Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.362
Filtrar
1.
J Autoimmun ; 124: 102727, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601207

RESUMO

Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.


Assuntos
COVID-19/complicações , Infecções por Citomegalovirus/complicações , Exposição Ocupacional/efeitos adversos , Infecções por Parvoviridae/complicações , Infecções por Retroviridae/complicações , Infecções por Roseolovirus/complicações , SARS-CoV-2 , Escleroderma Sistêmico/etiologia , Citomegalovirus , Herpesvirus Humano 6 , Humanos , Parvovirus B19 Humano , Retroviridae , Escleroderma Sistêmico/virologia
2.
Nat Commun ; 12(1): 5376, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508086

RESUMO

Natural killer (NK) cells are important early responders against viral infections. Changes in metabolism are crucial to fuel NK cell responses, and altered metabolism is linked to NK cell dysfunction in obesity and cancer. However, very little is known about the metabolic requirements of NK cells during acute retroviral infection and their importance for antiviral immunity. Here, using the Friend retrovirus mouse model, we show that following infection NK cells increase nutrient uptake, including amino acids and iron, and reprogram their metabolic machinery by increasing glycolysis and mitochondrial metabolism. Specific deletion of the amino acid transporter Slc7a5 has only discrete effects on NK cells, but iron deficiency profoundly impaires NK cell antiviral functions, leading to increased viral loads. Our study thus shows the requirement of nutrients and metabolism for the antiviral activity of NK cells, and has important implications for viral infections associated with altered iron levels such as HIV and SARS-CoV-2.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Infecções por Retroviridae/imunologia , Animais , Medula Óssea , COVID-19 , Citocinas , HIV , Infecções por HIV , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Retroviridae , Infecções por Retroviridae/virologia , SARS-CoV-2 , Carga Viral
3.
mBio ; 12(5): e0194121, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488459

RESUMO

Bats are infamous reservoirs of deadly human viruses. While retroviruses, such as the human immunodeficiency virus (HIV), are among the most significant of virus families that have jumped from animals into humans, whether bat retroviruses have the potential to infect and cause disease in humans remains unknown. Recent reports of retroviruses circulating in bat populations builds on two decades of research describing the fossil records of retroviral sequences in bat genomes and of viral metagenomes extracted from bat samples. The impact of the global COVID-19 pandemic demands that we pay closer attention to viruses hosted by bats and their potential as a zoonotic threat. Here we review current knowledge of bat retroviruses and explore the question of whether they represent a threat to humans.


Assuntos
Quirópteros/virologia , Retroviridae/patogenicidade , Animais , Zoonoses/virologia
4.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576278

RESUMO

Cervical cancer is a public health problem and has devastating effects in low-to-middle-income countries (LTMICs) such as the sub-Saharan African (SSA) countries. Infection by the human papillomavirus (HPV) is the main cause of cervical cancer. HIV positive women have higher HPV prevalence and cervical cancer incidence than their HIV negative counterparts do. Concurrent HPV/HIV infection is catastrophic, particularly to African women due to the high prevalence of HIV infections. Although various studies show a relationship between HPV, HIV and cervical cancer, there is still a gap in the knowledge concerning the precise nature of this tripartite association. Firstly, most studies show the relationship between HPV and cervical cancer at genomic and epigenetic levels, while the transcriptomic landscape of this relationship remains to be elucidated. Even though many studies have shown HPV/HIV dual viral pathogenesis, the dual molecular oncoviral effects on the development of cervical cancer remains largely uncertain. Furthermore, the effect of highly active antiretroviral therapy (HAART) on the cellular splicing machinery is unclear. Emerging evidence indicates the vital role played by host splicing events in both HPV and HIV infection in the development and progression to cervical cancer. Therefore, decoding the transcriptome landscape of this tripartite relationship holds promising therapeutic potential. This review will focus on the link between cellular splicing machinery, HPV, HIV infection and the aberrant alternative splicing events that take place in HIV/HPV-associated cervical cancer. Finally, we will investigate how these aberrant splicing events can be targeted for the development of new therapeutic strategies against HPV/HIV-associated cervical cancer.


Assuntos
Infecções por HIV/complicações , HIV-1/genética , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/virologia , Processamento Alternativo , Terapia Antirretroviral de Alta Atividade , Neoplasia Intraepitelial Cervical/complicações , Neoplasia Intraepitelial Cervical/epidemiologia , Neoplasia Intraepitelial Cervical/patologia , Neoplasia Intraepitelial Cervical/virologia , Dano ao DNA , Feminino , Geografia , Humanos , Incidência , RNA Mensageiro/metabolismo , Retroviridae , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/patologia
5.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500856

RESUMO

Multiple viral targets are now available in the clinic to fight HIV infection. Even if this targeted therapy is highly effective at suppressing viral replication, caregivers are facing growing therapeutic failures in patients due to resistance, with or without treatment-adherence glitches. Accordingly, it is important to better understand how HIV and other retroviruses replicate in order to propose alternative antiviral strategies. Recent studies have shown that multiple cellular factors are implicated during the integration step and, more specifically, that integrase can be regulated through post-translational modifications. We have shown that integrase is phosphorylated by GCN2, a cellular protein kinase of the integrated stress response, leading to a restriction of HIV replication. In addition, we found that this mechanism is conserved among other retroviruses. Accordingly, we developed an in vitro interaction assay, based on the AlphaLISA technology, to monitor the integrase-GCN2 interaction. From an initial library of 133 FDA-approved molecules, we identified nine compounds that either inhibited or stimulated the interaction between GCN2 and HIV integrase. In vitro characterization of these nine hits validated this pilot screen and demonstrated that the GCN2-integrase interaction could be a viable solution for targeting integrase out of its active site.


Assuntos
Infecções por HIV/terapia , Integrase de HIV/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Replicação Viral/efeitos dos fármacos , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , HIV , Integrase de HIV/genética , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Retroviridae , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Replicação Viral/genética
6.
Methods Mol Biol ; 2388: 27-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34524659

RESUMO

Natural killer T (NKT) cells have been shown to bridge innate and adaptive immunity. However, the rare population and hard-to-transfect of primary NKT cells slow down our understanding of cellular and molecular mechanisms of NKT development and function. To overcome these drawbacks, NKT hybridomas, especially DN32.D3 cells, are applied to study NKT cells in vitro and becoming a valuable tool. Here, we describe the method in the genetic manipulation of DN32.D3 cells by retrovirus, including the generation and concentration of retrovirus, retroviral transduction of DN32.D3 cells, and evaluation of transduction efficiency.


Assuntos
Células T Matadoras Naturais , Imunidade Adaptativa , Animais , Hibridomas , Camundongos , Camundongos Endogâmicos C57BL , Retroviridae/genética
7.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445809

RESUMO

A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.


Assuntos
Produtos do Gene gag/genética , Ligação Proteica/genética , RNA/genética , Retroelementos/genética , Dimerização , Retroviridae/genética , Saccharomyces cerevisiae/genética
8.
Gene ; 803: 145889, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34371094

RESUMO

Although seen as a revolution in modern science, gene therapy has been plagued by failed clinical trials and controversial ethics in the last thirty years. Moreover, there is no comprehensive, in-depth, high-quality analysis of global gene therapy patents. This paper proposes a method to correctly retrieve patents to address the issue and use it for the patent landscape. The results show the global patent landscape of gene therapy, with the United States dominating the field, while China has emerged as a leader in recent years. For various reasons, the EU, Korea, and Japan lag in the development of patented technologies. China has edged closer to the US in both live and indefinite patents, with the Chinese Academy of Military Medical Sciences and the Chinese Academy of Sciences leading the way, surpassing primary applicants such as the US Department of Health and Human Services, the University of California, and the University of Pennsylvania. The study also reveals four broad categories of technologies that have been extensively studied in gene therapy: basic biology of the gene and diseases, diseases being treated, gene delivery methods, and potential adverse events. What is more, Adeno-Associated Virus, Retrovirus, and Lentivirus are the most prevalent gene therapy delivery vectors after 2014. The industrial development trend revealed in this paper can provide an evidence-based basis for scientific research management and decision-making.


Assuntos
Terapia Genética , Vetores Genéticos/classificação , Patentes como Assunto , China , Dependovirus/genética , União Europeia , Humanos , Japão , Lentivirus/genética , República da Coreia , Retroviridae/genética , Estados Unidos
9.
Viruses ; 13(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209034

RESUMO

Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three structurally unrelated proteins encoded by diverse retroviruses, human immunodeficiency virus type 1 (HIV-1) Nef, equine infectious anemia virus (EIAV) S2, and ecotropic murine leukemia virus (MLV) GlycoGag, disrupt SERINC5 antiviral activity by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., vesicular stomatitis virus glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and Mason-Pfizer monkey virus (M-PMV) virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. SERINC5 restricted virions pseudotyped with glycoproteins from several retroviruses, an orthomyxovirus, a rhabdovirus, a paramyxovirus, and an arenavirus. Infectivity of particles pseudotyped with HIV-1, amphotropic-MLV (A-MLV), or influenza A virus (IAV) glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. In contrast, particles pseudotyped with glycoproteins from M-PMV, parainfluenza virus 5 (PIV5), or rabies virus (RABV) were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 did not correlate with reduced SERINC5 incorporation into particles, route of viral entry, or absolute infectivity of the pseudotyped virions. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Membrana/genética , Proteínas do Envelope Viral , Vírion/metabolismo , Vírus/metabolismo , Células HEK293 , HIV-1/metabolismo , Humanos , Vírus da Leucemia Murina/metabolismo , Proteínas de Membrana/imunologia , Retroviridae/classificação , Retroviridae/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vírion/genética , Internalização do Vírus , Vírus/química , Vírus/classificação , Vírus/genética
10.
Elife ; 102021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34223819

RESUMO

Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous, and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer's patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood-, and milk-borne retroviruses spanning three routes was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue-resident sentinel macrophages for establishing infection.


Assuntos
Infecções por Retroviridae/diagnóstico por imagem , Infecções por Retroviridae/transmissão , Retroviridae/fisiologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Leucemia Murina , Estágios do Ciclo de Vida , Linfonodos , Macrófagos/virologia , Masculino , Glândulas Mamárias Humanas/diagnóstico por imagem , Glândulas Mamárias Humanas/virologia , Camundongos , Retroviridae/genética , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/patologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Baço/diagnóstico por imagem , Vírion , Internalização do Vírus
11.
Methods Mol Biol ; 2352: 57-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324180

RESUMO

Direct neuronal reprogramming is a promising strategy to generate various types of neurons that are, otherwise, inaccessible for researchers. However, the efficiency of neuronal conversion is highly dependent on the transcription factor used, the identity of the initial cells to convert, their species' background, and the neuronal subtype to which cells will convert. Regardless of these conditioning factors, the apoptotic regulator Bcl-2 acts as a pan-neuronal reprogramming enhancer. Bcl-2 mediates its effect in reprogramming by preventing an overshot of oxidative stress during the acquisition of a neuronal oxidative metabolism, thus reducing cell death by ferroptosis and facilitating the phenotypic conversion. In this chapter, we outline two methods to obtain either mouse or human neurons derived from postnatal astrocytes and skin fibroblasts, respectively. The overall reprogramming strategy is based on the co-expression of Bcl-2 and the transcription factor Neurog2 that produces mostly excitatory neurons. However, the method can be easily adapted to achieve alternative neuronal subtypes by using additional transcription factors, such as Isl1 for motor neurons. Therefore, our approaches provide solid but flexible platforms to obtain human and mouse induced neurons in vitro that can be applied to basic or translational research.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Reprogramação Celular , Reprogramação Celular/genética , Fibroblastos/citologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Astrócitos/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica , Vetores Genéticos/genética , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Retroviridae/genética , Transdução Genética , Transfecção
12.
J Virol ; 95(20): e0064821, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319154

RESUMO

During retroviral replication, unspliced viral genomic RNA (gRNA) must escape the nucleus for translation into viral proteins and packaging into virions. "Complex" retroviruses, such as human immunodeficiency virus (HIV), use cis-acting elements on the unspliced gRNA in conjunction with trans-acting viral proteins to facilitate this escape. "Simple" retroviruses, such as Mason-Pfizer monkey virus (MPMV) and murine leukemia virus (MLV), exclusively use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear escape. Uniquely, the simple retrovirus Rous sarcoma virus (RSV) has a Gag structural protein that cycles through the nucleus prior to plasma membrane binding. This trafficking has been implicated in facilitating gRNA nuclear export and is thought to be a required mechanism. Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss of infectivity. Here, we describe a nuclear cycling-deficient RSV Gag mutant that has similar plasma membrane binding and genome incorporation to wild-type (WT) virus and surprisingly is replication competent, albeit with a slower rate of spread than observed in WT virus. This mutant suggests that RSV Gag nuclear cycling is not strictly required for RSV replication. IMPORTANCE While mechanisms for retroviral Gag assembly at the plasma membrane are beginning to be characterized, characterization of intermediate trafficking locales remain elusive. This is in part due to the difficulty of tracking individual proteins from translation to plasma membrane binding. Rous sarcoma virus (RSV) Gag nuclear cycling is a unique phenotype that may provide comparative insight to viral trafficking evolution and may present a model intermediate to cis- and trans-acting mechanisms for gRNA export.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Produtos do Gene gag/genética , Vírus do Sarcoma de Rous/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular , Núcleo Celular/virologia , Produtos do Gene gag/metabolismo , Genoma Viral/genética , Humanos , Camundongos , RNA Viral/genética , Retroviridae/genética , Vírus do Sarcoma de Rous/metabolismo , Vírion/metabolismo , Montagem de Vírus
13.
Viruses ; 13(6)2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072878

RESUMO

In a previous study, a metatranscriptomics survey of RNA viruses in several important lower vertebrate host groups revealed huge viral diversity, transforming the understanding of the evolution of vertebrate-associated RNA virus groups. However, the diversity of the DNA and retro-transcribing viruses in these host groups was left uncharacterized. Given that RNA sequencing is capable of revealing viruses undergoing active transcription and replication, we collected previously generated datasets associated with lower vertebrate hosts, and searched them for DNA and retro-transcribing viruses. Our results revealed the complete genome, or "core gene sets", of 18 vertebrate-associated DNA and retro-transcribing viruses in cartilaginous fishes, ray-finned fishes, and amphibians, many of which had high abundance levels, and some of which showed systemic infections in multiple organs, suggesting active transcription or acute infection within the host. Furthermore, these new findings recharacterized the evolutionary history in the families Hepadnaviridae, Papillomaviridae, and Alloherpesviridae, confirming long-term virus-host codivergence relationships for these virus groups. Collectively, our results revealed reliable and sufficient information within metatranscriptomics sequencing to characterize not only RNA viruses, but also DNA and retro-transcribing viruses, and therefore established a key methodology that will help us to understand the composition and evolution of the total "infectome" within a diverse range of vertebrate hosts.


Assuntos
Replicação do DNA , Vírus de DNA/genética , Vírus de RNA/genética , Transcrição Reversa , Vertebrados/virologia , Animais , Biologia Computacional , Vírus de DNA/classificação , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Metagenoma , Metagenômica/métodos , Filogenia , Vírus de RNA/classificação , Retroviridae/classificação , Retroviridae/genética , Análise de Sequência de RNA , Transcriptoma
14.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070997

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans-heparan sulphate and dermatan sulphate-in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood-brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.


Assuntos
Glicoproteínas/genética , Mucopolissacaridose II/terapia , Adolescente , Animais , Barreira Hematoencefálica , Sistemas CRISPR-Cas , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Dependovirus/genética , Modelos Animais de Doenças , Portadores de Fármacos , Eletroporação , Terapia de Reposição de Enzimas/métodos , Edição de Genes , Terapia Genética , Vetores Genéticos/efeitos adversos , Vetores Genéticos/uso terapêutico , Glicoproteínas/farmacocinética , Glicoproteínas/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/uso terapêutico , Lactente , Injeções Intraventriculares , Injeções Espinhais , Lentivirus/genética , Camundongos , Mucopolissacaridose II/genética , Estudos Multicêntricos como Assunto , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Retroviridae/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
15.
Viruses ; 13(5)2021 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063186

RESUMO

Immunotherapy has been shown to be highly effective in some types of cancer caused by viruses. Gene therapy involves insertion or modification of a therapeutic gene, to correct for inappropriate gene products that cause/may cause diseases. Both these types of therapy have been used as alternative ways to avoid cancers caused by oncoviruses. In this review, we summarize recent studies on immunotherapy and gene therapy including the topics of oncolytic immunotherapy, immune checkpoint inhibitors, gene replacement, antisense oligonucleotides, RNA interference, clustered regularly interspaced short palindromic repeats Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing, transcription activator-like effector nucleases (TALENs) and custom treatment for Epstein-Barr virus, human T-lymphotropic virus 1, hepatitis B virus, human papillomavirus, hepatitis C virus, herpesvirus associated with Kaposi's sarcoma, Merkel cell polyomavirus, and cytomegalovirus.


Assuntos
Terapia Genética , Imunoterapia , Infecções por Retroviridae/terapia , Retroviridae/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Humanos , Retroviridae/genética , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia
16.
Methods Mol Biol ; 2329: 323-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085233

RESUMO

The revolutionary CRISPR technology opens a new era of cell biology in mammalian cells. The InDel mutation is induced by CRISPR and results in the frameshift mutation of the gene. Owing to the nature of CRISPR induced knockout, the conditional knockout using CRISPR technology is not common. With the recent development of the small molecule-inducible degron system, an analogous system to the classical genetic conditional knockout has become feasible. By integrating CRISPR-knockout, the tetracycline-controlled transcriptional and auxin-induced degradation post-translational control of protein expression, a method imitating the conditional knockout is developed. We herein describe the detailed protocol for the generation of a conditional protein inactivation in human cancer cells. The system is especially useful to study essential gene function in aneuploidy cancer cells where gain in copy number is common.


Assuntos
Ciclina A2/genética , Ciclina A2/metabolismo , Técnicas de Inativação de Genes/métodos , Ácidos Indolacéticos/farmacologia , Tetraciclina/farmacologia , Sistemas CRISPR-Cas , Mutação da Fase de Leitura , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Proteólise , Retroviridae/genética , Transcrição Genética/efeitos dos fármacos
17.
Cells ; 10(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066177

RESUMO

Proteasomes are intracellular structures responsible for protein degradation. The 20S proteasome is a core catalytic element of the proteasome assembly. Variations of catalytic subunits generate different forms of 20S proteasomes including immunoproteasomes (iPs), which are present mostly in the immune cells. Certain cells of the immune system are primary targets of retroviruses. It has been shown that several viral proteins directly affect proteasome functionality, while inhibition of proteasome activity with broad specificity proteasome inhibitors stimulates viral transduction. Here we specifically addressed the role of the immunoproteasomes during early stages of viral transduction and investigated the effects of specific immunoproteasome inhibition and activation prior to infection using a panel of cell lines. Inhibition of iPs in hematopoietic cells with immunoproteasome-specific inhibitor ONX-0914 resulted in increased infection by VSV-G pseudotyped lentiviruses. Moreover, a tendency for increased infection of cloned cells with endogenously decreased proteasome activity was revealed. Conversely, activation of iPs by IFN-γ markedly reduced the viral infectivity, which was rescued upon simultaneous immunoproteasome inhibition. Our results indicate that immunoproteasome activity might be determinative for the cellular antiretroviral resistance at least for the cells with high iP content. Finally, therapeutic application of immunoproteasome inhibitors might promote retroviral infection of cells in vivo.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Lentivirus , Complexo de Endopeptidases do Proteassoma/imunologia , Antirretrovirais/farmacologia , Bortezomib/farmacologia , Linhagem Celular , Citocinas/metabolismo , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Células HL-60 , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Retroviridae , Células THP-1 , Células U937
18.
OMICS ; 25(6): 358-371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34037476

RESUMO

About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Neoplasias/virologia , Infecções por Papillomavirus/virologia , Infecções por Retroviridae/virologia , Retroviridae/fisiologia , Sarcoma de Kaposi/virologia , Infecções Tumorais por Vírus/virologia , Alphapapillomavirus/fisiologia , Carcinogênese , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Infecções por Papillomavirus/patologia , Infecções por Retroviridae/patologia , Sarcoma de Kaposi/patologia , Transdução de Sinais , Microambiente Tumoral , Infecções Tumorais por Vírus/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-33909845

RESUMO

Chagas cardiomyopathy (ChCM) is a severe consequence of Trypanosoma cruzi infection and has a range of electrocardiographic (ECG) and echocardiographic (ECHO) manifestations. There is a need for a standard and parsimonious research cardiac end point that does not rely on expert panel adjudication, and it is not intended to change the ChCM definition. We use data from the REDS-II cohort to propose a simplified cardiac endpoint. A total of 499 T. cruzi-seropositive blood donors were included. All participants underwent a 12-lead ECG, echocardiogram and clinical examination, and those with abnormal findings were reviewed by a panel of cardiologists who classified cases as having Chagas cardiomyopathy or not. We created an exhaustive set of ECG and ECHO finding combinations and compared these with the panel's classification. We selected the simplest combination that most accurately reproduced the panel's results. Individual ECG and ECHO variables had low sensitivity for panel-defined cardiomyopathy. The best performing combination was right bundle branch block and/or ECHO evidence of left ventricular hypocontractility. This combination had 98% specificity and 85% sensitivity for panel-defined ChCM. It was not possible to improve the overall accuracy by addition of any other ECG or ECHO variable. Substituting right bundle branch block for the more inclusive finding of QRS interval > 120 ms produced similar results. The combination of prolonged QRS interval and/or left ventricular hypocontractility closely reproduced the REDS-II expert panel classification of Chagas ChCM. In conclusion, the simple and reproducible research endpoint proposed here captures most of the spectrum of cardiac abnormalities in Chagas disease.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/epidemiologia , Eletrocardiografia , Estudos Epidemiológicos , Humanos , Retroviridae
20.
Arch Virol ; 166(7): 1893-1901, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33900468

RESUMO

Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the impact of infection with multiple subtypes is not well understood. Accordingly, in this study, we surveyed a representative sample from a Japanese zoo population to determine the infection status for three KoRV subtypes (KoRV-A, B, and C) and to investigate the proviral and RNA load profiles in animals with single- and multiple-subtype infections, using peripheral blood mononuclear cells (PBMCs) and plasma. Six koalas were evaluated in the study; all were infected with KoRV-A, and two koalas were coinfected with non-A subtypes (KoRV-B and/or KoRV-C). The highest KoRV total RNA and viral loads in PBMCs and plasma were found in a koala infected with multiple subtypes (KoRV-A, -B and -C). The other koala infected with multiple subtypes (KoRV-A and B) showed the highest proviral PBMC load but the lowest RNA copy number in PBMC and plasma. PBMCs from this animal were cultured for further investigation, and KoRV RNA was detected in the cells and culture supernatant after 7 and/or 14 days. The koalas harboring multiple subtypes had a higher white blood cell count than those harboring only KoRV-A and were judged to be leukemic, and they subsequently died due to lymphoma. Accordingly, we conclude that coinfection with multiple KoRV subtypes may be linked to more-severe disease. In a sequence alignment, the detected KoRV-A env gene showed 100% sequence identity to the reference gene, whereas the KoRV-B and -C env genes varied from their reference sequences.


Assuntos
Phascolarctidae/virologia , Retroviridae/genética , Animais , Células Cultivadas , Evolução Molecular , Leucócitos Mononucleares/virologia , Linfoma/virologia , RNA Viral/genética , Infecções por Retroviridae , Carga Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...