RESUMO
BACKGROUND: Breast cancer (BC) is the most common malignant tumor in women worldwide, and further elucidation of the molecular mechanisms involved in BC pathogenesis is essential to improve the prognosis of BC patients. RNA Binding Motif Protein 8 A (RBM8A), with high affinity to a myriad of RNA transcripts, has been shown to play a crucial role in genesis and progression of multiple cancers. We attempted to explore its functional significance and molecular mechanisms in BC. METHODS: Bioinformatics analysis was performed on publicly available BC datasets. qRT-PCR was used to determine the expression of RBM8A in BC tissues. MTT assay, clone formation assay and flow cytometry were employed to examine BC cell proliferation and apoptosis in vitro. RNA immunoprecipitation (RIP) and RIP-seq were used to investigate the binding of RBM8A/EIF4A3 to the mRNA of IGF1R/IRS-2. RBM8A and EIF4A3 interactions were determined by co-immunoprecipitation (Co-IP) and immunofluorescence. Chromatin immunoprecipitation (Ch-IP) and dual-luciferase reporter assay were carried out to investigate the transcriptional regulation of RBM8A by TEAD4. Xenograft model was used to explore the effects of RBM8A and TEAD4 on BC cell growth in vivo. RESULTS: In this study, we showed that RBM8A is abnormally highly expressed in BC and knockdown of RBM8A inhibits BC cell proliferation and induces apoptosis in vitro. EIF4A3, which phenocopy RBM8A in BC, forms a complex with RBM8A in BC. Moreover, EIF4A3 and RBM8A complex regulate the expression of IGF1R and IRS-2 to activate the PI3K/AKT signaling pathway, thereby promoting BC progression. In addition, we identified TEAD4 as a transcriptional activator of RBM8A by Ch-IP, dual luciferase reporter gene and a series of functional rescue assays. Furthermore, we demonstrated the in vivo pro-carcinogenic effects of TEAD4 and RBM8A by xenograft tumor experiments in nude mice. CONCLUSION: Collectively, these findings suggest that TEAD4 novel transcriptional target RBM8A interacts with EIF4A3 to increase IGF1R and IRS-2 expression and activate PI3K/AKT signaling pathway, thereby further promoting the malignant phenotype of BC cells.
Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Proteínas Musculares , Proteínas de Ligação a RNA , Receptor IGF Tipo 1 , Fatores de Transcrição de Domínio TEA , Animais , Feminino , Humanos , Camundongos , Apoptose/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Nus , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Ligação Proteica , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Receptores de Somatomedina/metabolismo , Receptores de Somatomedina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de Transcrição de Domínio TEA/metabolismoRESUMO
The existing kinase inhibitors for hepatocellular carcinoma (HCC) have conferred survival benefits but are hampered by adverse effects and drug resistance, necessitating the development of novel agents targeting distinct pathways. To discover potent new anti-HCC compounds, we leveraged scaffold hopping from Sorafenib and introduced morpholine/piperidine moieties to develop ureido-substituted 4-phenylthiazole analogs with optimized physicochemical properties and binding interactions. Notably, compound 27 exhibited potent cytotoxicity against HepG2 cells (IC50 = 0.62 ± 0.34 µM), significantly exceeding Sorafenib (IC50 = 1.62 ± 0.27 µM). Mechanistic investigations revealed that compound 27 potently inhibited HCC cell migration and colony formation, and it induced G2/M arrest and early-stage apoptosis. Kinase profiling revealed IGF1R as a key target, which compound 27 potently inhibited (76.84% at 10 µM). Molecular modeling substantiated compound 27's strong binding to IGF1R via multiple hydrogen bonds. Computational predictions indicate favorable drug-like properties for compound 27. These findings provide a promising drug candidate for the treatment of HCC patients.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Inibidores de Proteínas Quinases , Receptor IGF Tipo 1 , Tiazóis , Humanos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Tiazóis/química , Tiazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Movimento Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral , Sorafenibe/farmacologia , Sorafenibe/química , Modelos MolecularesRESUMO
Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide â , quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.
Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Biologia Computacional , Medicamentos de Ervas Chinesas , Receptor IGF Tipo 1 , Neoplasias Gástricas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Biologia Computacional/métodos , Transdução de Sinais/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Somatomedina/metabolismo , Farmacologia em Rede , Antineoplásicos Fitogênicos/farmacologiaRESUMO
The study is based on the complexity of Insulin like growth factor receptor (IGF1R) signaling and its regulation by noncoding RNAs (ncRNAs). IGF1R signaling is an important cascade in Alzheimer's disease (AD); however, its regulation and roles are poorly understood. Due to the presence of ß-arrestin and GPCR Receptor Kinase binding sites, this protein has been termed a 'functional hybrid', as it can take part in both kinase and GPCR signaling pathways, further adding to its complexity. The objective of this study is to understand the underlying ncRNA regulation controlling IGF1R and GPCRs in AD to find commonalities in the network. We found through data mining that 45 GPCRs were reportedly deregulated in AD and built clusters based on GO/KEGG pathways to show shared functionality with IGF1R. Eight miRs were further discovered that could coregulate IGF1R and GPCRs. We validated their expression in an AD cell model and probed for common lncRNAs downstream that could regulate these miRs. Seven such candidates were identified and further validated. A combined network comprising IGF1R with nine GPCRs, eight miRs, and seven lncRNAs was created to visualize the interconnectivity within pathways. Betweenness centrality analysis showed a cluster of NEAT1, hsa-miR-15a-5p, hsa-miR-16-5p, and IGF1R to be crucial form a competitive endogenous RNA-based (ceRNA) tetrad that could relay information within the network, which was further validated by cell-based studies. NEAT1 emerged as a master regulator that could alter the levels of IGF1R and associated GPCRs. This combined bioinformatics and experimental study for the first time explored the regulation of IGF1R through ncRNAs from the perspective of neurodegeneration.
Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Receptor IGF Tipo 1 , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regulação da Expressão Gênica , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Redes Reguladoras de GenesRESUMO
Breast cancer is the most common cancer in women. The upregulation of insulin-like growth factor (IGF) system observed in certain types of breast cancers was linked to growth, metastasis, and survival resulting in multiple strategies designed to target the type I IGF receptor (IGF-1R) in breast cancer. These attempts failed to prove beneficial and it has been suggested that insulin receptor (IR) could also play an important role in breast cancer biology. To better understand the IR's role in breast cancer cells, the receptor was deleted from MCF-7L cells using CRISPR technology, and fluorescence-assisted cell sorting was used to obtain clone 35 (CL35). It was found that CL35 activated signaling pathways upon insulin stimulation despite the absence of IR expression. We hypothesized that CL35 used a surrogate receptor for sustained growth and development. IGF-1R was able to activate insulin signaling and growth in CL35. Thus, insulin may play a central role in regulating breast cancer growth due to its ability to activate all the receptors of the IGF family. These findings argue that dual targeting of IR and IGF-IR may be required to inhibit breast cancer growth.
Assuntos
Neoplasias da Mama , Receptor de Insulina , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/genéticaRESUMO
The tyrosine kinase signaling pathway is an important pathway for cell signal transduction, and is involved in regulating cell proliferation, cell cycle, apoptosis and other essential biological functions. Gene mutations involved in the tyrosine kinase signaling pathway often lead to the development of cancers. Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2) are well known receptor tyrosine kinases (RTKs), which belong to the ERBB family and have high mutation frequency in cancers. Tyrosine kinase inhibitors (TKI) targeting EGFR and HER2 have been widely used in the clinical treatment of lung and breast cancers. However, after a period of treatment, patients will inevitably develop resistance to TKI. The insulin-like growth factor (IGF) receptor family, like the ERBB receptor family, belongs to the receptor tyrosine kinase superfamily, which also conducts an important cell signal transduction function. There is an overlap between IGF signaling and EGFR signaling in biological functions and downstream signals. In this review, we summarize the current state of knowledge of how IGF signaling interacts with EGFR signaling can influence cell resistance to EGFR/HER2-TKI. We also summarize the current drugs designed for targeting IGF signaling pathways and their research progress, including clinical trials and preclinical studies. Altogether, we aimed to discuss the future therapeutic strategies and application prospects of IGF signaling pathway targeted therapy.
Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Transdução de Sinais , Neoplasias Pulmonares/tratamento farmacológico , Receptores de SomatomedinaRESUMO
IRES mediated translation initiation requires a different repertoire of factors than canonical cap-dependent translation. Treatments that inhibit the canonical translation factor EIF4G1 have little or no effect on the ability of the Insr and Igf1r cellular IRESes to promote translation. Transcripts for two cellular receptors contain RNA elements that facilitate translation initiation without intact EIF4G1. Cellular IRES mechanisms may resemble viral type III IRESes allowing them to promote translate with a limited number of initiation factors allowing them to work under stress conditions when canonical translation is repressed.
Assuntos
Peptídeos Semelhantes à Insulina , Biossíntese de Proteínas , Regiões 5' não Traduzidas/genética , Ribossomos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , RNA Viral/metabolismoRESUMO
Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.
Assuntos
Transdução de Sinais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Diferenciação Celular , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptores de Somatomedina/metabolismo , Nadadeiras de Animais/metabolismoRESUMO
Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second-line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild-type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to the control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model but also in healthy human islets and islets from HI patients.
Assuntos
Hiperinsulinismo , Receptores de Somatomedina , Animais , Criança , Humanos , Lactente , Camundongos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Glucose/metabolismo , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Somatomedina/agonistasRESUMO
Triple Negative Breast Cancer (TNBC), a subtype of breast cancer, has fewer successful therapeutic therapies than other types of breast cancer. Insulin-like growth factor receptor 1 (IGF1R) and the Insulin receptor (IR) are associated with poor outcomes in TNBC. Targeting IGF1R has failed clinically. We aimed to test if inhibiting both IR/IGF1R was a rationale therapeutic approach to treat TNBC. We showed that despite IGF1R and IR being expressed in TNBC, their expression is not associated with a negative survival outcome. Furthermore, targeting both IR/IGF1R with inhibitors in multiple TNBC cell lines did not inhibit cell growth. Linsitinib, a small molecule inhibitor of both IGF1R and IR, did not block tumour formation and had no effect on tumour growth in vivo. Cumulatively these data suggest that while IGF1R and IR are expressed in TNBC, they are not good therapeutic targets. A potential reason for the limited anti-cancer impact when IR/IGF1R was targeted may be because multiple signalling pathways are altered in TNBC. Therefore, targeting individual signalling pathways may not be sufficient to inhibit cancer growth.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina , Linhagem Celular Tumoral , Receptores de Somatomedina/metabolismo , Proliferação de CélulasRESUMO
The pappalysin metalloproteinases, PAPP-A and PAPP-A2, have emerged as highly specific proteolytic enzymes involved in the regulation of insulin-like growth factor (IGF) signaling. The only known pappalysin substrates are a subset of the IGF binding proteins (IGFBPs), which bind IGF-I or IGF-II with high affinity to antagonize receptor binding. Thus, by cleaving IGFBPs, the pappalysins have the potential to increase IGF bioactivity and hence promote IGF signaling. This is relevant both in systemic and local IGF regulation, in normal and several pathophysiological conditions. Stanniocalcin-1 and -2 were recently found to be potent pappalysin inhibitors, thus comprising the missing components of a complete proteolytic system, the stanniocalcin-PAPP-A-IGFBP-IGF axis. Here, we provide the biological context necessary for understanding the properties of this molecular network, and we review biochemical data, animal experiments, clinical data, and genetic data supporting the physiological operation of this branch as an important part of the IGF system. However, although in vivo data clearly illustrate its power, it is a challenge to understand its subtle operation, for example, multiple equilibria and inhibitory kinetics may determine how, where, and when the IGF receptor is stimulated. In addition, literally all of the regulatory proteins have suspected or known activities that are not directly related to IGF signaling. How such activities may integrate with IGF signaling is also important to address in the future.
Assuntos
Fator de Crescimento Insulin-Like I , Proteína Plasmática A Associada à Gravidez , Animais , Humanos , Proteína Plasmática A Associada à Gravidez/genética , Fator de Crescimento Insulin-Like I/metabolismo , Glicoproteínas/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Receptores de Somatomedina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à InsulinaRESUMO
Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines. Acquired resistance to TZ-1 was developed and characterized in sensitive Rh41 cells. The BRD4 inhibitor, JQ1, was evaluated as an agent to prevent acquired TZ-1 resistance in Rh41 cells. The phosphorylation status of receptor tyrosine kinases (RTK) was assessed. Sensitivity to TZ-1 in vivo was determined in Rh41 parental and TZ-1-resistant xenografts. Of 20 sarcoma cell lines, only Rh41 was sensitive to TZ-1. Cells intrinsically resistant to TZ-1 expressed multiple (>10) activated RTKs or a relatively less complex set of activated RTKs (â¼5). TZ-1 decreased the phosphorylation of IGF-1R but had little effect on other phosphorylated RTKs in all resistant lines. TZ-1 rapidly induced activation of RTKs in Rh41 that was partially abrogated by knockdown of SOX18 and JQ1. Rh41/TZ-1 cells selected for acquired resistance to TZ-1 constitutively expressed multiple activated RTKs. TZ-1 treatment caused complete regressions in Rh41 xenografts and was significantly less effective against the Rh41/TZ-1 xenograft. Intrinsic resistance is a consequence of redundant signaling in pediatric sarcoma cell lines. Acquired resistance in Rh41 cells is associated with rapid induction of multiple RTKs, indicating a dynamic response to IGF-1R blockade and rapid development of resistance. The TZ-1 antibody had greater antitumor activity against Rh41 xenografts compared with other IGF-1R-targeted antibodies tested against this model.
Assuntos
Proteínas Nucleares , Sarcoma , Criança , Humanos , Fatores de Transcrição , Receptor IGF Tipo 1 , Sarcoma/tratamento farmacológico , Receptores de Somatomedina , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular , Fatores de Transcrição SOXFRESUMO
In this study, we used juvenile rainbow trout to examine the direct effects of selected environmental estrogens (EE), specifically, 17 ß-estradiol (E2), ß-sitosterol (ßS), and 4-n-nonylphenol (NP), on target tissue sensitivity to insulin-like growth factor (IGF) as assessed by expression of IGF receptor type 1 (IGFR1) mRNAs and IGF-1 binding capacity, as well as on the cell signaling pathways through which EE exert their effects. E2 and NP inhibited IGFR1A and IGFR1B mRNA expression in a time- and concentration-related manner in gill and muscle; however, ßS had no effect on expression of IGFR1 mRNAs in either tissue. NP reduced 125I-IGF binding in gill and E2 and NP reduced 125I-IGF in white muscle; ßS had no effect on 125I-IGF binding in either gill or white muscle. Treatment of gill filaments with either E2 or NP rapidly deactivated (via reduced proportion of phosphorylation) JAK2, STAT5, Akt, and ERK; ßS had no effect on the activation state of any cell signaling elements tested. The effects of EE on IGFR mRNA expression in gill were estrogen receptor (ER) dependent as the inhibitory effects were rescued by the ER antagonist, ICI 182,780. All EE tested blocked growth hormone (GH)-stimulated IGFR mRNA expression in gill filaments. GH-stimulated activation of JAK2, STAT5, Akt, and ERK were blocked by E2, ßS, and NP. Lastly, E2 and NP stimulated suppressor of cytokine signaling 2 (SOCS-2) mRNA expression, an effect that also was ER dependent. These results indicate that EE directly reduce the sensitivity of peripheral tissues to IGF by reducing mRNA and functional expression of IGFRs. Such inhibitory actions of EE are mediated, at least in part, by ER-dependent mechanisms that deactivate JAK, STAT, Akt, and ERK and enhance expression of SOCS-2. These findings together with our previous results show that EE retard growth of post-embryonic rainbow trout through widespread direct effects on the GH-IGF system, specifically, by reducing tissue sensitivity to GH, inhibiting IGF production, reducing tissue sensitivity to IGF, and by deactivating post-receptor IGF cell signaling pathways.
Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Fosforilação , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Estrogênios/metabolismo , Hormônio do Crescimento/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais , RNA Mensageiro/genéticaRESUMO
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Assuntos
Pontos de Checagem do Ciclo Celular , Fator de Crescimento Insulin-Like I , Receptor de Insulina , Somatomedinas , Animais , Humanos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células , Fator de Crescimento Insulin-Like I/metabolismo , Mamíferos/metabolismo , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/genéticaRESUMO
Interest in the role of melanin-concentrating hormone (MCH) in memory processes has increased in recent years, with some studies reporting memory-enhancing effects, while others report deleterious effects. Due to these discrepancies, this study seeks to provide new evidence about the role of MCH in memory consolidation and its relation with BDNF/TrkB system. To this end, in the first experiment, increased doses of MCH were acutely administered in both hippocampi to groups of male rats (25, 50, 200, and 500 ng). Microinjections were carried out immediately after finishing the sample trial of two hippocampal-dependent behavioral tasks: the Novel Object Recognition Test (NORT) and the modified Elevated Plus Maze (mEPM) test. Results indicated that a dose of 200 ng of MCH or higher impaired memory consolidation in both tasks. A second experiment was performed in which a dose of 200 ng of MCH was administered alone or co-administered with the MCHR-1 antagonist ATC-0175 at the end of the sample trial in the NORT. Results showed that MCH impaired memory consolidation, while the co-administration with ATC-0175 reverted this detrimental effect. Moreover, MCH induced a significant decrease in hippocampal MCHR-1 and TrkB expression with no modification in the expression of BDNF and NMDA receptor subunits NR1, NR2A, and NR2B. These results suggest that MCH in vivo elicits pro-amnesic effects in the rat hippocampus by decreasing the availability of its receptor and TrkB receptors, thus linking both endogenous systems to memory processes.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Consolidação da Memória , Hormônios Hipofisários , Receptor trkB , Receptores de Somatomedina , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Melaninas , Hormônios Hipofisários/metabolismo , Receptor trkB/metabolismo , Receptores de Somatomedina/metabolismoRESUMO
The insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) that plays critical roles in cancer. Microarray, computational, thermodynamic, and cellular imaging studies reveal that activation of IGF-1R by its cognate ligand IGF1 is inhibited by shorter, soluble heparan sulfate (HS) sequences (e.g., HS06), whereas longer polymeric chains do not inhibit the RTK, a phenomenon directly opposed to the traditional relationship known for GAG-protein systems. The inhibition arises from smaller oligosaccharides binding in a unique pocket in the IGF-1R ectodomain, which competes with the natural cognate ligand IGF1. This work presents a highly interesting observation on preferential and competing inhibition of IGF-1R by smaller sequences, whereas polysaccharides are devoid of this function. These insights will be of major value to glycobiologists and anti-cancer drug discoverers.
Assuntos
Polissacarídeos , Receptores de Somatomedina , Humanos , Ligantes , Neoplasias/metabolismo , Transdução de Sinais , Receptores de Somatomedina/metabolismoRESUMO
CX3CL1, also known as fractalkine, is best known for its signaling activity through interactions with its cognate receptor CX3CR1. However, its intrinsic function that is independent of interaction with CX3CR1 remains to be fully understood. We demonstrate that the intracellular domain of CX3CL1 (CX3CL1-ICD), generated upon sequential cleavages by α-/ß-secretase and γ-secretase, initiates a back signaling activity, which mediates direct signal transmission to gene expression in the nucleus. To study this, we fused a synthetic peptide derived from CX3CL1-ICD, named Tet34, with a 13-amino acid tetanus sequence at the N terminus to facilitate translocation into neuronal cells. We show that treatment of mouse neuroblastoma Neuro-2A cells with Tet34, but not its scrambled control (Tet34s), induced cell proliferation, as manifested by changes in protein levels of transcription factors and progrowth molecules cyclin D1, PCNA, Sox5, and Cdk2. Further biochemical assays reveal elevation of phosphorylated insulin receptor ß subunit, insulin-like growth factor-1 receptor ß subunit, and insulin receptor substrates as well as activation of proliferation-linked kinase AKT. In addition, transgenic mice overexpressing membrane-anchored C-terminal CX3CL1 also exhibited activation of insulin/insulin-like growth factor-1 receptor signaling. Remarkably, we found that this Tet34 peptide, but not Tet34s, protected against endoplasmic reticulum stress and cellular apoptosis when Neuro-2A cells were challenged with toxic oligomers of ß-amyloid peptide or hydrogen peroxide. Taken together, our results suggest that CX3CL1-ICD may have translational potential for neuroprotection in Alzheimer's disease and for disorders resulting from insulin resistance.
Assuntos
Quimiocina CX3CL1 , Neuroproteção , Receptor de Insulina , Receptores de Somatomedina , Animais , Camundongos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C , Camundongos Transgênicos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismoRESUMO
The orphan insulin receptor-related receptor (IRR) encoded by insrr gene is the third member of the insulin receptor family, also including the insulin receptor (IR) and the insulin-like growth factor receptor (IGF-1R). IRR is the extracellular alkaline medium sensor. In mice, insrr is expressed only in small populations of cells in specific tissues, which contain extracorporeal liquids of extreme pH. In particular, IRR regulates the metabolic bicarbonate excess in the kidney. In contrast, the role of IRR during Xenopus laevis embryogenesis is unknown, although insrr is highly expressed in frog embryos. Here, we examined the insrr function during the Xenopus laevis early development by the morpholino-induced knockdown. We demonstrated that insrr downregulation leads to development retardation, which can be restored by the incubation of embryos in an alkaline medium. Using bulk RNA-seq of embryos at the middle neurula stage, we showed that insrr downregulation elicited a general shift of expression towards genes specifically expressed before and at the onset of gastrulation. At the same time, alkali treatment partially restored the expression of the neurula-specific genes. Thus, our results demonstrate the critical role of insrr in the regulation of the early development rate in Xenopus laevis.
Assuntos
Desenvolvimento Embrionário , Receptor de Insulina , Proteínas de Xenopus , Animais , Desenvolvimento Embrionário/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismoRESUMO
Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands.
Assuntos
Fator de Crescimento Insulin-Like I , Receptor de Insulina , Microscopia Crioeletrônica , Cisteína , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptores de SomatomedinaRESUMO
Gliomas are the most frequent solid tumors in children. Among these, high-grade gliomas are less common in children than in adults, though they are similar in their aggressive clinical behavior. In adults, glioblastoma is the most lethal tumor of the central nervous system. Insulin-like growth factor 1 receptor (IGF1R) plays an important role in cancer biology, and its nuclear localization has been described as an adverse prognostic factor in different tumors. Previously, we have demonstrated that, in pediatric gliomas, IGF1R nuclear localization is significantly associated with high-grade tumors, worst clinical outcome, and increased risk of death. Herein we explore the role of IGF1R intracellular localization by comparing two glioblastoma cell lines that differ only in their IGF1R capacity to translocate to the nucleus. In vitro, IGF1R nuclear localization enhances glioblastoma cell motility and metabolism without affecting their proliferation. In vivo, IGF1R has the capacity to translocate to the nucleus and allows not only a higher proliferation rate and the earlier development of tumors but also renders the cells sensitive to OSI906 therapy. With this work, we provide evidence supporting the implications of the presence of IGF1R in the nucleus of glioma cells and a potential therapeutic opportunity for patients harboring gliomas with IGF1R nuclear localization.