RESUMO
The family Rhabdoviridae includes viruses with a negative-sense RNA genome. This family is divided into four subfamilies, and until recently, the subfamily Betarhabdovirinae, encompassing all plant-associated rhabdoviruses, was further divided into six genera. Here, we report the creation of two new genera within the subfamily Betarhabdovirinae - Alphagymnorhavirus and Betagymnorhavirus - to include recently described gymnosperm-associated viruses. The genus Alphagymnorhavirus includes nine species, while the genus Betagymnorhavirus includes only one species. Phylogenetic analysis indicated that these viruses form two well-supported clades that are clustered with the varicosaviruses, which have bisegmented genomes. In contrast, the 10 viruses included in the newly created genera have the distinctive feature that they have an unsegmented genome encoding five or six proteins. The creation of the genera Alphagymnorhavirus and Betagymnorhavirus has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Assuntos
Genoma Viral , Filogenia , Doenças das Plantas , Rhabdoviridae , Rhabdoviridae/genética , Rhabdoviridae/classificação , Rhabdoviridae/isolamento & purificação , Genoma Viral/genética , Doenças das Plantas/virologia , Cycadopsida/virologia , RNA Viral/genéticaRESUMO
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3'-N-P-P3-M-G-L-5' observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae.
Assuntos
Aristolochia , Mirabilis , Rhabdoviridae , Aristolochia/genética , Mirabilis/genética , Genoma Viral , Plantas/genética , Filogenia , Doenças das PlantasRESUMO
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.
Assuntos
Leishmaniose , Psychodidae , Rhabdoviridae , Humanos , Animais , América do Sul , RNA , DNA , BrasilRESUMO
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Assuntos
Expedições , Vírus de Plantas , Vírus de RNA , Rhabdoviridae , Rhabdoviridae/genética , Filogenia , Genoma Viral , Vírus de RNA/genética , Vírus de Plantas/genética , Doenças das PlantasRESUMO
Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco.
Assuntos
Bromoviridae , Caricaceae , Ilarvirus , Rhabdoviridae , Humanos , Viroma , Ilarvirus/genética , PlantasRESUMO
A cytorhabdovirus, tentatively named "patchouli chlorosis-associated cytorhabdovirus" (PCaCV), was identified in a patchouli plant, using high-throughput sequencing, and its genome sequence was confirmed by Sanger sequencing. The PCaCV genome consists of 12,913 nucleotides and contains six open reading frames in the order 3'-N-P'-P-P3-M-(G)-L-5'. The glycoprotein gene was found to contain stop codons in the coding frame; hence, this gene is considered defective. PCaCV is most closely related to tomato yellow mottle-associated virus, sharing 61.1% nucleotide sequence identity in the complete genome and 73.9% amino acid sequence identity in the L protein. These data suggest that PCaCV should be considered a new member of the genus Cytorhabdovirus, and the binomial species name "Cytorhabdovirus patchoulii" is proposed.
Assuntos
Begomovirus , Pogostemon , Rhabdoviridae , Genoma Viral , Pogostemon/genética , Doenças das Plantas , Filogenia , Rhabdoviridae/genética , Begomovirus/genética , Fases de Leitura Aberta , RNA Viral/genéticaRESUMO
Two newly described viruses belonging to distinct families, Rhabdoviridae and Geminiviridae, were discovered co-infecting Hyptis pectinata from a tropical dry forest of Ecuador. The negative-sense RNA genome of the rhabdovirus, tentatively named Hyptis latent virus (HpLV), comprises 13,765 nucleotides with seven open reading frames separated by the conserved intergenic region 3'-AAUUAUUUUGAU-5'. Sequence analyses showed identities as high as 56% for the polymerase and 38% for the nucleocapsid to members of the genus Cytorhabdovirus. Efficient transmission of HpLV was mediated by the pea aphid (Acyrthosiphon pisum) in a persistent replicative manner. The single-stranded DNA genome of the virus tentatively named Hyptis golden mosaic virus (HpGMV) shared homology with members of the genus Begomovirus with bipartite genomes. The DNA-A component consists of 2,716 nucleotides (nt), whereas the DNA-B component contains 2,666 nt. Pairwise alignments using the complete genomic sequence of DNA-A of HpGMV and closest relatives showed identities below the cutoff (<91% shared nt) established by the ICTV as species demarcation, indicating that HpGMV should be classified in a distinct begomovirus species. Transmission experiments confirmed that the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a vector of HpGMV.
Assuntos
Begomovirus , Hemípteros , Hyptis , Rhabdoviridae , Animais , Hyptis/genética , Genoma Viral/genética , Virulência , Doenças das Plantas , Begomovirus/genética , Rhabdoviridae/genética , Insetos Vetores , Nucleotídeos , FilogeniaRESUMO
A study was conducted to investigate epidemiological aspects of papaya virus E (PpVE), a cytorhabdovirus commonly found in papaya (Carica papaya L.) plantings in Ecuador. Besides papaya, PpVE was found in three Fabaceae weeds, including Rhynchosia minima, Centrosema plumieri, and Macroptilium lathyroides, the latter being the species with the highest virus prevalence. Greenhouse experiments showed that in M. lathyroides, single infections of PpVE induce only mild leaf mosaic, whereas in mixed infections with cowpea severe mosaic virus, PpVE contributes to severe mosaic. In papaya, PpVE did not induce noticeable symptoms in single or mixed infections with papaya ringspot virus. Transmission experiments confirmed that whiteflies (Bemisia tabaci) transmit PpVE in a semipersistent, nonpropagative manner.
Assuntos
Carica , Hemípteros , Rhabdoviridae , Animais , Folhas de Planta , VirulênciaRESUMO
Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.
Assuntos
Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica/métodos , Genoma Viral , Vírus de Plantas/genética , Plantas/virologia , RNA Viral/genética , Rhabdoviridae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Rhabdoviridae/classificação , Análise de Sequência de DNARESUMO
Citrus leprosis is a viral disease vectored by the mites Brevipalpus californicus and Brevipalpus yothersi. This work aimed to determine the potential areas for establishment of both mites and viruses in Mexico, based on the geographical distribution of the hosts and the climatic suitability for the vectors. Life tables of both mites were constructed to determine their thermal requirements-base temperature and degree-days required to complete life cycle-and population growth parameters-net reproduction rate, generation time, and intrinsic growth rate. For this, the mites were confined in Citrus aurantium fruits at 20, 22.5, 25 or 30 °C, 60 ± 5% RH and L14:D10 h photoperiod. Maps were generated where the climatic suitability for establishment of the mites and the citrus leprosis viruses was estimated in citrus-producing municipalities. The climatic suitability was determined through historical temperature records to calculate the potential number of generations per year, and ecological niche modeling based on collecting localities and bioclimatic variables using the algorithm Maxent. The base temperature was 9.5 °C for B. californicus and 10.2 °C for B. yothersi; degree-days required to reach adulthood were 372.1 and 331.7 °C, respectively. Potential sites for establishment of B. yothersi are mostly lowlands, whereas for B. californicus they are both lowlands and highlands. Temperature data indicate that B. californicus has fewer sites where it can develop > 16 generations per year than B. yothersi. According to our results, the sites where citrus leprosis is most likely to present high incidence are the sweet orange cultivars bordering the Gulf of Mexico.
Assuntos
Citrus , Ácaros , Rhabdoviridae , Animais , México , Doenças das PlantasRESUMO
We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.
Assuntos
Doenças das Plantas/virologia , Rhabdoviridae/isolamento & purificação , Solanum/virologia , Brasil , Genoma Viral , Filogenia , Folhas de Planta/virologia , Vírus de Plantas , Rhabdoviridae/genéticaRESUMO
Seven isolates of a putative cytorhabdovirus (family Rhabdoviridae, order Mononegavirales) designated as citrus-associated rhabdovirus (CiaRV) were identified in citrus, passion fruit, and paper bush from the same geographical area in China. CiaRV, bean-associated cytorhabdovirus (Brazil), and papaya virus E (Ecuador) should be taxonomically classified in the species Papaya cytorhabdovirus. Due to natural mutations, the glycoprotein (G) and P4 genes were impaired in citrus-infecting isolates of CiaRV, resulting in an atypical rhabdovirus genome organization of 3' leader-N-P-P3-M-L-5' trailer. The P3 protein of CiaRV shared a common origin with begomoviral movement proteins (family Geminiviridae). Secondary structure analysis and trans-complementation of movement-deficient tomato mosaic virus and potato virus X mutants by CiaRV P3 supported its function in viral cell-to-cell trafficking. The wide geographical dispersal of CiaRV and related viruses suggests an efficient transmission mechanism, as well as an underlying risk to global agriculture. Both the natural phenomenon and experimental analyses demonstrated presence of the "degraded" type of CiaRV in citrus, in parallel to "undegraded" types in other host plant species. This case study shows a plant virus losing the function of an important but nonessential gene, likely due to host shift and adaption, which deepened our understanding of course of natural viral diversification.
Assuntos
Vírus de Plantas , Rhabdoviridae , Brasil , China , Equador , Genoma Viral , Glicoproteínas , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de Plantas/genética , Rhabdoviridae/genéticaRESUMO
The knowledge of genomic data of new plant viruses is increasing exponentially; however, some aspects of their biology, such as vectors and host range, remain mostly unknown. This information is crucial for the understanding of virus-plant interactions, control strategies, and mechanisms to prevent outbreaks. Typically, rhabdoviruses infect monocot and dicot plants and are vectored in nature by hemipteran sap-sucking insects, including aphids, leafhoppers, and planthoppers. However, several strains of a potentially whitefly-transmitted virus, papaya cytorhabdovirus, were recently described: (i) bean-associated cytorhabdovirus (BaCV) in Brazil, (ii) papaya virus E (PpVE) in Ecuador, and (iii) citrus-associated rhabdovirus (CiaRV) in China. Here, we examine the potential of the Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) to transmit BaCV, its morphological and cytopathological characteristics, and assess the incidence of BaCV across bean producing areas in Brazil. Our results show that BaCV is efficiently transmitted, in experimental conditions, by B. tabaci MEAM1 to bean cultivars, and with lower efficiency to cowpea and soybean. Moreover, we detected BaCV RNA in viruliferous whiteflies but we were unable to visualize viral particles or viroplasm in the whitefly tissues. BaCV could not be singly isolated for pathogenicity tests, identification of the induced symptoms, and the transmission assay. BaCV was detected in five out of the seven states in Brazil included in our study, suggesting that it is widely distributed throughout bean producing areas in the country. This is the first report of a whitefly-transmitted rhabdovirus.
Assuntos
Hemípteros/virologia , Doenças das Plantas/virologia , Infecções por Rhabdoviridae/transmissão , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/isolamento & purificação , Animais , Evolução Biológica , Brasil , Carica/virologia , China , Equador , Genômica , Oriente Médio , Folhas de Planta/virologia , Vírus de Plantas , Plantas/virologia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Análise de SequênciaRESUMO
Citrus leprosis (CL) is one of the most devastating viral diseases of orchards, and industries correspondingly invest highly in the management and control of the virus vector. In Brazil, the disease is caused most predominantly by the citrus leprosis virus C (CiLV-C, Kitaviridae: Cilevirus), and also by citrus leprosis virus N (CiLV-N, Rhabdoviridae: Dichorhavirus). Both viruses are transmitted by false spider mites and at least three different species, Brevipalpus yothersi Baker, B. papayensis Baker, and B. phoenicis (Geijskes) sensu stricto, have been reported in citrus orchards. The main goal of this study was to evaluate the capacity of three Brevipalpus species to transmit citrus leprosis virus (cytoplasmic and nuclear types). The capacity of false spider mites to acquire the virus was accomplished using RT-PCR and the ability to inoculation the virus to host plants (common bean and sweet orange) was assessed via viral transmission assays. Common beans infested with B. yothersi and B. papayensis showed symptoms of CiLV-C in 87.5 and 17% of the plants assessed, respectively. In sweet orange, B. yothersi was exclusively able to inoculate CiLV-C, and around 83% of samples were symptomatic. Host plants infected with CiLV-N showed symptoms only when infested with B. phoenicis sensu stricto (s.s.). All the Brevipalpus species (Acari: Tenuipalpidae) were able to acquire both viruses (CiLV-C and CiLV-N), but not infect plants. These results suggest the existence of virus-vector specificity in the leprosis pathosystem, and this information will be critical for enhancing our further understanding of epidemiological features and disease management.
Assuntos
Citrus , Ácaros , Vírus de Plantas , Rhabdoviridae , Animais , Brasil , Doenças das PlantasRESUMO
The genome of a novel rhabdovirus was detected in yerba mate (Ilex paraguariensis St. Hil.). The newly identified virus, tentatively named "yerba mate virus A" (YmVA), has a genome of 14,961 nucleotides. Notably, eight open reading frames were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, including two novel accessory genes, in the order 3'-N-P-3-4-M-G-L-8-5'. Sequence comparisons of the encoded proteins as well as phylogenetic analysis suggest that YmVA is a new member of the genus Cytorhabdovirus, family Rhabdoviridae. YmVA's unique genomic organization and phylogenetic relationships indicate that this virus likely represents a distinct evolutionary lineage among the cytorhabdoviruses.
Assuntos
Ilex paraguariensis/virologia , Doenças das Plantas/virologia , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/classificação , Argentina , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , FilogeniaRESUMO
PIM kinases are a family of serine/threonine protein kinases that potentiate the progression of the cell cycle and inhibit apoptosis. Because of this, they are considered to be proto-oncogenes, and they represent an interesting target for the development of anticancer drugs. In mammals, three PIM kinases exist (PIM-1, PIM-2 and PIM-3), and different inhibitors have been developed to block their activity. In addition to their involvement in cancer, some publications have reported that the PIM kinases have pro-viral activity, and different mechanisms where PIM kinases favour viral infections have been proposed. Zebrafish possess more than 300 Pim kinase members in their genome, and by using RNA-Seq analysis, we found a high number of Pim kinase genes that were significantly induced after infection with spring viraemia of carp virus (SVCV). Moreover, analysis of the miRNAs modulated by this infection revealed that some of them could be involved in the post-transcriptional regulation of Pim kinase abundance. To elucidate the potential role of the 16 overexpressed Pim kinases in the infectivity of SVCV, we used three different pan-PIM kinase inhibitors (SGI-1776, INCB053914 and AZD1208), and different experiments were conducted both in vitro and in vivo. We observed that the PIM kinase inhibitors had a protective effect against SVCV, indicating that, similar to what is observed in mammals, PIM kinases are beneficial for the virus in zebrafish. Moreover, zebrafish Pim kinases seem to facilitate viral entry into the host cells because when ZF4 cells were pre-incubated with the virus and then were treated with the inhibitors, the protective effect of the inhibitors was abrogated. Although more investigation is necessary, these results show that pan-PIM kinase inhibitors could serve as a useful treatment for preventing the spread of viral diseases.
Assuntos
Rim/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/genética , Infecções por Rhabdoviridae/veterinária , Internalização do Vírus/efeitos dos fármacos , Peixe-Zebra/virologia , Animais , Apoptose , Compostos de Bifenilo/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Rim/virologia , Poli I-C/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Piridazinas/farmacologia , RNA-Seq , Rhabdoviridae , Tiazolidinas/farmacologia , Peixe-Zebra/anatomia & histologiaRESUMO
The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit-specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit-specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.
Assuntos
Citrus , Genoma Viral , Rhabdoviridae , Animais , Brasil , Citrus/virologia , Genoma Viral/genética , México , Doenças das Plantas/virologia , RNA Viral , Vírus Reordenados/genética , Rhabdoviridae/genéticaRESUMO
Although the modulation of immune-related genes after viral infection has been widely described in vertebrates, the potential implications of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in immunity are still a nascent research field. The model species zebrafish could serve as a useful organism for studying the functionality of lncRNAs due to the numerous advantages of this teleost, including the existence of numerous mutant lines. In this work, we conducted a whole-transcriptome analysis of wild-type (WT) and heterozygous rag1 mutant (rag1+/-) zebrafish after infection with the pathogen spring viraemia of carp virus (SVCV). WT and rag1+/- zebrafish were infected with SVCV for 24 h. Kidney samples were sampled from infected and uninfected fish for transcriptome sequencing. From a total of 198,540 contigs, 12,165 putative lncRNAs were identified in zebrafish. Most of the putative lncRNAs were shared by the two zebrafish lines. However, by comparing the lncRNA profiles induced after SVCV infection in WT and rag1+/- fish, most of the lncRNAs that were significantly induced after viral challenge were exclusive to each line, reflecting a highly differential response to the virus. Analysis of the neighboring genes of lncRNAs that were exclusively modulated in WT revealed high representation of metabolism-related terms, whereas those from rag1+/- fish showed enrichment in terms related to the adaptive immune response, among others. On the other hand, genes involved in numerous antiviral processes surrounded commonly modulated lncRNAs, as expected. These results clearly indicate that after SVCV infection in zebrafish, the expression of an array of lncRNAs with functions in different aspects of immunity is induced.
Assuntos
Proteínas de Homeodomínio/genética , RNA Longo não Codificante/genética , Transcriptoma , Viremia/imunologia , Animais , Heterozigoto , Rim/metabolismo , Rim/virologia , Mutação , RNA Longo não Codificante/metabolismo , Rhabdoviridae/patogenicidade , Viremia/genética , Viremia/virologia , Peixe-ZebraRESUMO
The complete genome of a new rhabdovirus infecting papaya (Carica papaya L.) in Ecuador, named papaya virus E, was sequenced and characterized. The negative-sense single-stranded RNA genome consists of 13,469 nucleotides with six canonical open reading frames (ORFs) and two accessory short ORFs predicted between ORFs corresponding to P3 (movement protein) and M (matrix protein). Phylogenetic analyses using amino acid sequences from the nucleocapsid, glycoprotein and polymerase, grouped the virus with members of the genus Cytorhabdovirus, with rice stripe mosaic virus, yerba mate chlorosis-associated virus and Colocasia bobone disease-associated virus as closest relatives. The 3' leader and 5' trailer sequences were 144 and 167 nt long, respectively, containing partially complementary motifs. The motif 3'-AUUCUUUUUG-5', conserved across rhabdoviruses, was identified in all but one intergenic regions; whereas the motif 3'-ACAAAAACACA-5' was found in three intergenic junctions. This is the first complete genome sequence of a cytorhabdovirus infecting papaya. The virus was prevalent in commercial plantings of Los Ríos, the most important papaya producing province of Ecuador. Recently, the genome sequence of bean-associated cytorhabdovirus was reported. The genome is 97% identical to that of papaya virus E, indicating that both should be considered strains of the same virus.
Assuntos
Carica/virologia , Rhabdoviridae/classificação , Sequenciamento Completo do Genoma/métodos , Carica/genética , Tamanho do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Vírus de Plantas/genética , Rhabdoviridae/genéticaRESUMO
Spring viraemia of carp (SVC) is an infectious disease responsible for severe economic losses for various cyprinid species, particularly common carp (Cyprinus carpio carpio). The causative agent is the SVC virus (SVCV), a member of the Sprivivirus genus, Rhabdoviridae family, and a List 1 pathogen notifiable by the World Organization for Animal Health. This study describes the diagnosis of an SVCV pathogen isolated in October 2015 from wild common carp inhabiting a natural lagoon in central Mexico. While neither an epidemic nor fish mortalities were reported, the collected killed specimens exhibited clinical signs of disease (e.g., exopthalmia, moderate abdominal distension and haemorrhaging, as well as internal haemorrhages and adhesions). Histological results of injuries were consistent with the pathology caused by SVCV. This finding was supported by the isolation of a virus in EPC and BF-2 cells and subsequent RT-PCR confirmation of SVCV. The phylogenetic analyses of partial SVCV glycoprotein gene sequences classified the isolates into the Ia genogroup. These findings make this the first report of SVCV detection in Mexico, extending the southern geographical range of SVCV within North America. However, since this pathogen was detected in fish inhabiting a natural body of water without tributaries or effluents, it is difficult to estimate the risk of SVCV for other wild/feral cohabitating cyprinid species in the lagoon. The status of this virus is also unknown for other bodies of water within this region.