Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
J Parasitol ; 110(4): 339-350, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39099080

RESUMO

Two new species of lung-dwelling nematodes are described from North American frogs: Rhabdias aurorae n. sp. from Rana aurora and Rhabdias conni n. sp. from Rana clamitans and Rana catesbeiana from Arkansas; the latter species was also found in Oklahoma and Georgia. Rhabdias aurorae n. sp. differs from other Nearctic congeners in the combination of the following characteristics: buccal capsule 22-25 µm wide, elongated tail covered with inflated cuticle, esophagus with prominent dilatation in anterior part and 6 small circumoral lips. Rhabdias conni n. sp. is morphologically closest to Rhabdias ranae Walton, 1929 and Rhabdias joaquinensisIngles, 1936; it differs from them in the shape of lateral pseudolabia, the dimensions of the body, and the egg size. Both new species were found to be significantly different from the Nearctic congeners in the nucleotide sequences of nuclear ribosomal DNA (18S-ITS-28S region), 12S, and CO1 mitochondrial genes. The 2 new species differ from other currently sequenced Nearctic congeners by 1.1-2.7% of nucleotide positions in the nuclear rDNA region, 1.3-3.4% in the 12S gene, and 3.4-9.4% in CO1 gene. Molecular phylogenetic analysis based on nuclear ribosomal DNA sequences placed both new species into the clade consisting of Nearctic and Neotropical Rhabdias spp. The position of Rh. aurorae n. sp. within the clade is uncertain because of a polytomy, but Rh. conni n. sp. is nested within the "Rh. joaquinensis complex" related to Rh. ranae and Rhabdias tarichaeKuzmin, Tkach, and Snyder, 2003. The phylogenetic analysis based on nuclear ribosomal DNA sequences has revealed 3 evolutionary host-switching events from anuran to caudatan hosts among Rhabdias spp. that occurred in the Nearctic and Palearctic. The molecular phylogeny also suggests that Rhabdias may have originally evolved in what is now Africa.


Assuntos
DNA Ribossômico , Filogenia , Ranidae , Infecções por Rhabditida , Animais , Ranidae/parasitologia , Masculino , Feminino , Infecções por Rhabditida/parasitologia , Infecções por Rhabditida/veterinária , DNA Ribossômico/química , Georgia , Oklahoma , Arkansas , RNA Ribossômico 28S/genética , Pulmão/parasitologia , DNA de Helmintos/química , RNA Ribossômico 18S/genética , Rhabditoidea/classificação , Rhabditoidea/genética , Rhabditoidea/anatomia & histologia , Microscopia Eletrônica de Varredura/veterinária
2.
Parasite ; 31: 48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140873

RESUMO

Species of the genus Rhabdias Stiles & Hassall, 1905 are common parasitic nematodes occurring in the lungs of amphibians and reptiles worldwide. In the present study, Rhabdias macrocephalum n. sp. is described using integrated morphological methods (light and scanning electron microscopy) and molecular approaches (sequencing of the nuclear 28S and ITS regions, and mitochondrial cox1, cox2, and 12S genes) based on specimens collected from the green striped tree dragon Diploderma splendidum (Barbour & Dunn) (Reptilia: Agamidae) in China. The complete mitochondrial genome of R. macrocephalum n. sp. was sequenced and annotated: it is 14,819 bp in length, including 12 protein coding genes (missing atp8), 22 tRNA genes, 2 rRNA genes and three non-coding regions. The gene arrangement of R. macrocephalum n. sp. is different from all of the currently available mitogenomes of nematodes and represents a novel type of mitochondrial gene arrangement reported in Nematoda. Molecular phylogenetic results based on the ITS + 28S data support the monophyly of Entomelas, Pneumonema, Serpentirhabdias, and Rhabdias, and showed R. macrocephalum n. sp. forming a most basal lineage in Rhabdias.


Title: Morphologie, génome mitochondrial complet et phylogénie moléculaire de Rhabdias macrocephalum n. sp. (Nematoda : Rhabdiasidae) de Diploderma splendidum (Reptilia : Agamidae). Abstract: Les espèces du genre Rhabdias Stiles & Hassall, 1905 sont des nématodes parasites courants présents dans les poumons des amphibiens et des reptiles du monde entier. Dans cette étude, Rhabdias macrocephalum n. sp. est décrit à l'aide de méthodes morphologiques intégrées (microscopie optique et électronique à balayage) et d'approches moléculaires (séquençage des régions nucléaires 28S et ITS et des gènes mitochondriaux cox1, cox2 et 12S) basées sur des spécimens collectés chez le lézard Diploderma splendidum (Barbour & Dunn) (Reptilia : Agamidae) de Chine. Le génome mitochondrial complet de R. macrocephalum n. sp. a été séquencé et annoté : il a une longueur de 14 819 pb, dont 12 gènes codants pour des protéines (atp8 manquant), 22 gènes d'ARNt, 2 gènes d'ARNr et trois régions non codantes. L'arrangement génétique de R. macrocephalum n. sp. est différent de tous les mitogénomes de nématodes actuellement disponibles et représente un nouveau type d'arrangement de gènes mitochondriaux signalé chez les nématodes. Les résultats phylogénétiques moléculaires basés sur les données ITS + 28S ont soutenu la monophylie d'Entomelas, Pneumonema, Serpentirhabdias et Rhabdias, et ont montré que R. macrocephalum n. sp. forme la lignée la plus basale chez Rhabdias.


Assuntos
Genoma Mitocondrial , Lagartos , Filogenia , Animais , China , Lagartos/parasitologia , Rhabditoidea/genética , Rhabditoidea/classificação , Rhabditoidea/anatomia & histologia , Rhabditoidea/ultraestrutura , Masculino , Feminino , Infecções por Rhabditida/parasitologia , Infecções por Rhabditida/veterinária , Microscopia Eletrônica de Varredura/veterinária
3.
Nat Commun ; 15(1): 6042, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025889

RESUMO

Centrioles are the core constituent of centrosomes, microtubule-organizing centers involved in directing mitotic spindle assembly and chromosome segregation in animal cells. In sexually reproducing species, centrioles degenerate during oogenesis and female meiosis is usually acentrosomal. Centrioles are retained during male meiosis and, in most species, are reintroduced with the sperm during fertilization, restoring centriole numbers in embryos. In contrast, the presence, origin, and function of centrioles in parthenogenetic species is unknown. We found that centrioles are maternally inherited in two species of asexual parthenogenetic nematodes and identified two different strategies for maternal inheritance evolved in the two species. In Rhabditophanes diutinus, centrioles organize the poles of the meiotic spindle and are inherited by both the polar body and embryo. In Disploscapter pachys, the two pairs of centrioles remain close together and are inherited by the embryo only. Our results suggest that maternally-inherited centrioles organize the embryonic spindle poles and act as a symmetry-breaking cue to induce embryo polarization. Thus, in these parthenogenetic nematodes, centrioles are maternally-inherited and functionally replace their sperm-inherited counterparts in sexually reproducing species.


Assuntos
Centríolos , Herança Materna , Partenogênese , Animais , Partenogênese/genética , Feminino , Centríolos/metabolismo , Centríolos/genética , Masculino , Herança Materna/genética , Meiose/genética , Fuso Acromático/metabolismo , Nematoides/genética , Rhabditoidea/genética , Rhabditoidea/fisiologia , Espermatozoides/metabolismo , Corpos Polares/metabolismo , Embrião não Mamífero
4.
Exp Parasitol ; 263-264: 108804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019304

RESUMO

Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 h) of Heterorhabditis bacteriophora HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of Biomphalaria glabrata, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p < 0.01) in uric acid and urea contents in the hemolymph of B. glabrata exposed to H. bacteriophora was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p < 0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of H. bacteriophora causes significant alterations in the metabolic pattern of B. glabrata, compromising the maintenance of its homeostasis. Finally, exposure for 48 h caused more damage to the planorbid in question compared to snails exposed for 24 h, suggesting that the exposure time may influence the intensity of the host's response.


Assuntos
Alanina Transaminase , Aspartato Aminotransferases , Biomphalaria , Hemolinfa , Controle Biológico de Vetores , Rhabditoidea , Ureia , Ácido Úrico , Animais , Biomphalaria/parasitologia , Hemolinfa/química , Hemolinfa/parasitologia , Hemolinfa/metabolismo , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Ácido Úrico/metabolismo , Ureia/metabolismo , Rhabditoidea/fisiologia , Proteínas/metabolismo , Rabditídios/fisiologia
5.
Curr Microbiol ; 81(8): 240, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910178

RESUMO

One Gram-negative, rod-shaped bacterial strain, isolated from an undescribed Heterorhabditis entomopathogenic nematode species was characterized to determine its taxonomic position. The 16S rRNA gene sequences indicate that it belongs to the class Gammaproteobacteria, to the family Morganellaceae, to the genus Photorhabdus, and likely represents a novel bacterial species. This strain, designated here as CRI-LCT, was therefore molecularly, biochemically, and morphologically characterized to describe the novel bacterial species. Phylogenetic reconstructions using 16S rRNA gene sequences show that CRI-LCT is closely related to P. laumondii subsp. laumondii TT01T and to P. laumondii subsp. clarkei BOJ-47T. The 16rRNA gene sequences between CRI-LCT and P. laumondii subsp. laumondii TT01T are 99.1% identical, and between CRI-LCT and P. laumondii subsp. clarkei BOJ-47T are 99.2% identical. Phylogenetic reconstructions using whole genome sequences show that CRI-LCT is closely related to P. laumondii subsp. laumondii TT01T and to P. laumondii subsp. clarkei BOJ-47T. Moreover, digital DNA-DNA hybridization (dDDH) values between CRI-LCT and its two relative species P. laumondii subsp. laumondii TT01T and P. laumondii subsp. clarkei BOJ-47T are 65% and 63%, respectively. In addition, we observed that average nucleotide identity (ANI) values between CRI-LCT and its two relative species P. laumondii subsp. laumondii TT01T and P. laumondii subsp. clarkei BOJ-47T are 95.8% and 95.5%, respectively. These values are below the 70% dDDH and the 95-96% ANI divergence thresholds that delimits prokaryotic species. Based on these genomic divergence values, and the phylogenomic separation, we conclude that CRI-LCT represents a novel bacterial species, for which we propose the name Photorhabdus africana sp. nov. with CRI-LCT (= CCM 9390T = CCOS 2112T) as the type strain. The following biochemical tests allow to differentiate P. africana sp. nov. CRI-LCT from other species of the genus, including its more closely related taxa: ß-Galactosidase, citrate utilization, urease and tryptophan deaminase activities, indole and acetoin production, and glucose and inositol oxidation. Our study contributes to a better understanding of the taxonomy and biodiversity of this important bacterial group with great biotechnological and agricultural potential.


Assuntos
DNA Bacteriano , Photorhabdus , Filogenia , RNA Ribossômico 16S , Photorhabdus/genética , Photorhabdus/classificação , Photorhabdus/isolamento & purificação , Animais , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Rhabditoidea/microbiologia , Rhabditoidea/genética , Rhabditoidea/classificação , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
6.
Acta Trop ; 256: 107262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801912

RESUMO

Chagas disease is a zoonosis caused by the protozoan Trypanosoma cruzi and transmitted through the feces of triatomines, mainly in Latin America. Since the 1950s, chemical insecticides have been the primary method for controlling these triatomines, yet resistance has emerged, prompting the exploration of alternative approaches. The objective of this research was to test the capacity of the entomopathogenic nematodes Heterorhabditis indica and its symbiotic bacteria Photorhabdus luminescens, to produce mortality of Triatoma dimidiata a key vector of T. cruzi in Mexico under laboratory conditions. Two bioassays were conducted. In the first bioassay, the experimental unit was a 250 ml plastic jar with 100 g of sterile soil and three adult T. dimidiata. Three nematode quantities were tested: 2250, 4500, and 9000 nematodes per 100 g of sterile soil (n/100 g) per jar, with 3 replicates for each concentration and 1 control per concentration (1 jar with 100 g of sterile soil and 3 T. dimidiata without nematodes). The experimental unit of the second bioassay was a 500 ml plastic jar with 100 g of sterile soil and 4 adult T. dimidiata. This bioassay included 5, 50, 500, and 5000 n/100 g of sterile soil per jar, with 3 replicates of each quantity and 1 control per quantity. Data were analyzed using Kaplan-Meyer survival analysis. Electron microscopy was used to assess the presence of nematodes and tissue damage in T. dimidiata. The results of the first bioassay demonstrated that the nematode induced an accumulated average mortality ranging from 55.5 % (2250 n/100 g) to 100 % (4500 and 9000 n/100 g) within 144 h. In the second bioassay, the 5000 n/100 g concentration yielded 87.5 % mortality at 86 h, but a concentration as small as 500 n/100 g caused 75 % mortality from 84 h onwards. Survival analysis indicated higher T. dimidiata mortality with increased nematode quantities, with significant differences between the 4500, 5000, and 9000 n/100 g and controls. Electron microscopy revealed the presence of nematodes and its presumably symbiotic bacteria in the digestive system of T. dimidiata. Based on these analyses, we assert that the H. indica and P. luminescens complex causes mortality in adult T. dimidiata under laboratory conditions.


Assuntos
Doença de Chagas , Photorhabdus , Triatoma , Animais , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Triatoma/parasitologia , México , Análise de Sobrevida , Rabditídios/fisiologia , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Rhabditoidea/fisiologia , Vetores de Doenças , Trypanosoma cruzi/fisiologia
7.
J Parasitol ; 110(3): 200-205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38802106

RESUMO

Phasmarhabditis (syn. Pellioditis) californica is a facultative parasite that has been marketed as a popular biocontrol agent against pestiferous slugs in England, Scotland, and Wales. The necromenic nematode Pristionchus entomophagus has also been recovered from slugs infected with Ph. californica. In this study, we experimentally investigated the outcome of single and mixed applications of Pr. entomophagus and Ph. californica on the slug Deroceras reticulatum (Müller). Host mortality was comparable for single and mixed applications of Ph. californica, with time to death significantly shorter in both treatment groups compared with controls. However, trials with Pr. entomophagus alone did not cause any significant host mortality relative to controls. Compared with the single Ph. californica applications, mixed applications resulted in 67% fewer infective juveniles establishing in the host, and subsequently far fewer infective juveniles were recovered in the next generation. In contrast, the establishment rate and progeny production in Pr. entomophagus were not impacted by the presence of Ph. californica (i.e., mixed applications). Hence, the presence of Pr. entomophagus had a deleterious effect on the establishment success and progeny production of Ph. californica. Our findings reveal an asymmetrical, antagonistic interaction between Ph. californica and Pr. entomophagus and highlight the importance of understanding the ecological relationships between co-occurring species. A decrease in parasite establishment success and progeny production has the potential to directly impact the persistence, sustainability, and efficacy of Ph. californica as a biological control agent.


Assuntos
Gastrópodes , Controle Biológico de Vetores , Animais , Gastrópodes/parasitologia , Rabditídios/fisiologia , Interações Hospedeiro-Parasita , Rhabditoidea/fisiologia
8.
J Helminthol ; 98: e43, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800903

RESUMO

Entomopathogenic nematodes (EPNs) are closely associated with Popillia japonica and potentially used as their biological control agents, although field results proved inconsistent and evoked a continual pursuit of native EPNs more adapted to the environment. Therefore, we surveyed the Azorean Archipelago to isolate new strains of Heterorhabditis bacteriophora and to evaluate their virulence against the model organism Galleria mellonella under laboratory conditions. Six strains were obtained from pasture and coastal environments and both nematode and symbiont bacteria were molecularly identified. The bioassays revealed that Az172, Az186, and Az171 presented high virulence across the determination of a lethal dose (LD50) and short exposure time experiments with a comparable performance to Az29. After 72 hours, these virulent strains presented a mean determination of a lethal dose of 11 infective juveniles cm-2, a lethal time (LT50) of 34 hours, and achieved 40% mortality after an initial exposure time of only 60 minutes. Az170 exhibited an intermediate performance, whereas Az179 and Az180 were classified as low virulent strains. However, both strains presented the highest reproductive potential with means of 1700 infective juveniles/mg of larvae. The bioassays of the native EPNs obtained revealed that these strains hold the potential to be used in biological control initiatives targeting P. japonica because of their high virulence and locally adapted to environmental conditions.


Assuntos
Controle Biológico de Vetores , Rhabditoidea , Animais , Açores , Virulência , Rhabditoidea/microbiologia , Rhabditoidea/fisiologia , Larva/microbiologia , Mariposas/parasitologia , Agentes de Controle Biológico , Bioensaio , Rabditídios/fisiologia , Dose Letal Mediana
9.
PLoS One ; 19(3): e0298400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478489

RESUMO

Facultative parasites can alternate between a free-living and a parasitic existence to complete their life cycle. Yet, it remains uncertain which lifestyle they prefer. The optimal foraging theory suggests that food preferences align with fitness benefits. To test this hypothesis, we investigated the facultative parasite nematode Rhabditis regina, assessing its host preference and the associated benefits. Two experiments were conducted using wild nematode populations collected from Phyllophaga polyphylla, their natural host. In the first experiment, we used a behavioral arena to assess host preference between the natural host and two experimental hosts: Spodoptera frugiperda which is an alternative host and dead Tenebrio molitor, which simulates a saprophytic environment. In the second experiment, we subjected wild nematodes to "experimental evolution" lasting 50 generations in S. frugiperda and 53 generations in T. molitor carcass. We then compared life history traits (the size, survival, number of larvae, and glycogen and triglycerides as energy reserves) of dauer larvae with those nematodes from P. polyphylla (control group). We found a significant preference for P. polyphylla, which correlated with higher values in the nematode's life history traits. In contrast, the preference for S. frugiperda and the saprophytic environment was lower, resulting in less efficient life history traits. These findings align with the optimal foraging theory, as the nematode's parasitic preferences are in line with maximizing fitness. This also indicates that R. regina exhibits specificity to P. polyphylla and is better adapted to a parasitic lifestyle than a free-living one, suggesting an evolutionary pathway towards parasitism.


Assuntos
Besouros , Nematoides , Parasitos , Rhabditoidea , Animais , Larva/parasitologia , Interações Hospedeiro-Parasita
10.
Parasit Vectors ; 17(1): 100, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429838

RESUMO

BACKGROUND: The family Rhabdiasidae (Nematoda: Rhabditida) is a globally distributed group of nematode parasites, with over 110 species parasitic mainly in amphibians and reptiles. However, the systematic position of the family Rhabdiasidae in the order Rhabditida remains unsolved, and the evolutionary relationships among its genera are still unclear. Moreover, the present knowledge of the mitochondrial genomes of rhabdiasids remains limited. METHODS: Two rhabdiasid species: Rhabdias kafunata Sata, Takeuchi & Nakano, 2020 and R. bufonis (Schrank, 1788) collected from the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) in China, were identified based on morphology (light and scanning electron microscopy) and molecular characterization (sequencing of the nuclear 28S and ITS regions and mitochondrial cox1 and 12S genes). The complete mitochondrial genomes of R. kafunata and R. bufonis were also sequenced and annotated for the first time. Moreover, phylogenetic analyses based on the amino acid sequences of 12 protein-coding genes (PCGs) of the mitochondrial genomes were performed to clarify the systematic position of the family Rhabdiasidae in the order Rhabditida using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses based on the 28S + ITS sequences, were also inferred to assess the evolutionary relationships among the genera within Rhabdiasidae. RESULTS: The detailed morphology of the cephalic structures, vulva and eggs in R. kafunata and R. bufonis was revealed using scanning electron microscopy (SEM) for the first time. The characterization of 28S and ITS regions of R. kafunata was reported for the first time. The mitogenomes of R. kafunata and R. bufonis are 15,437 bp and 15,128 bp long, respectively, and both contain 36 genes, including 12 PCGs (missing atp8). Comparative mitogenomics revealed that the gene arrangement of R. kafunata and R. bufonis is different from all of the currently available mitogenomes of nematodes. Phylogenetic analyses based on the ITS + 28S data showed Neoentomelas and Kurilonema as sister lineages, and supported the monophyly of Entomelas, Pneumonema, Serpentirhabdias and Rhabdias. Mitochondrial phylogenomic results supported Rhabdiasidae as a member of the superfamily Rhabditoidea in the suborder Rhabditina, and its occurrance as sister to the family Rhabditidae. CONCLUSIONS: The complete mitochondrial genome of R. kafunata and R. bufonis were reported for the first time, and two new gene arrangements of mitogenomes in Nematoda were revealed. Mitogenomic phylogenetic results indicated that the family Rhabdiasidae is a member of Rhabditoidea in Rhabditina, and is closely related to Rhabditidae. Molecular phylogenies based on the ITS + 28S sequence data supported the validity of Kurilonema, and showed that Kurilonema is sister to Neoentomelas. The present phylogenetic results also indicated that the ancestors of rhabdiasids seem to have initially infected reptiles, then spreading to amphibians.


Assuntos
Genoma Mitocondrial , Rabditídios , Rhabditoidea , Feminino , Animais , Filogenia , Rabditídios/genética , Teorema de Bayes , Óvulo , Anuros/parasitologia , Répteis
11.
PLoS One ; 19(3): e0298165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512937

RESUMO

Inundative biological control (biocontrol) efforts in pest management lead to the mass distribution of commercialized biocontrol agents. Many 'biocontrol gone awry' incidents have resulted in disastrous biodiversity impacts, leading to increased scrutiny of biocontrol efforts. The nematode Phasmarhabditis hermaphrodita is sold as a biocontrol agent on three continents and targets pest gastropods such as Deroceras reticulatum, the Grey Field Slug; P. hermaphrodita is not presently approved for use in the United States. Investigations into the potential for P. hermaphrodita to infect non-target gastropod species of conservation relevance, however, are limited. We examined the effects of three strains of P. hermaphrodita on mortality in Monadenia fidelis, the Pacific Sideband, a snail species endemic to the Pacific Northwest of North America, in laboratory conditions. Across a 71-day laboratory infectivity assay, snails exposed to each of the three nematode strains, each analyzed at two doses, experienced a mean 50% mortality by days 20-42. All nematode-treated snails were dead by the end of the study. By contrast, 30/30 water-control snails experienced no mortality. Nematodes killed smaller, juvenile-stage snails significantly faster than those in larger and more developmentally advanced hosts. Our results provide direct evidence that the biocontrol nematode P. hermaphrodita infects and kills M. fidelis, a non-target gastropod species endemic to the Pacific Northwest, in laboratory conditions. This study suggests that introduction of P. hermaphrodita to new ecosystems might negatively impact endemic gastropod biodiversity and advocates for further investigation of non-target effects, including in conditions closer to the natural environments of non-target species.


Assuntos
Gastrópodes , Nematoides , Rhabditoidea , Animais , Ecossistema , Controle Biológico de Vetores/métodos , Caramujos , América do Norte , Noroeste dos Estados Unidos , Biodiversidade
12.
J Helminthol ; 98: e27, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509853

RESUMO

A survey for slug- and snail-associated nematodes was conducted in forests, parks, botanical gardens, and nature reserves at 13 localities in Belgium to uncover more diversity of gastropod mollusc-associated nematodes and to characterise Pellioditis populations found in the country. A total of 319 slugs and snails belonging to nine species were examined. Arion vulgaris was the most commonly found mollusc species in this study (eight locations), and 19.4% of the examined mollusc specimens were found infected by nematodes. The highest prevalence of nematodes was observed in Cornu aspersum (60%) followed by A. vulgaris (34.8%), Limax maximus (28.6%), and Cepaea sp. (20%). Eleven nematode species belonging to eight families were isolated and identified from the mollusc hosts including Alloionema appendiculatum, Angiostoma dentiferum, A. gandavense, Angiostrongylus vasorum, Cosmocerca longicauda, Panagrolaimus cf. subelongatus, Pellioditis californica, P. hermaphrodita, Rhabditis sp., Tetrameres cf. fissispina, and Troglostrongylus cf. brevior.Pellioditis was the most commonly found nematode genus (at nine localities) and C. longicauda and P. californica were reported in Belgium for the first time. Co-infections of more than one nematode species were observed in eight (2.5%) molluscs specimens. Most co-infections consisted of two nematode species. In one A. vulgaris specimen, a co-infection of three nematode species (A. vasorum, P. hermaphrodita, and Tetrameres cf. fissispina) was observed. Four ex vivo cultures of P. californica and six ex vivo cultures of P. hermaphrodita were established from single hermaphrodites, and both species were described based on light microscopy, scanning electron microscopy, and morphometric, morphological, and molecular data.


Assuntos
Coinfecção , Gastrópodes , Nematoides , Rhabditoidea , Humanos , Animais , Bélgica/epidemiologia , Caramujos , Carne
13.
Proc Biol Sci ; 291(2016): 20232403, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351807

RESUMO

By imposing novel selection pressures on both participants, biological invasions can modify evolutionary 'arms races' between hosts and parasites. A spatially replicated cross-infection experiment reveals strong spatial divergence in the ability of lungworms (Rhabdias pseudosphaerocephala) to infect invasive cane toads (Rhinella marina) in Australia. In areas colonized for longer than 20 years, toads are more resistant to infection by local strains of parasites than by allopatric strains. The situation reverses at the invasion front, where super-infective parasites have evolved. Invasion-induced shifts in genetic diversity and selective pressures may explain why hosts gain advantage over parasites in long-colonized areas, whereas parasites gain advantage at the invasion front.


Assuntos
Parasitos , Infecções por Rhabditida , Rhabditoidea , Animais , Humanos , Interações Hospedeiro-Parasita , Infecções por Rhabditida/parasitologia , Bufo marinus , Espécies Introduzidas
14.
J Invertebr Pathol ; 203: 108046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135246

RESUMO

A survey was undertaken to isolate entomopathogenic nematodes from Amritsar district of Punjab, India. Out of 20 soil samples collected, two were found positive for the presence of nematodes. 18S and ITS rDNA gene sequencing revealed their identity as Metarhabditis amsactae. To assess its biocontrol potential, Galleria mellonella larvae were treated with concentrations of 20, 40, 80 and 160 IJs/L (infective juveniles/larva) and mortality was recorded from 24 h up to 96 h of nematode exposure. Distilled water without nematodes was used as an untreated control. M. amsactae showed potent larvicidal activity against G. mellonella that was found to be concentration and time dependent. Nematode infection caused 93.33 % larval mortality at 80 IJs/L after 72 h of treatment. 100 % mortality was observed after 96 h. No mortality was observed in control. To evaluate the immunomodulatory effects of M. amsactae, G. mellonella larvae were infected with 100 IJs/L and activities of antioxidant and detoxifying enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), phenol oxidase (PO), glutathione-S-transferase (GST) and acetylcholine esterase (AChE) were appraised after 12, 24, 36 and 48 h of nematode exposure. Malondialdehyde content was also determined. The results obtained demonstrated a significant elevation in all the enzyme activities at all time intervals in treated larvae when compared with untreated control. MDA levels were also enhanced in response to nematode infection. Thus, the present study revealed high insecticidal potential and immunomodulatory effects of M. amsactae on G. mellonella that should be further explored on other insect pests as well.


Assuntos
Inseticidas , Mariposas , Nematoides , Infecções por Nematoides , Rhabditoidea , Animais , Agentes de Controle Biológico/farmacologia , Inseticidas/farmacologia , Larva
15.
J Helminthol ; 97: e90, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037423

RESUMO

Caucasus is known as one of the few biodiversity hotspots in Europe and is characterised by rich gastropod fauna while the nematode fauna in association with gastropods has remained largely understudied. Surveys conducted in 2019 and 2021 in the North Caucasus of the Russian Federation (Stavropol Upland and western and central parts of Krasnodar Krai) has revealed the presence of three new species of Pellioditis, a facultative parasite of land gastropods, and two species of obligate parasites, the intestinal parasite Angiostoma kimmeriense and a new, still undescribed species of a larval ectoparasite Alloionema sp. The new associations of Cruznema sp. and Rhabditophanes sp. with land gastropods were recorded for the first time in the Russian Federation. The new species of Pellioditis Dougherty, 1953 described here is based on the analysis of morphology and molecular studies of two distant and morphologically distinct strains, thermalis and sindicae. Pellioditis thermalis n. sp. was characterised by females possessing a tail of about 95-100 µm long, broadly conical in shape in the thermalis and sindicae strains, with a rounded anterior part and a subulate terminal part as long as the former; prominent phasmids located at the mid-tail, equatorial vulva position, a lateral field of three ridges (four incisions), males with spicules featuring a hole at the distal tip, ensheathed infective juveniles with average length 717 µm in the thermals strain and 771 µm in the sindicae strain, and exsheathed ones 644 µm and 682 µm, respectively. ITS-based phylogenetic analyses revealed that all Pellioditis species found in Ciscaucasia and Transcaucasia probably belong to two separate clades, with independent evolutionary histories of colonisation of this area. The entire Caucasus range area appears to serve as a biodiversity hotspot for the genus Pellioditis, presumably due to its complicated geological history and repeated isolation events for its terrestrial mollusc hosts.


Assuntos
Gastrópodes , Rabditídios , Rhabditoidea , Masculino , Feminino , Animais , Gastrópodes/parasitologia , Filogenia , Federação Russa
16.
World J Microbiol Biotechnol ; 40(1): 13, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953398

RESUMO

The entomopathogenic nematode Heterorhabditis bacteriophora (Nematoda: Rhabditidae) is used in biological insect control. Their dauer juveniles (DJs) are free-living and developmentally arrested, invading host insects. They carry cells of their bacterial symbiont Photorhabdus spp. in the intestine. Once inside the insect´s hemolymph the DJs perceive a food signal, triggering them to exit the DJ stage and regurgitate the Photorhabdus cells into the insect's haemocoel, which kill the host and later provide essential nutrients for nematode reproduction. The exit from the DJ stage is called "recovery". For commercial pest control, nematodes are industrially produced in monoxenic liquid cultures. Artificial media are incubated with Photorhabdus before DJs are added. In absence of the insect's food signal, DJs depend on unknown bacterial food signals to trigger exit of the DJ stage. A synchronized and high DJ recovery determines the success of the industrial in vitro production and can significantly vary between nematode strains, inbred lines and mutants. In this study, fourteen bacterial strains from H. bacteriophora were isolated and identified as P. laumondii, P. kayaii and P. thracensis. Although the influence of bacterial supernatants on the DJ recovery of three inbred lines and two mutants differed significantly, the bacterial impact on recovery has a subordinate role whereas nematode factors have a superior influence. Recovery of inbred lines decreased with age of the DJs. One mutant (M31) had very high recovery in bacterial supernatant and spontaneous recovery in Ringer solution. Another mutant (M88) was recovery defective.


Assuntos
Nematoides , Photorhabdus , Rhabditoidea , Animais , Photorhabdus/genética , Rhabditoidea/microbiologia , Insetos , Meios de Cultura , Simbiose
17.
Parasit Vectors ; 16(1): 383, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880744

RESUMO

BACKGROUND: Nematodes of the genus Heterorhabditis are important biocontrol agents as they form a lethal combination with their symbiotic Photorhabdus bacteria against agricultural insect pests. This study describes a new species of Heterorhabditis. METHODS: Six Heterorhabditis nematode populations were recovered from agricultural soils in Jammu and Kashmir, India. An initial examination using mitochondrial and nuclear genes showed that they belong to a new species. To describe this new species, a variety of analyses were conducted, including reconstructing phylogenetic relationships based on multiple genes, characterizing the nematodes at the morphological and morphometric levels, performing self-crossing and cross-hybridization experiments, and isolating and characterizing their symbiotic bacteria. RESULTS: The newly discovered species, Heterorhabditis casmirica n. sp., shares 94% mitochondrial cytochrome C oxidase subunit I gene (COI) sequence identity with Heterorhabditis bacteriophora and Heterorhabditis ruandica, and 93% with Heterorhabditis zacatecana. Morphologically, it differs from H. bacteriophora in its infective juvenile phasmids (present vs. inconspicuous) and bacterial pouch visibility in the ventricular portion of the intestine (invisible vs. visible); genital papilla 1 (GP1) position (at manubrium level vs. more anterior), and in its b ratio (body length/neck length), c ratio (tail length/bulb width), and D% [(excretory pore/neck length) × 100]. Other morphological differences include anterior end to the nerve ring distance (77-100 vs. 121-130 µm), V% [(anterior end of vulva/body length) × 100] (46-57 vs. 41-47) in hermaphroditic females; rectum size (slightly longer than the anal body diameter vs. about three times longer), phasmids (smaller vs. inconspicuous), body length (0.13-2.0 vs. 0.32-0.39 mm), body diameter (73-150 vs. 160-220 µm), anterior end to the excretory pore distance (135-157 vs. 174-214 µm), and demanian ratios in amphimictic females. Morphological differences with H. ruandica and H. zacatecana were also observed. Furthermore, H. casmirica n. sp. did not mate or produce fertile progeny with other Heterorhabditis nematodes reported from India. It was also discovered that H. casmirica n. sp. is associated with Photorhabdus luminescence subsp. clarkei symbiotic bacteria. CONCLUSIONS: The discovery of H. casmirica n. sp. provides novel insights into the diversity and evolution of Heterorhabditis nematodes and their symbiotic bacteria. This new species adds to the catalog of entomopathogenic nematodes in India.


Assuntos
Nematoides , Photorhabdus , Rhabditoidea , Feminino , Animais , Rhabditoidea/genética , Rhabditoidea/microbiologia , Filogenia , Nematoides/genética , Sequenciamento Completo do Genoma
18.
PLoS One ; 18(9): e0288196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672545

RESUMO

Recently, much attention has been focused on a group of rhabditid nematodes called Phasmarhabditis, a junior synonym of Pellioditis, as a promising source of biocontrol agents for invasive slugs. Pellioditis pelhamensis n. sp. was first isolated from earthworms near Pelham Bay Park in Bronx, New York, USA, in 1990 and has been found to be pathogenic to slugs as well as some earthworms. It has also been used in several comparative developmental studies. Here, we provide a description of this species, as well as a redescription of a similar earthworm-associated nematode, Pellioditis pellio Schneider, 1866, re-isolated from the type locality. Although P. pelhamensis n. sp. and P. pellio are morphologically similar, they are reproductively isolated. Molecular phylogenetic analysis places both species in a clade that includes all species previously described as Phasmarhabditis which are associated with gastropods. Phasmarhabditis Andrássy, 1976 is therefore a junior synonym of Pellioditis Dougherty, 1953. Also, Pellioditis bohemica Nermut', Puza, Mekete & Mrácek, 2017, described to be a facultative parasite of slugs, is found to be a junior synonym of Pellioditis pellio (Schneider, 1866), adding to evidence that P. pellio is associated with both slugs and earthworms. The earthworm-associated species P. pelhamensis n. sp. and P. pellio represent different subclades within Pellioditis, suggesting that Pellioditis species in general have a broader host range than just slugs. Because of this, caution is warranted in using these species as biological control agents until more is understood about their ecology.


Assuntos
Gastrópodes , Oligoquetos , Rhabditoidea , Animais , Humanos , Filogenia , Pesquisadores , Agentes de Controle Biológico
19.
Curr Biol ; 33(17): 3711-3721.e5, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607549

RESUMO

Some species undergo programmed DNA elimination (PDE), whereby portions of the genome are systematically destroyed in somatic cells. PDE has emerged independently in several phyla, but its function is unknown. Although the mechanisms are partially solved in ciliates, PDE remains mysterious in metazoans because the study species were not yet amenable to functional approaches. We fortuitously discovered massive PDE in the free-living nematode genus Mesorhabditis, from the same family as C. elegans. As such, these species offer many experimental advantages to start elucidating the PDE mechanisms in an animal. Here, we used cytology to describe the dynamics of chromosome fragmentation and destruction in early embryos. Elimination occurs once in development, at the third embryonic cell division in the somatic blastomeres. Chromosomes are first fragmented during S phase. Next, some of the fragments fail to align on the mitotic spindle and remain outside the re-assembled nuclei after mitosis. These fragments are gradually lost after a few cell cycles. The retained fragments form new mini chromosomes, which are properly segregated in the subsequent cell divisions. With genomic approaches, we found that Mesorhabditis mainly eliminate repeated regions and also about a hundred genes. Importantly, none of the eliminated protein-coding genes are shared between closely related Mesorhabditis species. Our results strongly suggest PDE has not been selected for regulating genes with important biological functions in Mesorhabditis but rather mainly to irreversibly remove repeated sequences in the soma. We propose that PDE may target genes, provided their elimination in the soma is invisible to selection.


Assuntos
Caenorhabditis elegans , Rhabditoidea , Animais , Caenorhabditis elegans/genética , Mitose , Blastômeros , DNA
20.
Acta Parasitol ; 68(3): 637-650, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468710

RESUMO

INTRODUCTION: To date nineteen nematode species in the genus Phasmarhabditis Andrássy, 1976 recorded and described. This paper describes Phasmarhabditis eagyptiaca n. sp. (Nematoda: Rhabditidae), morphologically and phylogenatically and investigate its role as bio control agent for gastropods. METHODS: Snails infected with nematode collected from Great Cairo Egypt. Sequences of the 18S ribosomal (18S rRNA) gene performed and used for phylogenetic studies. Morphological parameter measured and the nematode photographed and illustrated. Bioassay conducted on some snails and slugs species. RESULTS: Phasmarhabditis eagyptiaca n. sp. is the second new species of the genus Phasmarhabditis recorded and described in Egypt after Phasmarhabditis tawfiki Azzam2003, the fourth species from Africa and the 20th from the world. Morphological and molecular parameter showed that the new isolate is close to other species of Phasmarhabditis, especially Phasmarhabditis neopapillosa Andrássy, 1983, Phasmarhabditis hermaphrodita (Schneider, 1859) and P. tawfiki Azzam with high bootstrap supported values (99.25%, 98.85%, and 98.64%, respectively). This nematode could infect and killed all snails and slugs exposed to infection in laboratory. Phasmarhabditis eagyptiaca n. sp. differs from all previously recorded species by shorter tail of female spikey tail of male and the arrangement of genital papillae formula which different from all previous species. CONCLUSION: It could be confirmed that this nematode is a new species of Phasmarhabditis. This nematode could be considering a biological control agent for snails and slugs.


Assuntos
Nematoides , Rhabditoidea , Animais , Feminino , Masculino , Egito , Filogenia , Rhabditoidea/genética , Caramujos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA