


Assuntos
Células da Granulosa , Interleucina-1 , Células Lúteas , Inibidor 1 de Ativador de Plasminogênio , Síndrome do Ovário Policístico , Transdução de Sinais , Humanos , Feminino , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Células Lúteas/metabolismo , Células Lúteas/efeitos dos fármacos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Interleucina-1/metabolismo , Interleucina-1/genética , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Interleucina-1beta/metabolismo , Adulto , Líquido Folicular/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Células Cultivadas
9.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674054

RESUMO

Neuregulin-1 (Nrg1, gene symbol: Nrg1), a ligand of the ErbB receptor family, promotes intestinal epithelial cell proliferation and repair. However, the dynamics and accurate derivation of Nrg1 expression during colitis remain unclear. By analyzing the public single-cell RNA-sequencing datasets and employing a dextran sulfate sodium (DSS)-induced colitis model, we investigated the cell source of Nrg1 expression and its potential regulator in the process of epithelial healing. Nrg1 was majorly expressed in stem-like fibroblasts arising early in mouse colon after DSS administration, and Nrg1-Erbb3 signaling was identified as a potential mediator of interaction between stem-like fibroblasts and colonic epithelial cells. During the ongoing colitis phase, a significant infiltration of macrophages and neutrophils secreting IL-1ß emerged, accompanied by the rise in stem-like fibroblasts that co-expressed Nrg1 and IL-1 receptor 1. By stimulating intestinal or lung fibroblasts with IL-1ß in the context of inflammation, we observed a downregulation of Nrg1 expression. Patients with inflammatory bowel disease also exhibited an increase in NRG1+IL1R1+ fibroblasts and an interaction of NRG1-ERBB between IL1R1+ fibroblasts and colonic epithelial cells. This study reveals a novel potential mechanism for mucosal healing after inflammation-induced epithelial injury, in which inflammatory myeloid cell-derived IL-1ß suppresses the early regeneration of intestinal tissue by interfering with the secretion of reparative neuregulin-1 by stem-like fibroblasts.


Assuntos
Colite , Sulfato de Dextrana , Fibroblastos , Mucosa Intestinal , Neuregulina-1 , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Neuregulina-1/metabolismo , Neuregulina-1/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética
10.
EBioMedicine ; 103: 105114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640835

RESUMO

BACKGROUND: The innate immune cytokine interleukin (IL)-1 can affect T cell immunity, a critical factor in host defense. In a previous study, we identified a subset of human CD4+ T cells which express IL-1 receptor 1 (IL-1R1). However, the expression of such receptor by viral antigen-specific CD4+ T cells and its biological implication remain largely unexplored. This led us to investigate the implication of IL-1R1 in the development of viral antigen-specific CD4+ T cell responses in humans, including healthy individuals and patients with primary antibody deficiency (PAD), and animals. METHODS: We characterized CD4+ T cells specific for SARS-CoV-2 spike (S) protein, influenza virus, and cytomegalovirus utilizing multiplexed single cell RNA-seq, mass cytometry and flow cytometry followed by an animal study. FINDINGS: In healthy individuals, CD4+ T cells specific for viral antigens, including S protein, highly expressed IL-1R1. IL-1ß promoted interferon (IFN)-γ expression by S protein-stimulated CD4+ T cells, supporting the functional implication of IL-1R1. Following the 2nd dose of COVID-19 mRNA vaccines, S protein-specific CD4+ T cells with high levels of IL-1R1 increased, likely reflecting repetitive antigenic stimulation. The expression levels of IL-1R1 by such cells correlated with the development of serum anti-S protein IgG antibody. A similar finding of increased expression of IL-1R1 by S protein-specific CD4+ T cells was also observed in patients with PAD following COVID-19 mRNA vaccination although the expression levels of IL-1R1 by such cells did not correlate with the levels of serum anti-S protein IgG antibody. In mice immunized with COVID-19 mRNA vaccine, neutralizing IL-1R1 decreased IFN-γ expression by S protein-specific CD4+ T cells and the development of anti-S protein IgG antibody. INTERPRETATION: Our results demonstrate the significance of IL-1R1 expression in CD4+ T cells for the development of viral antigen-specific CD4+ T cell responses, contributing to humoral immunity. This provides an insight into the regulation of adaptive immune responses to viruses via the IL-1 and IL-1R1 interface. FUNDING: Moderna to HJP, National Institutes of Health (NIH) 1R01AG056728 and R01AG055362 to IK and KL2 TR001862 to JJS, Quest Diagnostics to IK and RB, and the Mathers Foundation to RB.


Assuntos
Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , Receptores Tipo I de Interleucina-1 , SARS-CoV-2 , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Interferon gama/metabolismo , Vacinas de mRNA , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
11.
Int Immunopharmacol ; 132: 111941, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554439

RESUMO

OBJECTIVE: There is mounting evidence indicating that atherosclerosis represents a persistent inflammatory process, characterized by the presence of inflammation at various stages of the disease. Interleukin-1 (IL-1) precisely triggers inflammatory signaling pathways by binding to interleukin-1 receptor type I (IL-1R1). Inhibition of this signaling pathway contributes to the prevention of atherosclerosis and myocardial infarction. The objective of this research is to develop therapeutic vaccines targeting IL-1R1 as a preventive measure against atherosclerosis and myocardial infarction. METHODS: ILRQß-007 and ILRQß-008 vaccines were screened, prepared and then used to immunize high-fat-diet fed ApoE-/- mice and C57BL/6J mice following myocardial infarction. Progression of atherosclerosis in ApoE-/- mice was assessed primarily by oil-red staining of the entire aorta and aortic root, as well as by detecting the extent of macrophage infiltration. The post-infarction cardiac function in C57BL/6J mice were evaluated using cardiac ultrasound and histological staining. RESULTS: ILRQß-007 and ILRQß-008 vaccines stimulated animals to produce high titers of antibodies that effectively inhibited the binding of interleukin-1ß and interleukin-1α to IL-1R1. Both vaccines effectively reduced atherosclerotic plaque area, promoted plaque stabilization, decreased macrophage infiltration in plaques and influenced macrophage polarization, as well as decreasing levels of inflammatory factors in the aorta, serum, and ependymal fat in ApoE-/- mice. Furthermore, these vaccines dramatically improved cardiac function and macrophage infiltration in C57BL/6J mice following myocardial infarction. Notably, no significant immune-mediated damage was observed in immunized animals. CONCLUSION: The vaccines targeting the IL-1R1 would be a novel and promising treatment for the atherosclerosis and myocardial infarction.


Assuntos
Aterosclerose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Receptores Tipo I de Interleucina-1 , Animais , Aterosclerose/imunologia , Receptores Tipo I de Interleucina-1/genética , Infarto do Miocárdio/imunologia , Camundongos , Interleucina-1beta/metabolismo , Vacinas/imunologia , Masculino , Dieta Hiperlipídica , Placa Aterosclerótica/imunologia , Camundongos Knockout para ApoE , Humanos , Interleucina-1alfa/metabolismo , Interleucina-1alfa/imunologia , Macrófagos/imunologia , Camundongos Knockout , Modelos Animais de Doenças
12.
Haemophilia ; 30(3): 752-764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439143

RESUMO

INTRODUCTION: Poor response to platelet and recombinant factor VII administration is a major problem in patients with Glanzmann Thrombasthenia (GT). The risk factors associated with poor response to treatment in these patients are unknown. Some genetic variations of cytokines may contribute to therapy resistance. AIMS: We evaluated, for the first time, whether genetic polymorphisms on cytokine genes are related to poor treatment response in GT patients. METHODS: We enrolled 30 patients with GT (15 resistant and 15 non-resistant) and 100 healthy controls. Gene polymorphisms of IL-10 and TNF-α were analysed using TaqMan Realtime PCR, and IL-1, IL-1R1 and IL-1RN were investigated with the RFLP method. In-silico analyses were performed to predict the potential impact of these polymorphisms. RESULTS: In the resistant group, all patients had a variant of the IL-10 gene at the -1082 position (rs1800896), with a GG genotype that was significantly more frequent than the non-resistant group. Analysis between healthy controls and GT patients revealed a probable correlation between rs3783550, rs3783553, rs3917356 and rs2234463 and GT. The In-silico study indicated that TNF-α rs1800629 and IL-10 rs1800896 polymorphisms result in different allelic expressions which may contribute to poor response to therapy. CONCLUSIONS: These findings suggest that polymorphisms in the IL-10 and IL-1 receptor antagonist genes may play a role in poor therapy response in GT patients. In addition, some polymorphisms in IL-1α, IL1-ß, IL-1R1 and IL-R antagonists might be involved in the GT progression.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Trombastenia , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Genótipo , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-10/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Receptores Tipo I de Interleucina-1/genética , Proteínas Recombinantes/uso terapêutico , Trombastenia/genética , Trombastenia/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
13.
Mol Psychiatry ; 29(8): 2321-2334, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459193

RESUMO

Chronic stress is associated with increased anxiety, cognitive deficits, and post-traumatic stress disorder. Repeated social defeat (RSD) in mice causes long-term stress-sensitization associated with increased microglia activation, monocyte accumulation, and enhanced interleukin (IL)-1 signaling in endothelia and neurons. With stress-sensitization, mice have amplified neuronal, immune, and behavioral responses to acute stress 24 days later. This is clinically relevant as it shares key aspects with post-traumatic stress disorder. The mechanisms underlying stress-sensitization are unclear, but enhanced fear memory may be critical. The purpose of this study was to determine the influence of microglia and IL-1R1 signaling in neurons in the development of sensitization and increased fear memory after RSD. Here, RSD accelerated fear acquisition, delayed fear extinction, and increased cued-based freezing at 0.5 day. The enhancement in contextual fear memory after RSD persisted 24 days later. Next, microglia were depleted with a CSF1R antagonist prior to RSD and several parameters were assessed. Microglia depletion blocked monocyte recruitment to the brain. Nonetheless, neuronal reactivity (pCREB) and IL-1ß RNA expression in the hippocampus and enhanced fear memory after RSD were microglial-independent. Because IL-1ß RNA was prominent in the hippocampus after RSD even with microglia depletion, IL-1R1 mediated signaling in glutamatergic neurons was assessed using neuronal Vglut2+/IL-1R1-/- mice. RSD-induced neuronal reactivity (pCREB) in the hippocampus and enhancement in fear memory were dependent on neuronal IL-1R1 signaling. Furthermore, single-nuclei RNA sequencing (snRNAseq) showed that RSD influenced transcription in specific hippocampal neurons (DG neurons, CA2/3, CA1 neurons) associated with glutamate signaling, inflammation and synaptic plasticity, which were neuronal IL-1R1-dependent. Furthermore, snRNAseq data provided evidence that RSD increased CREB, BDNF, and calcium signaling in DG neurons in an IL-1R1-dependent manner. Collectively, increased IL-1R1-mediated signaling (monocytes/microglia independent) in glutamatergic neurons after RSD enhanced neuronal reactivity and fear memory.


Assuntos
Medo , Memória , Camundongos Endogâmicos C57BL , Microglia , Neurônios , Transdução de Sinais , Derrota Social , Animais , Masculino , Camundongos , Medo/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Microglia/metabolismo , Neurônios/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo
14.
J Neuroinflammation ; 20(1): 248, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884959

RESUMO

Neuroinflammation contributes to secondary injury cascades following traumatic brain injury (TBI), with alternating waves of inflammation and resolution. Interleukin-1 (IL-1), a critical neuroinflammatory mediator originating from brain endothelial cells, microglia, astrocytes, and peripheral immune cells, is acutely overexpressed after TBI, propagating secondary injury and tissue damage. IL-1 affects blood-brain barrier permeability, immune cell activation, and neural plasticity. Despite the complexity of cytokine signaling post-TBI, we hypothesize that IL-1 signaling specifically regulates neuroinflammatory response components. Using a closed-head injury (CHI) TBI model, we investigated IL-1's role in the neuroinflammatory cascade with a new global knock-out (gKO) mouse model of the IL-1 receptor (IL-1R1), which efficiently eliminates all IL-1 signaling. We found that IL-1R1 gKO attenuated behavioral impairments 14 weeks post-injury and reduced reactive microglia and astrocyte staining in the neocortex, corpus callosum, and hippocampus. We then examined whether IL-1R1 loss altered acute neuroinflammatory dynamics, measuring gene expression changes in the neocortex at 3, 9, 24, and 72 h post-CHI using the NanoString Neuroinflammatory panel. Of 757 analyzed genes, IL-1R1 signaling showed temporal specificity in neuroinflammatory gene regulation, with major effects at 9 h post-CHI. IL-1R1 signaling specifically affected astrocyte-related genes, selectively upregulating chemokines like Ccl2, Ccl3, and Ccl4, while having limited impact on cytokine regulation, such as Tnfα. This study provides further insight into IL-1R1 function in amplifying the neuroinflammatory cascade following CHI in mice and demonstrates that suppression of IL-1R1 signaling offers long-term protective effects on brain health.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Fechados , Receptores Tipo I de Interleucina-1 , Animais , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/metabolismo , Traumatismos Cranianos Fechados/complicações , Inflamação/metabolismo , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , Receptores Tipo I de Interleucina-1/metabolismo
15.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733448

RESUMO

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Assuntos
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animais , Humanos , Camundongos , Genótipo , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicação Parácrina
16.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 163-167, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571886

RESUMO

Chronic pain is a disease that existed during cancer treatment for a long time. It has been reported that interleukin (IL)-1 is involved in the inflammatory response during tumor development. IL1R1 and IL1R2 are members of the IL-1 receptor family of cytokine receptors. However, few studies have reported the role of chronic pain-related genes, IL1R1, in pan-cancer. In this study, 8 lumbar disc prolapse (LDP) patients and 8 controls with differentially expressed genes were investigated to find chronic pain-related genes. Then, IL1R1 was analyzed using the TCGA database. The clinical survival data from TCGA were used to analyze the prognostic value of IL1R1. This study further evaluated the relationship between IL1R1 and immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors. IL1R1 was expressed in varying degrees in most TCGA tumor types, indicating a better survival status. The expression of IL1R1 is closely related to T cell infiltration, immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors. The results show that IL1R1 is a kind of potential cancer biomarker. Coordination with other immune checkpoints IL1R1k may adjust the immune microenvironment, immunotherapy can be applied to the development of new targeted drugs.


Assuntos
Dor Crônica , Relevância Clínica , Humanos , Dor Crônica/genética , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Quimiocinas , Receptores de Quimiocinas , Microambiente Tumoral
17.
Nat Commun ; 14(1): 4251, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460545

RESUMO

Fibroblasts have a considerable functional and molecular heterogeneity and can play various roles in the tumor microenvironment. Here we identify a pro-tumorigenic IL1R1+, IL-1-high-signaling subtype of fibroblasts, using multiple colorectal cancer (CRC) patient single cell sequencing datasets. This subtype of fibroblasts is linked to T cell and macrophage suppression and leads to increased cancer cell growth in 3D co-culture assays. Furthermore, both a fibroblast-specific IL1R1 knockout and IL-1 receptor antagonist Anakinra administration reduce tumor growth in vivo. This is accompanied by reduced intratumoral Th17 cell infiltration. Accordingly, CRC patients who present with IL1R1-expressing cancer-associated-fibroblasts (CAFs), also display elevated levels of immune exhaustion markers, as well as an increased Th17 score and an overall worse survival. Altogether, this study underlines the therapeutic value of targeting IL1R1-expressing CAFs in the context of CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fibroblastos/patologia , Tolerância Imunológica , Terapia de Imunossupressão , Microambiente Tumoral , Proliferação de Células , Receptores Tipo I de Interleucina-1/genética
18.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834943

RESUMO

The oocytes of female mammals will undergo aging after ovulation, also known as postovulatory oocyte aging (POA). Until now, the mechanisms of POA have not been fully understood. Although studies have shown that cumulus cells accelerate POA over time, the exact relationship between the two is still unclear. In the study, by employing the methods of mouse cumulus cells and oocytes transcriptome sequencing and experimental verification, we revealed the unique characteristics of cumulus cells and oocytes through ligand-receptor interactions. The results indicate that cumulus cells activated NF-κB signaling in oocytes through the IL1-IL1R1 interaction. Furthermore, it promoted mitochondrial dysfunction, excessive ROS accumulation, and increased early apoptosis, ultimately leading to a decline in the oocyte quality and the appearance of POA. Our results indicate that cumulus cells have a role in accelerating POA, and this result lays a foundation for an in-depth understanding of the molecular mechanism of POA. Moreover, it provides clues for exploring the relationship between cumulus cells and oocytes.


Assuntos
Senescência Celular , Células do Cúmulo , Oócitos , Receptores Tipo I de Interleucina-1 , Animais , Feminino , Camundongos , Envelhecimento/metabolismo , Senescência Celular/fisiologia , Células do Cúmulo/metabolismo , Interleucina-1/metabolismo , Mamíferos , Oócitos/metabolismo , Transdução de Sinais
19.
Nat Commun ; 13(1): 5347, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100596

RESUMO

Chronic inflammation is frequently associated with myeloproliferative neoplasms (MPN), but the role of inflammation in the pathogenesis of MPN remains unclear. Expression of the proinflammatory cytokine interleukin-1 (IL-1) is elevated in patients with MPN as well as in Jak2V617F knock-in mice. Here, we show that genetic deletion of IL-1 receptor 1 (IL-1R1) normalizes peripheral blood counts, reduces splenomegaly and ameliorates bone marrow fibrosis in homozygous Jak2V617F mouse model of myelofibrosis. Deletion of IL-1R1 also significantly reduces Jak2V617F mutant hematopoietic stem/progenitor cells. Exogenous administration of IL-1ß enhances myeloid cell expansion and accelerates the development of bone marrow fibrosis in heterozygous Jak2V617F mice. Furthermore, treatment with anti-IL-1R1 antibodies significantly reduces leukocytosis and splenomegaly, and ameliorates bone marrow fibrosis in homozygous Jak2V617F mice. Collectively, these results suggest that IL-1 signaling plays a pathogenic role in MPN disease progression, and targeting of IL-1R1 could be a useful strategy for the treatment of myelofibrosis.


Assuntos
Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos , Neoplasias , Mielofibrose Primária , Animais , Inflamação/genética , Interleucina-1 , Janus Quinase 2/genética , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Mielofibrose Primária/genética , Receptores Tipo I de Interleucina-1/metabolismo , Esplenomegalia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA