Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Sci Rep ; 13(1): 4216, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918707

RESUMO

We explored the impact of chronic Strongyloides stercoralis infection on the gut microbiome and microbial activity in a longitudinal study. At baseline (time-point T0), 42 fecal samples from matched individuals (21 positive for strongyloidiasis and 21 negative) were subjected to microbiome 16S-rRNA sequencing. Those positive at T0 (untreated then because of COVID19 lockdowns) were retested one year later (T1). Persistent infection in these individuals indicated chronic strongyloidiasis: they were treated with ivermectin and retested four months later (T2). Fecal samples at T1 and T2 were subjected to 16S-rRNA sequencing and LC-MS/MS to determine microbial diversity and proteomes. No significant alteration of indices of gut microbial diversity was found in chronic strongyloidiasis. However, the Ruminococcus torques group was highly over-represented in chronic infection. Metaproteome data revealed enrichment of Ruminococcus torques mucin-degrader enzymes in infection, possibly influencing the ability of the host to expel parasites. Metaproteomics indicated an increase in carbohydrate metabolism and Bacteroidaceae accounted for this change in chronic infection. STITCH interaction networks explored highly expressed microbial proteins before treatment and short-chain fatty acids involved in the synthesis of acetate. In conclusion, our data indicate that chronic S. stercoralis infection increases Ruminococcus torques group and alters the microbial proteome.


Assuntos
COVID-19 , Strongyloides stercoralis , Estrongiloidíase , Humanos , Animais , Estrongiloidíase/parasitologia , Proteoma , Infecção Persistente , Estudos Longitudinais , Ruminococcus , Cromatografia Líquida , Controle de Doenças Transmissíveis , Espectrometria de Massas em Tandem , Fezes/parasitologia
2.
Braz. j. biol ; 83: e242818, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285628

RESUMO

Abstract The study was aimed to assess impact of high fat diet (HFD) and synthetic human gut microbiota (GM) combined with HFD and chow diet (CD) in inducing type-2 diabetes (T2D) using mice model. To our knowledge, this is the first study using selected human GM transplantation via culture based method coupled dietary modulation in mice for in vivo establishment of inflammation leading to T2D and gut dysbiosis. Twenty bacteria (T2D1-T2D20) from stool samples of confirmed T2D subjects were found to be morphologically different and subjected to purification on different media both aerobically and anerobically, which revealed seven bacteria more common among 20 isolates on the basis of biochemical characterization. On the basis of 16S rRNA gene sequencing, these seven isolates were identified as Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenes (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). The seven isolates were subsequently used as synthetic gut microbiome (GM) for their role in inducing T2D in mice. Inbred strains of albino mice were divided into four groups and were fed with CD, HFD, GM+HFD and GM+CD. Mice receiving HFD and GM+modified diet (CD/HFD) showed highly significant (P<0.05) increase in weight and blood glucose concentration as well as elevated level of inflammatory cytokines (TNF-α, IL-6, and MCP-1) compared to mice receiving CD only. The 16S rRNA gene sequencing of 11 fecal bacteria obtained from three randomly selected animals from each group revealed gut dysbiosis in animals receiving GM. Bacterial strains including Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) and Lactobacillus gasseri (MT152635) were isolated from mice treated with GM+modified diet (HFD/CD) compared to strains Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629) which were isolated from mice receiving CD/HFD. In conclusion, these findings suggest that constitution of GM and diet plays significant role in inflammation leading to onset or/and possibly progression of T2D. .


Resumo O estudo teve como objetivo avaliar o impacto da dieta rica em gordura (HFD) e da microbiota intestinal humana sintética (GM) combinada com HFD e dieta alimentar (CD) na indução de diabetes tipo 2 (T2D) usando modelo de camundongos. Para nosso conhecimento, este é o primeiro estudo usando transplante de GM humano selecionado através do método baseado em cultura acoplada à modulação dietética em camundongos para o estabelecimento in vivo de inflamação que leva a T2D e disbiose intestinal. Vinte bactérias (T2D1-T2D20) de amostras de fezes de indivíduos T2D confirmados verificaram ser morfologicamente diferentes e foram submetidas à purificação em meios diferentes aerobicamente e anaerobicamente, o que revelou sete bactérias mais comuns entre 20 isolados com base na caracterização bioquímica. Com base no sequenciamento do gene 16S rRNA, esses sete isolados foram identificados como Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenides (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). Esses sete isolados foram, posteriormente, usados ​​como microbioma intestinal sintético (GM) por seu papel na indução de T2D em camundongos. Linhagens consanguíneas de camundongos albinos foram divididas em quatro grupos e foram alimentadas com CD, HFD, GM + HFD e GM + CD. Camundongos que receberam a dieta modificada com HFD e GM + (CD / HFD) mostraram um aumento altamente significativo (P < 0,05) no peso e na concentração de glicose no sangue, bem como um nível elevado de citocinas inflamatórias (TNF-α, IL-6 e MCP-1) em comparação com os ratos que receberam apenas CD. O sequenciamento do gene 16S rRNA de 11 bactérias fecais obtidas de três animais selecionados aleatoriamente de cada grupo revelou disbiose intestinal em animais que receberam GM. Cepas bacterianas, incluindo Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) e Lactobacillus Gasseri (MT152635D), foram tratadas com dieta modificada / CD) em comparação com as linhagens Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629), que foram isoladas de camundongos recebendo CD / HFD. Em conclusão, esses resultados sugerem que a constituição de GM e dieta desempenham papel significativo na inflamação levando ao início ou/e possivelmente à progressão de T2D.


Assuntos
Humanos , Animais , Coelhos , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Bacteroides , RNA Ribossômico 16S/genética , Prevotella , Bacteroidetes , Ruminococcus , Dieta Hiperlipídica/efeitos adversos , Disbiose , Inflamação , Camundongos Endogâmicos C57BL
3.
Sci Rep ; 12(1): 20244, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424438

RESUMO

Moyamoya disease (MMD) is a rare cerebrovascular disease endemic in East Asia. The p.R4810K mutation in RNF213 gene confers a risk of MMD, but other factors remain largely unknown. We tested the association of gut microbiota with MMD. Fecal samples were collected from 27 patients with MMD, 7 patients with non-moyamoya intracranial large artery disease (ICAD) and 15 control individuals with other disorders, and 16S rRNA were sequenced. Although there was no difference in alpha diversity or beta diversity between patients with MMD and controls, the cladogram showed Streptococcaceae was enriched in patient samples. The relative abundance analysis demonstrated that 23 species were differentially abundant between patients with MMD and controls. Among them, increased abundance of Ruminococcus gnavus > 0.003 and decreased abundance of Roseburia inulinivorans < 0.002 were associated with higher risks of MMD (odds ratio 9.6, P = 0.0024; odds ratio 11.1, P = 0.0051). Also, Ruminococcus gnavus was more abundant and Roseburia inulinivorans was less abundant in patients with ICAD than controls (P = 0.046, P = 0.012). The relative abundance of Ruminococcus gnavus or Roseburia inulinivorans was not different between the p.R4810K mutant and wildtype. Our data demonstrated that gut microbiota was associated with both MMD and ICAD.


Assuntos
Microbioma Gastrointestinal , Doenças Arteriais Intracranianas , Doença de Moyamoya , Humanos , Doença de Moyamoya/genética , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Ruminococcus/genética , Doenças Raras , Artérias , Adenosina Trifosfatases , Ubiquitina-Proteína Ligases
4.
Front Immunol ; 13: 897971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032126

RESUMO

Imbalances in the gut microbiome are suspected contributors to the pathogenesis of Systemic Lupus Erythematosus, and our studies and others have documented that patients with active Lupus nephritis have expansions of the obligate anaerobe, Blautia (Ruminococcus) gnavus (RG). To investigate whether the RG strains in Lupus patients have in vivo pathogenic properties in a gnotobiotic system, we colonized C57BL/6 mice with individual RG strains from healthy adults or those from Lupus patients. These strains were similar in their capacity for murine intestinal colonization of antibiotic-preconditioned specific-pathogen-free, as well as of germ-free adults and of their neonatally colonized litters. Lupus-derived RG strains induced high levels of intestinal permeability that was significantly greater in female than male mice, whereas the RG species-type strain (ATCC29149/VPI C7-1) from a healthy donor had little or no effects. These Lupus RG strain-induced functional alterations were associated with RG translocation to mesenteric lymph nodes, and raised serum levels of zonulin, a regulator of tight junction formation between cells that form the gut barrier. Notably, the level of Lupus RG-induced intestinal permeability was significantly correlated with serum IgG anti RG cell-wall lipoglycan antibodies, and with anti-native DNA autoantibodies that are a biomarker for SLE. Strikingly, gut permeability was completely reversed by oral treatment with larazotide acetate, an octapeptide that is a specific molecular antagonist of zonulin. Taken together, these studies document a pathway by which RG strains from Lupus patients contribute to a leaky gut and features of autoimmunity implicated in the pathogenesis of flares of clinical Lupus disease.


Assuntos
Autoimunidade , Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Fatores Sexuais , Animais , Anticorpos Antinucleares , Clostridiales , Feminino , Haptoglobinas , Humanos , Lúpus Eritematoso Sistêmico/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Precursores de Proteínas , Ruminococcus
5.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012553

RESUMO

Type V Cas12a nucleases are DNA editors working in a wide temperature range and using expanded protospacer-adjacent motifs (PAMs). Though they are widely used, there is still a demand for discovering new ones. Here, we demonstrate a novel ortholog from Ruminococcus bromii sp. entitled RbCas12a, which is able to efficiently cleave target DNA templates, using the particularly high accessibility of PAM 5'-YYN and a relatively wide temperature range from 20 °C to 42 °C. In comparison to Acidaminococcus sp. (AsCas12a) nuclease, RbCas12a is capable of processing DNA more efficiently, and can be active upon being charged by spacer-only RNA at lower concentrations in vitro. We show that the human-optimized RbCas12a nuclease is also active in mammalian cells, and can be applied for efficient deletion incorporation into the human genome. Given the advantageous properties of RbCas12a, this enzyme shows potential for clinical and biotechnological applications within the field of genome editing.


Assuntos
Sistemas CRISPR-Cas , Endonucleases , Acidaminococcus/genética , Acidaminococcus/metabolismo , Animais , DNA/metabolismo , Endonucleases/metabolismo , Edição de Genes , Humanos , Mamíferos/metabolismo , Ruminococcus
6.
Microbiol Spectr ; 10(4): e0277621, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863028

RESUMO

Little is known about the bacteria that reside in the human gallbladder and the mechanisms that allow them to survive within this harsh environment. Here we describe interactions between two strains from a human bile sample, one Ruminococcus gauvreauii (IPLA60001), belonging to the Lachnospiraceae family, and the other, designated as Ruminococcoides bili (IPLA60002T; DSM 110008) most closely related to Ruminococcus bromii within the family Ruminococcaceae. We provide evidence for bile salt resistance and sporulation for these new strains. Both differed markedly in their carbohydrate metabolism. The R. bili strain mainly metabolized resistant starches to form formate, lactate and acetate. R. gauvreauii mainly metabolized sugar alcohols, including inositol and also utilized formate to generate acetate employing the Wood Ljungdahl pathway. Amino acid and vitamin biosynthesis genomic profiles also differed markedly between the two isolates, likely contributing to their synergistic interactions, as revealed by transcriptomic analysis of cocultures. Transcriptome analysis also revealed that R. gauvreauii IPLA60001 is able to grow using the end-products of starch metabolism formed by the R. bili strain such as formate, and potentially other compounds (such as ethanolamine and inositol) possibly provided by the autolytic behavior of R. bili. IMPORTANCE Unique insights into metabolic interaction between two isolates; Ruminococcus gauvreauii IPLA60001 and Ruminococcoides bili IPLA60002, from the human gallbladder, are presented here. The R. bili strain metabolized resistant starches while R. gauvreauii failed to do so but grew well on sugar alcohols. Transcriptomic analysis of cocultures of these strains, provides new data on the physiology and ecology of two bacteria from human bile, with a particular focus on cross-feeding mechanisms. Both biliary strains displayed marked resistance to bile and possess many efflux transporters, potentially involved in bile export. However, they differ markedly in their amino acid catabolism and vitamin synthesis capabilities, a feature that is therefore likely to contribute to the strong synergistic interactions between these strains. This is therefore the first study that provides evidence for syntrophic metabolic cooperation between bacterial strains isolated from human bile.


Assuntos
Bactérias , Bile , Acetatos/metabolismo , Aminoácidos/metabolismo , Bactérias/metabolismo , Bile/metabolismo , Clostridiales , Formiatos/metabolismo , Humanos , Inositol/metabolismo , Ruminococcus , Álcoois Açúcares/metabolismo , Vitaminas/metabolismo
8.
J Appl Microbiol ; 133(2): 362-374, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35365862

RESUMO

AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bactérias , Bifidobacterium , Células CACO-2 , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Humanos , Lactobacillus/genética , Mucinas/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ruminococcus
9.
Int J Biol Macromol ; 209(Pt A): 801-813, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421411

RESUMO

Gene encoding endoglucanase, RfGH5_4 from R. flavefaciens FD-1 v3 was cloned, expressed in Escherichia coli BL21(DE3) cells and purified. RfGH5_4 showed molecular size 41 kDa and maximum activity at pH 5.5 and 55 °C. It was stable between pH 5.0-8.0, retaining 85% activity and between 5 °C-45 °C, retaining 75% activity, after 60 min. RfGH5_4 displayed maximum activity (U/mg) against barley ß-D-glucan (665) followed by carboxymethyl cellulose (450), xyloglucan (343), konjac glucomannan (285), phosphoric acid swollen cellulose (86), beechwood xylan (21.7) and carob galactomannan (16), thereby displaying the multi-functionality. Catalytic efficiency (mL.mg-1 s-1) of RfGH5_4 against carboxymethyl cellulose (146) and konjac glucomannan (529) was significantly high. TLC and MALDI-TOF-MS analyses of RfGH5_4 treated hydrolysates of cellulosic and hemicellulosic polysaccharides displayed oligosaccharides of degree of polymerization (DP) between DP2-DP11. TLC, HPLC and Processivity-Index analyses revealed RfGH5_4 to be a processive endoglucanase as initially, for 30 min it hydrolysed cellulose to cellotetraose followed by persistent release of cellotriose and cellobiose. RfGH5_4 yielded sufficiently high Total Reducing Sugar (TRS, mg/g) from saccharification of alkali pre-treated sorghum (72), finger millet (62), sugarcane bagasse (38) and cotton (27) in a 48 h saccharification reaction. Thus, RfGH5_4 can be considered as a potential endoglucanase for renewable energy applications.


Assuntos
Celulase , Saccharum , Biomassa , Carboximetilcelulose Sódica , Celulase/química , Celulose , Lignina , Ruminococcus , Saccharum/metabolismo , Especificidade por Substrato , Tegafur/análogos & derivados
10.
J Biol Chem ; 298(5): 101896, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378131

RESUMO

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Ruminococcus , Amilopectina/metabolismo , Amilose/metabolismo , Proteínas de Transporte/metabolismo , Carboidratos da Dieta , Humanos , Amido/metabolismo
11.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35471195

RESUMO

Complex carbohydrates shape the gut microbiota, and the collective fermentation of resistant starch by gut microbes positively affects human health through enhanced butyrate production. The keystone species Ruminococcus bromii (Rb) is a specialist in degrading resistant starch; its degradation products are used by other bacteria including Bacteroides thetaiotaomicron (Bt). We analysed the metabolic and spatial relationships between Rb and Bt during potato starch degradation and found that Bt utilizes glucose that is released from Rb upon degradation of resistant potato starch and soluble potato amylopectin. Additionally, we found that Rb produces a halo of glucose around it when grown on solid media containing potato amylopectin and that Bt cells deficient for growth on potato amylopectin (∆sus Bt) can grow within the halo. Furthermore, when these ∆sus Bt cells grow within this glucose halo, they have an elongated cell morphology. This long-cell phenotype depends on the glucose concentration in the solid media: longer Bt cells are formed at higher glucose concentrations. Together, our results indicate that starch degradation by Rb cross-feeds other bacteria in the surrounding region by releasing glucose. Our results also elucidate the adaptive morphology of Bt cells under different nutrient and physiological conditions.


Assuntos
Bacteroides thetaiotaomicron , Amilopectina , Bactérias/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Glucose , Amido Resistente , Ruminococcus , Amido/metabolismo
12.
PLoS One ; 17(3): e0265430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290412

RESUMO

Increasing evidences indicate that gut microbiota composition is associated with multiple inflammatory diseases. However, little is known about how gut microbiota changes with age and correlations with gut inflammation at sexual maturity stage of healthy individuals. Elucidating the dynamic changes of gut microbiota in healthy individuals at the sexual maturity stage and correlations with gut inflammation can provide clues for early risk assessment of gut diseases at the sexual maturity stage. Here, the shift in gut bacteria and its relationship with gut inflammation at the sexual maturity stage were explored. Sprague-Dawley rats at the sexual maturity stage were used in this study. 16S rRNA gene sequencing was performed to decipher gut bacteria shifts from the 7th week to the 9th week, and enzyme-linked immunosorbent assay (ELISA) was used to measure gut inflammation and gut barrier permeability. We found an increase in bacterial richness with age and a decrease in bacterial diversity with age. The gut bacteria were primarily dominated by the phyla Firmicutes and Bacteroides and the genus Prevotella. The relative abundance of Firmicutes increased with age, and the relative abundance of Bacteroides decreased with age. There was a positive correlation between body weight and the Firmicutes:Bacteroides ratio. More and more gut microbiota participated in the host gut inflammation and barrier permeability regulation with age. Ruminococcus was the only gut bacteria participated in gut inflammation and barrier permeability regulation both in the 7th week and the 15th week. These results provide a better understanding of the relationship between gut bacteria and gut inflammation in sexually mature rats and show that Ruminococcus may be a potential indicator for early risk assessment of gut inflammation.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Bacteroides/genética , Firmicutes/genética , Inflamação , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Ruminococcus/genética
13.
Lab Med ; 53(2): e36-e39, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480169

RESUMO

Ruminococcus gnavus (R. gnavus) is a gram positive anaerobe and a member of the normal intestinal flora of humans. Here, we present a case study of bloodstream infection caused by R. gnavus in an 85 year old man. We identified R. gnavus using target DNA sequencing. The patient was treated with intravenous meropenem and ceftriaxone based on antimicrobial susceptibility tests. He recovered well and was discharged.


Assuntos
Microbioma Gastrointestinal , Sepse , Idoso de 80 Anos ou mais , Clostridiales/genética , Humanos , Masculino , Ruminococcus/genética
14.
PLoS Biol ; 19(12): e3001498, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936658

RESUMO

The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-ß-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.


Assuntos
Clostridiales/metabolismo , Mucina-1/metabolismo , Sistema ABO de Grupos Sanguíneos/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Clostridiales/genética , Clostridiales/fisiologia , Microbioma Gastrointestinal , Trato Gastrointestinal , Glicosídeo Hidrolases/metabolismo , Humanos , Mucinas/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/genética , Ruminococcus/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos
15.
Sci Rep ; 11(1): 23297, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857814

RESUMO

Accumulating evidence indicates that gut microbiota may regulate sex-hormone levels in the host, with effects on reproductive health. Very little is known about the development of intestinal microbiota during puberty in humans. To assess the connection between pubertal timing and fecal microbiota, and to assess how fecal microbiota develop during puberty in comparison with adult microbiota, we utilized a Finnish allergy-prevention-trial cohort (Flora). Data collected at 13-year follow-up were compared with adult data from a different Finnish cohort. Among the 13-year-old participants we collected questionnaire information, growth data from school-health-system records and fecal samples from 148 participants. Reference adult fecal samples were received from the Health and Early Life Microbiota (HELMi) cohort (n = 840). Fecal microbiota were analyzed using 16S rRNA gene amplicon sequencing; the data were correlated with pubertal timing and compared with data on adult microbiota. Probiotic intervention in the allergy-prevention-trial cohort was considered as a confounding factor only. The main outcome was composition of the microbiota in relation to pubertal timing (time to/from peak growth velocity) in both sexes separately, and similarity to adult microbiota. In girls, fecal microbiota became more adult-like with pubertal progression (p = 0.009). No such development was observed in boys (p = 0.9). Both sexes showed a trend towards increasing relative abundance of estrogen-metabolizing Clostridia and decreasing Bacteroidia with pubertal development, but this was statistically significant in girls only (p = 0.03). In girls, pubertal timing was associated positively with exposure to cephalosporins prior to the age of 10. Our data support the hypothesis that gut microbiota, particularly members of Ruminococcaceae, may affect pubertal timing, possibly via regulating host sex-hormone levels.Trial registration The registration number for the allergy-prevention-trial cohort: ClinicalTrials.gov, NCT00298337, registered 1 March 2006-Retrospectively registered, https://clinicaltrials.gov/show/NCT00298337 . The adult-comparison cohort (HELMi) is NCT03996304.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Puberdade/fisiologia , Caracteres Sexuais , Adolescente , Clostridiaceae , Estudos de Coortes , Estrogênios/metabolismo , Fezes/microbiologia , Feminino , Finlândia , Humanos , Masculino , Ruminococcus , Inquéritos e Questionários
16.
Front Cell Infect Microbiol ; 11: 678522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660333

RESUMO

Bead-beating within a DNA extraction protocol is critical for complete microbial cell lysis and accurate assessment of the abundance and composition of the microbiome. While the impact of bead-beating on the recovery of OTUs at the phylum and class level have been studied, its influence on species-level microbiome recovery is not clear. Recent advances in sequencing technology has allowed species-level resolution of the microbiome using full length 16S rRNA gene sequencing instead of smaller amplicons that only capture a few hypervariable regions of the gene. We sequenced the v3-v4 hypervariable region as well as the full length 16S rRNA gene in mouse and human stool samples and discovered major clusters of gut bacteria that exhibit different levels of sensitivity to bead-beating treatment. Full length 16S rRNA gene sequencing unraveled vast species diversity in the mouse and human gut microbiome and enabled characterization of several unclassified OTUs in amplicon data. Many species of major gut commensals such as Bacteroides, Lactobacillus, Blautia, Clostridium, Escherichia, Roseburia, Helicobacter, and Ruminococcus were identified. Interestingly, v3-v4 amplicon data classified about 50% of Ruminococcus reads as Ruminococcus gnavus species which showed maximum abundance in a 9 min beaten sample. However, the remaining 50% of reads could not be assigned to any species. Full length 16S rRNA gene sequencing data showed that the majority of the unclassified reads were Ruminococcus albus species which unlike R. gnavus showed maximum recovery in the unbeaten sample instead. Furthermore, we found that the Blautia hominis and Streptococcus parasanguinis species were differently sensitive to bead-beating treatment than the rest of the species in these genera. Thus, the present study demonstrates species level variations in sensitivity to bead-beating treatment that could only be resolved with full length 16S rRNA sequencing. This study identifies species of common gut commensals and potential pathogens that require minimum (0-1 min) or extensive (4-9 min) bead-beating for their maximal recovery.


Assuntos
Microbioma Gastrointestinal , Animais , Clostridiales , DNA Bacteriano/genética , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , RNA Ribossômico 16S/genética , Ruminococcus , Análise de Sequência de DNA , Streptococcus
17.
ACS Sens ; 6(11): 3957-3966, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34714054

RESUMO

The development of an extensive toolkit for potential point-of-care diagnostics that is expeditiously adaptable to new emerging pathogens is of critical public health importance. Recently, a number of novel CRISPR-based diagnostics have been developed to detect SARS-CoV-2. Herein, we outline the development of an alternative CRISPR nucleic acid diagnostic utilizing a Cas13d ribonuclease derived from Ruminococcus flavefaciens XPD3002 (CasRx) to detect SARS-CoV-2, an approach we term SENSR (sensitive enzymatic nucleic acid sequence reporter) that can detect attomolar concentrations of SARS-CoV-2. We demonstrate 100% sensitivity in patient-derived samples by lateral flow and fluorescence readout with a detection limit of 45 copy/µL. This technology expands the available nucleic acid diagnostic toolkit, which can be adapted to combat future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , Ruminococcus
18.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684459

RESUMO

Cardiovascular disease (CVD) prevalence remains elevated globally. We have previously shown that a one-week lifestyle "immersion program" leads to clinical improvements and sustained improvements in quality of life in moderate to high atherosclerotic CVD (ASCVD) risk individuals. In a subsequent year of this similarly modeled immersion program, we again collected markers of cardiovascular health and, additionally, evaluated intestinal microbiome composition. ASCVD risk volunteers (n = 73) completed the one-week "immersion program" involving nutrition (100% plant-based foods), stress management education, and exercise. Anthropometric measurements and CVD risk factors were compared at baseline and post intervention. A subgroup (n = 22) provided stool, which we analyzed with 16S rRNA sequencing. We assessed abundance changes within-person, correlated the abundance shifts with clinical changes, and inferred functional pathways using PICRUSt. Reductions in blood pressure, total cholesterol, and triglycerides, were observed without reduction in weight. Significant increases in butyrate producers were detected, including Lachnospiraceae and Oscillospirales. Within-person, significant shifts in relative abundance (RA) occurred, e.g., increased Lachnospiraceae (+58.8% RA, p = 0.0002), Ruminococcaceae (+82.1%, p = 0.0003), Faecalibacterium prausnitzii (+54.5%, p = 0.002), and diversification and richness. Microbiota changes significantly correlated with body mass index (BMI), blood pressure (BP), cholesterol, high-sensitivity C-reactive protein (hsCRP), glucose, and trimethylamine N-oxide (TMAO) changes. Pairwise decreases were inferred in microbial genes corresponding to cancer, metabolic disease, and amino acid metabolism. This brief lifestyle-based intervention improved lipids and BP and enhanced known butyrate producers, without significant weight loss. These results demonstrate a promising non-pharmacological preventative strategy for improving cardiovascular health.


Assuntos
Dieta , Microbioma Gastrointestinal , Fatores de Risco de Doenças Cardíacas , Estilo de Vida , Adulto , Biodiversidade , Biomarcadores , Pesos e Medidas Corporais , Suscetibilidade a Doenças , Faecalibacterium prausnitzii , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Projetos Piloto , Ruminococcus
19.
J Dairy Sci ; 104(11): 11580-11592, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454748

RESUMO

The continuous trend for a narrowing margin between feed cost and milk prices across dairy farms in the United States highlights the need to improve and maintain feed efficiency. Yeast culture products are alternative supplements that have been evaluated in terms of milk performance and feed efficiency; however, less is known about their potential effects on altering rumen microbial populations and consequently rumen fermentation. Therefore, the objective of this study was to evaluate the effect of yeast culture supplementation on lactation performance, rumen fermentation profile, and abundance of major species of ruminal bacteria in lactating dairy cows. Forty mid-lactation Holstein dairy cows (121 ± 43 days in milk; mean ± standard deviation; 32 multiparous and 8 primiparous) were used in a randomized complete block design with a 7-d adaptation period followed by a 60-d treatment period. Cows were blocked by parity, days in milk, and previous lactation milk yield and assigned to a basal total mixed ration (TMR; 1.6 Mcal/kg of dry matter, 14.6% crude protein, 21.5% starch, and 38.4% neutral detergent fiber) plus 114 g/d of ground corn (CON; n = 20) or basal TMR plus 100 g/d of ground corn and 14 g/d of yeast culture (YC; n = 20; Culture Classic HD, Cellerate Yeast Solutions, Phibro Animal Health Corp.). Treatments were top-dressed over the TMR once a day. Cows were individually fed 1 × /d throughout the trial. Blood and rumen fluid samples were collected in a subset of cows (n = 10/treatment) at 0, 30, and 60 d of the treatment period. Rumen fluid sampled via esophageal tubing was analyzed for ammonia-N, volatile fatty acids (VFA), and ruminal bacteria populations via quantitative PCR amplification of 16S ribosomal DNA genes. Milk yield was not affected by treatment effects. Energy balance was lower in YC cows than CON, which was partially explain by the trend for lower dry matter intake as % body weight in YC cows than CON. Cows fed YC had greater overall ruminal pH and greater total VFA (mM) at 60 d of treatment period. There was a contrasting greater molar proportion of isovalerate and lower acetate proportion in YC-fed cows compared with CON cows. Although the ruminal abundance of specific fiber-digesting bacteria, including Eubacterium ruminantium and Ruminococcus flavefaciens, was increased in YC cows, others such as Fibrobacter succinogenes were decreased. The abundance of amylolytic bacteria such as Ruminobacter amylophilus and Succinimonas amylolytica were decreased in YC cows than CON. Our results indicate that the yeast culture supplementation seems to promote some specific fiber-digesting bacteria while decreasing amylolytic bacteria, which might have partially promoted more neutral rumen pH, greater total VFA, and isovalerate.


Assuntos
Lactação , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Digestão , Eubacterium , Feminino , Fermentação , Fibrobacter , Leite , Gravidez , Rúmen/metabolismo , Ruminococcus , Saccharomyces cerevisiae , Succinivibrionaceae
20.
Artigo em Inglês | MEDLINE | ID: mdl-34398726

RESUMO

A strictly anaerobic, resistant starch-degrading, bile-tolerant, autolytic strain, IPLA60002T, belonging to the family Ruminococcaceae, was isolated from a human bile sample of a liver donor without hepatobiliary disease. Cells were Gram-stain-positive cocci, and 16S rRNA gene and whole genome analyses showed that Ruminococcus bromii was the phylogenetically closest related species to the novel strain IPLA60002T, though with average nucleotide identity values below 90 %. Biochemically, the new isolate has metabolic features similar to those described previously for gut R. bromii strains, including the ability to degrade a range of different starches. The new isolate, however, produces lactate and shows distinct resistance to the presence of bile salts. Additionally, the novel bile isolate displays an autolytic phenotype after growing in different media. Strain IPLA60002T is phylogenetically distinct from other species within the genus Ruminococcus. Therefore, we propose on the basis of phylogenetic, genomic and metabolic data that the novel IPLA60002T strain isolated from human bile be given the name Ruminococcoides bili gen. nov., sp. nov., within the new proposed genus Ruminococcoides and the family Ruminococcaceae. Strain IPLA60002T (=DSM 110008T=LMG 31505T) is proposed as the type strain of Ruminococcoides bili.


Assuntos
Bile/microbiologia , Filogenia , Ruminococcus/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , RNA Ribossômico 16S/genética , Ruminococcus/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...