Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.684
Filtrar
1.
Sci Total Environ ; 803: 149967, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482140

RESUMO

Mercury (Hg) accumulation in rice is an emerging health concern worldwide. However, sources and interactions responsible for Hg species accumulation in different rice tissues are still uncertain. Four experimental plots were carefully designed at an artisanal Hg mining site and a control site to evaluate the effect of atmospheric and soil Hg contents on Hg accumulation in rice. We showed that inorganic Hg (IHg) contents in rice tissues grown either in contaminated or control site soil (non-contaminated soil) were higher at Hg artisanal mining site than those at the control site. Elevated total gaseous mercury (TGM) levels in ambient air were the predominant source of IHg to rice at the Hg mining area. Methylmercury (MeHg) concentrations in rice plant tissues increased in proportionality with MeHg contents in paddy soil. Our results suggest that both atmosphere and soil Hg sources have been impacted the IHg accumulation in rice. Above ground rice tissues, grains, leaves, and stalk accumulated IHg from both atmosphere and soil to varying degrees. Nonetheless, the study also provides the first direct evidence that atmospheric Hg accumulated by above-ground rice tissues could be translocated to below-ground tissues (roots). However, the extent to which atmosphere or soil Hg contributes to IHg in rice tissues may vary with each source's concentration gradient at the given site. No evidence of in planta Hg methylation was found during the current study. Hence, paddy fields are potential MeHg production sites, whereas paddy soil is a unique MeHg accumulation source in rice plants. This study expands and clarifies the contribution of various sources involved in Hg accumulation in the soil rice system. The findings here provide the basis for future research strategies to deal with the global issue of Hg contaminated rice.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , China , Monitoramento Ambiental , Mercúrio/análise , Solo , Poluentes do Solo/análise
2.
Sci Total Environ ; 803: 150006, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487902

RESUMO

Soil contamination with trace metal(loid) elements (TME) is a global concern. This has focused interest on TME-tolerant plants, some of which can hyperaccumulate extraordinary amounts of TME into above-ground tissues, for potential treatment of these soils. However, intra-species variability in TME hyperaccumulation is not yet sufficiently understood to fully harness this potential. Particularly, little is known about the rhizosphere microbial communities associated with hyperaccumulating plants and whether or not they facilitate TME uptake. The aim of this study is to characterize the diversity and structure of Arabidopsis halleri rhizosphere-influenced and background (i.e., non-Arabidopsis) soil microbial communities in four plant populations with contrasting Zn and Cd hyperaccumulation traits, two each from contaminated and uncontaminated sites. Microbial community properties were assessed along with geographic location, climate, abiotic soil properties, and plant parameters to explain variation in Zn and Cd hyperaccumulation. Site type (TME-contaminated vs. uncontaminated) and location explained 44% of bacterial/archaeal and 28% of fungal community variability. A linear discriminant effect size (LEfSe) analysis identified a greater number of taxa defining rhizosphere microbial communities than associated background soils. Further, in TME-contaminated soils, the number of rhizosphere-defining taxa was 6-fold greater than in the background soils. In contrast, the corresponding ratio for uncontaminated sites, was 3 and 1.6 for bacteria/archaea and fungi, respectively. The variables analyzed explained 71% and 76% of the variance in Zn and Cd hyperaccumulation, respectively; however, each hyperaccumulation pattern was associated with different variables. A. halleri rhizosphere fungal richness and diversity associated most strongly with Zn hyperaccumulation, whereas soil Cd and Zn bioavailability had the strongest associations with Cd hyperaccumulation. Our results indicate strong associations between A. halleri TME hyperaccumulation and rhizosphere microbial community properties, a finding that needs to be further explored to optimize phytoremediation technology that is based on hyperaccumulation.


Assuntos
Arabidopsis , Microbiota , Poluentes do Solo , Biodegradação Ambiental , Cádmio , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Zinco
3.
Sci Total Environ ; 803: 150023, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500268

RESUMO

Application of organic wastes as soil fertilizers represents an important route of agricultural soil contamination by antibiotics such as sulfamethoxazole (SMX). Soil contamination may be influenced by the storage time of organic wastes before soil spreading. The objective of this work was to study the fate of SMX in two organic wastes, a co-compost of green waste and sewage sludge and a bovine manure, which were stored between 0 and 28 days, then incorporated in an agricultural soil that has never received organic waste and monitored for 28 days under laboratory conditions. Organic wastes were spiked with 14C-labelled SMX at two concentrations (4.77 and 48.03 mg kg-1 dry organic waste). The fate of SMX in organic wastes and soil-organic waste mixtures was monitored through the distribution of radioactivity in the mineralised, available (2-hydroxypropyl-ß-cyclodextrin extracts), extractable (acetonitrile extracts) and non-extractable fractions. SMX dissipation in organic wastes, although partial, was due to i) incomplete degradation, which led to the formation of metabolites detected by high performance liquid chromatography, ii) weak adsorption and iii) formation of non-extractable residues. Such processes varied with the organic wastes, the manure promoting non-extractable residues, and the compost leading to an increase in extractable and non-extractable residues. Short storage does not lead to complete SMX elimination; thus, environmental contamination may occur after incorporating organic wastes into soil. After addition of organic wastes to the soil, SMX residues in the available fraction decreased quickly and were transferred to the extractable and mostly non-extractable fractions. The fate of SMX in the soil also depended on the organic wastes and on the prior storage time for manure. However the fate of SMX in the organic wastes and soil-organic waste mixtures was independent on the initial spiked concentration.


Assuntos
Compostagem , Poluentes do Solo , Animais , Bovinos , Esterco , Esgotos , Solo , Sulfametoxazol
4.
Sci Total Environ ; 803: 150025, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500273

RESUMO

There is a strong need for certified reference materials in the quality assurance of nonionic soil contaminant bioavailability estimations through physicochemical methods. We applied desorption extraction, a method recently standardized as ISO16751, to determine the bioavailable concentration of the most commonly regulated polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene (BaP), in the reference industrial soil BCR-524 with a certified BaP total concentration of 8.60 mg kg-1. This concentration represented BaP levels found in many PAH-polluted soils. The method, based on single-point extraction of the analyte desorbed into the aqueous phase by a receiving phase (Tenax or cyclodextrin), was applied ten times. The data fulfilled highly demanding quality criteria based on recovery and repeatability. The bioavailable BaP concentration detected through Tenax extraction, 1.82 mg kg-1, was comparable to bioavailable concentrations determined in field-contaminated soils and to environmental quality standards based on previously observed total BaP concentrations. There was good agreement (Student's t-test, P ≤ 0.05) with the bioavailable BaP concentration determined by cyclodextrin extraction (1.53 mg kg-1). The methods were extended to four other certified 4- and 5-ringed PAHs for comparative purposes. We suggest ways of improving of the ISO16751 standard related to further systematic assessment of the Tenax-to-soil ratio and incorporation of mass balances. Furthermore, BCR-524 is suitable for quality-assurance protocols with these methods when used in site-specific risk assessments of PAH-polluted environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Benzo(a)pireno/análise , Biodegradação Ambiental , Disponibilidade Biológica , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
5.
Sci Total Environ ; 803: 149864, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500282

RESUMO

Understanding the distribution of hyperaccumulators helps to implement more efficient phytoremediation strategies of contaminated sites, however, limited information is available. Here, we investigated the geographical distribution of the first-known arsenic-hyperaccumulator Pteris vittata in China and the key factors under two climate change scenarios (SSP 1-2.6 and SSP 5-8.5) at two time points (2030 and 2070). Species distribution model (MaxEnt) was applied to examine P. vittata distribution based on 399 samples from field surveys and existing specimen records. Further, among 23 environmental factors, 11 variables were used in the MaxEnt model, including temperature, precipitation, elevation, soil property, and UV-B radiation. The results show that P. vittata can grow in ~23% of the regions in China. Specifically, it is mainly distributed in 11 provinces of southern China, including Hainan, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Jiangxi, Fujian, Zhejiang, and Jiangsu. Besides, eastern Sichuan, and southern Henan, Shaanxi, and Anhui are suitable for P. vittata growth. Under two climate change scenarios, P. vittata distribution in China would decrease by ~5.76-7.46 × 104 km2 in 2030 and ~3.22-4.68 × 104 km2 in 2070, with southern Henan and most Jiangsu being unsuitable for P. vittata growth. Among the 11 environmental variables, the minimum temperature of coldest month (bio6) and temperature annual range (bio7) are the two key factors limiting P. vittata distribution. At bio6 <-5 °C and/or bio7 >33 °C, the regions are unsuitable for P. vittata growth. Based on the MaxEnt model, precipitation had limited effects, so P. vittata can probably survive under both dry and moist environments. This study helps guide phytoremediation of As-polluted soils using P. vittata and provides an example to evaluate habitat suitability of hyperaccumulators at international scales.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Biodegradação Ambiental , China , Mudança Climática , Poluentes do Solo/análise
6.
Sci Total Environ ; 803: 150102, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525682

RESUMO

Paddy rice is efficient at arsenite accumulation by sharing the uptake and transport pathway for silicic acid. To limit As entry into rice by increasing soil Si availability, rice husk with concentrated Si deposition was subject to an ethanol-aided open combustion in this work to promote Si release from organic matrix. Compared to original husk, the content of amorphous silica was almost tripled in the resultant ash (Si-ash) with an apparent elimination of hydrocarbon groups. Following its incorporation into soil, 3.4-fold higher Si dissolution was maintained in rice rhizosphere compared to control, which was accompanied by 15.9-40.5% decrease in porewater As from tillering to harvest. Correspondingly, As sequestration in soil solid phase and root plaque increased by 8.0% and 26.9% with Si-ash, which could result from promoted FeAs co-precipitation by the liming effect of Si-ash and was linked to a notable decline in As transport through node I. Consequently, inorganic As (iAs) in white rice decreased from 0.36 mg kg-1 in control to 0.17 mg kg-1 with Si-ash, which is 15% lower than Chinese food safety standard. Results from this study highlight the advantage of Si-ash in securing rice production by mitigating iAs accumulation in white rice with fortified Si nutrition.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Grão Comestível/química , Solo , Poluentes do Solo/análise
7.
Sci Total Environ ; 803: 149866, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525768

RESUMO

Heavy metal (HM) soil pollution has become an increasingly serious problem with the development of industries. Application of biochar in HMs remediation from contaminated environment has attracted considerable research attention during the past decade. Although the mechanism of HMs passivation with biochar has been investigated, effects and mechanisms of interaction among soil-indigenous microbes and novel carbon matrix composites for HMs adsorption and passivation are still unclear. Four different biochar-loaded aerogels, namely, BNCA-1-600, BNCA-1-900, BNCA-2-600, and BNCA-2-900, were synthesized in this study. Adsorption capacity of four kinds of synthetic materials and two types of contrast biochars (BC600 and BC900) to HMs in aqueous solution, passivation capacity of HMs in soil, and effects on soil organic matter and microbial community were explored. Results showed that BNCA-2-900 exhibits excellent adsorption property and a maximum removal capacity of 205.07 mg·g-1 at 25 °C for Pb(II), 105.56 mg·g-1 for Cd(II), and 137.89 mg·g-1 for Zn(II). Leaching concentration of HMs in contaminated soil can meet the national standard of China (GB/T 5085.3-2007) within 120 days. Results of this study confirmed that the additive BNCA-2-900 and coexistence of indigenous microorganisms can effectively reduce bioavailability of HMs. Another potential mechanism may be to remove the passivation of HMs by porous structure and surface functional groups as well as improve the content of organic matter and microbial abundance. The research results may provide a novel perceptive for the development of functional materials and strategies for eco-friendly and sustainable multiple HMs remediation in contaminated soil and water by using a combination of carbon matrix composites and soil-indigenous microorganisms.


Assuntos
Metais Pesados , Microbiota , Nanopartículas , Poluentes do Solo , Carvão Vegetal , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Zinco
8.
Sci Total Environ ; 803: 149871, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525770

RESUMO

Heavy metal pollution in coastal zone is a global environment problem concerning the international society. As an eco-friendly and economical method, phytoremediation is a promising strategy for improving heavy metal pollution in coastal soil. In order to alleviate the ecological risk of heavy metal pollution in Jinzhou Bay, a typical and important heavy industrial area in China, three local wetland plants (Scirpus validus, Typha orientalis and Phragmites australis) were selected and planted in the field. The plants showed strong tolerance of high concentrations of heavy metals. Stressed by the heavy metals, the root weight of S. validus and P. australis increased 114.74% and 49.91%, respectively. The concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, Hg) accumulated in the plant roots were 4-60 times higher than that in plant shoots. The SEM analysis found that abundant heavy metals were adhered to the root surface closely. Bioconcentration factor of heavy metals on the plant roots were 0.08-0.89 (except Cr, Ni), while the translocation factor from roots to above ground of plants were 0.02-0.27. Furthermore, the wetland plants improved the regional ecological environment quality. The concentrations of heavy metals in the rhizosphere soil decreased significantly. Compared with the bulk soil, the potential ecological risk index in the rhizosphere soil reduced 26.51%-69.14%. Moreover, the microbial diversity in rhizosphere soil increased significantly, and the abundances of Proteobacteria and Bacteroidetes also increased in rhizosphere soil. Pearson correlations indicated that Hg, As, Ni and Cr were negatively correlated with Proteobacteria (p < 0.05), and Cu was significantly negative correlated with Bacteroidetes (p < 0.05). The results support that using suitable local plants is a promising approach for repairing heavy metal contaminated costal soil, not only because it can improve the regional ecological environment quality, but also because it can enhance the landscape value of coastal zone.


Assuntos
Metais Pesados , Poluentes do Solo , Baías , China , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Áreas Alagadas
9.
Chemosphere ; 286(Pt 2): 131628, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34333186

RESUMO

To observe the co-transport of Cd(Ⅱ) with nanoscale As2S3 (nAs2S3) in a soil-packed column under different ionic strength (IS). A soil-packed column experiment with Cd(Ⅱ) and nAs2S3 was conducted. The results show that the transport of Cd(Ⅱ) was facilitated remarkably in the presence of nAs2S3, and nano-associated-Cd(Ⅱ) was the major migration type. However, the co-transport of Cd(Ⅱ) and nAs2S3 was affected by IS. The Cd(Ⅱ) concentration in the effluent to initial Cd(Ⅱ) concentration decreased from 38.75% to 29.95% and 22.28% as IS increased from 1 mM to 10 mM and 50 mM. When IS was 1 mm, 10 mm and 50 mm, the retention of nAs2S3 increased from 74.29% to 78.95% and 85.9% respectively. The agglomeration and sedimentation of nAs2S3 were the main reason for the rise of retention. Due to the increase of retention and reduction in adsorption capacity of nAs2S3 to Cd(Ⅱ), the ratio of migration in the form of nano-associated-Cd(Ⅱ) reduced from 53% (IS 1 mM) to 27.4% (IS 10 mM) and 18.2% (IS 50 mM). During the transport, the IS promoted desorption of Cd(Ⅱ) from nAs2S3 so that more soluble Cd was monitored in the effluent as IS increased. In general, these findings can provide references for controlling the risk caused by the co-transport of nAs2S3 and Cd(Ⅱ) in saline-alkali soil.


Assuntos
Poluentes do Solo , Solo , Adsorção , Cádmio/análise , Concentração Osmolar , Poluentes do Solo/análise
10.
Chemosphere ; 286(Pt 2): 131567, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34343920

RESUMO

Soil bacterial community (SBC) and fertility are pivotal for the evaluation of phytoremediation performance. Although affected by earthworms (E) and arbuscular mycorrhizal fungi (AMF), little is known about the impacts of the E-AMF interaction on the variation of SBC and fertility in cadmium (Cd)-spiked soil. We elucidated these impacts in rhizosphere soil of Solanum nigrum L. Loss of nutrient availability, and SBC diversity was observed in Cd-polluted soil. AMF increased available phosphorous (AP), whereas E increased available potassium (AK). In soils with 60 and 120 mg/kg Cd, the contents of AK, AP, and soil organic matter (SOM) increased by 7.0-19.7%, 23.7-25.5%, and 11.5-17.4%, respectively; and the residual Cd after remediation decreased by 7.9-8.5% in soils treated with EAM compared to untreated soil. EAM-treated soil had higher alpha diversity estimators compared to uninoculated soil. The predominant bacterial phyla were Proteobacteria and Bacteroidetes, accounting for 72.5-84.0%. Redundancy analysis showed that total carbon (TC), SOM, pH, and C/N ratio were key factors determining SBC at the phylum level, explaining 26.9, 24.1, 15.1, and 14.8% of the total variance, respectively. These results suggested that EAM affected SBC composition by altering SOM, TC, and C/N ratio. The E-AMF cooperation ameliorates soil nutrients, SBC diversity, and composition, facilitating phytoextraction processes.


Assuntos
Microbiota , Micorrizas , Oligoquetos , Poluentes do Solo , Animais , Cádmio/análise , Fertilidade , Fungos , Raízes de Plantas/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise
11.
Chemosphere ; 286(Pt 2): 131750, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352537

RESUMO

The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Peróxido de Hidrogênio , Petróleo/análise , Esgotos , Microbiologia do Solo , Poluentes do Solo/análise , Tensoativos
12.
Chemosphere ; 286(Pt 2): 131787, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365168

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are important mutagen prevalent in the contaminated sites, bringing potential risks to human health. Iron oxides are important natural components in soils. Pyrene removal in soil using persulfate (PS) oxidation activated by microwave (MW) and magnetite (Fe3O4) was investigated. Fe3O4 significantly promoted pyrene removal in the soil; 91.7 % of pyrene was degraded within 45 min treatment. Pyrene removal rate in the Fe3O4/MW/PS system was 5.18 and 3.00 times higher than that in the Fe3O4/PS and MW/PS systems. Increasing in Fe3O4 dosage, PS concentration, MW temperature, and soil moisture content in the selected range were conducive for pyrene degradation. SO4•-, •OH, O2•-, and 1O2 were responsible for pyrene degradation, and the conversion of Fe (Ⅱ) in the Fe3O4 to Fe (Ⅲ) contributed to the formation of O2•- and 1O2. Characteristic bands of pyrene were more obviously destroyed by the Fe3O4/MW/PS oxidation, in comparison with MW/PS oxidation. Ring hydroxylation and ring-opening reactions were the main degradation pathways of pyrene. The toxicities of the formed byproducts were significantly reduced after treatment. This study provided a promising option for pyrene contaminated soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Óxido Ferroso-Férrico , Humanos , Micro-Ondas , Pirenos , Solo , Poluentes do Solo/análise
13.
Chemosphere ; 286(Pt 2): 131707, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365170

RESUMO

2-Pentanone is an excellent organic solvent and extractant, which is widely used in industrial production. 2-Pentanone is harmful to soil organisms when it enters the soil. However, current studies have not clarified the response of the antioxidant enzyme superoxide dismutase (SOD) to 2-Pentanone and its mechanism. In this study, the response of earthworm antioxidant enzyme SOD to 2-Pentanone and its molecular mechanism was investigated at organism molecular levels. The results showed that the SOD activity of earthworms under 2-Pentanone stress was significantly inhibited, and the inability of superoxide anion radicals (·O2-) to be scavenged in time might be one of the reasons for the increase of lipid peroxidation. Under 2-Pentanone exposure conditions, catalase (CAT), an antioxidant enzyme closely related to SOD, and the total antioxidant capacity (T-AOC) of earthworms were activated to resist oxidative damage. On the other hand, the observation of earthworm microstructure provided evidence of a direct risk of 2-Pentanone on earthworm body wall tissues. Molecular-level assays have shown that 2-pentanone altered the secondary structure of SOD, which further led to the loosening of the SOD backbone structure and the extension of the polypeptide chain. On the other hand, 2-pentanone quenched the endogenous fluorescence of SOD in the form of static quenching and formed the 2-pentanone/SOD complex. Molecular simulation results suggested that 2-pentanone tended to bind on the surface of SOD rather than close to the active site, and it is speculated that the alteration of SOD structure is the key reason for the change in its activity. This study enriches the toxicological data of 2-Pentanone on soil organisms, thus responding to the current concerns about its ecological risk.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Catalase/metabolismo , Malondialdeído , Oligoquetos/metabolismo , Estresse Oxidativo , Pentanonas , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismo
14.
Chemosphere ; 286(Pt 2): 131663, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371357

RESUMO

In this study, an immobilization method for forming and keeping dominant petroleum degradation bacteria was successfully developed by immobilizing Pseudomonas, Acinetobacter, and Sphingobacterium genus bacteria on wheat bran biochar pyrolyzed at 300, 500, and 700 °C. The removal efficiency indicated that the highest TPHs (total petroleum hydrocarbons) removal rate of BC500-4 B (biochar pyrolyzed at 500 °C with four kinds of petroleum bacteria) was 58.31%, which was higher than that of BC500 (36.91%) and 4 B (43.98%) used alone. The soil properties revealed that the application of biochar increased the content of organic matter, available phosphorus, and available potassium, but decreased pH and ammonium nitrogen content in soil. Bacterial community analysis suggested that the formation of dominant degrading community represented by Acinetobacter played key roles in TPHs removal. The removal rate of alkanes was similar to that of TPHs. Besides, biochar and immobilized material can also mediate greenhouse gas emission while removing petroleum, biochar used alone and immobilized all could improve CO2 emission, but decrease N2O emission and had no significant impact on CH4 emission. Furthermore, it was the first time to found the addition of Acinetobacter genus bacteria can accelerate the process of forming a dominant degrading community in wheat bran biochar consortium. This study focused on controlling greenhouse gas emission which provides a wider application of combining biochar and bacteria in petroleum soil remediation.


Assuntos
Gases de Efeito Estufa , Petróleo , Poluentes do Solo , Álcalis , Bactérias , Biodegradação Ambiental , Carvão Vegetal , Fibras na Dieta , Gases de Efeito Estufa/análise , Hidrocarbonetos , Petróleo/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
15.
Chemosphere ; 286(Pt 2): 131784, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371358

RESUMO

Humus is an important parameter to affect the environmental fate of arsenic (As) in tailing soil. According to the batch and column experiment, the effects of humus (HS) including humic acid (HA), fulvic acid (FA) on the As release and basic properties of soil were studied in the soil from a mining region. In addition, HA was modified by 3-mercaptopropyltrimethoxysilane (3-MPTS) with different sulfur content (S%) to improve the release capacity of As. The results indicated that HS could destroy the binding of As with Fe, Mn, Al and Ca without affecting the basic properties of tailings soil, thus achieving the co-release of As and associated metals. Besides, the As release capacity of FA (25.47 %) was slightly higher than that of HA (21.90 %). The ability of thiol-modified HAs to release As from tailings soil after being modified with different S% of 3-MPTS was significantly improved, of which 2 % had the best treatment. The thiol groups (-SH) reached 45.00 % of total S. With the increase of S%, the surface thoil content, aromatization degree and total reduction capacity (TRC) of HA increased. The study demonstrated that HS and thiol-modified HA could promote the migration of As and could advance the treatment of heavy metal contaminated tailing soil.


Assuntos
Arsênio , Poluentes do Solo , Benzopiranos , Substâncias Húmicas/análise , Solo , Poluentes do Solo/análise , Compostos de Sulfidrila
16.
Chemosphere ; 286(Pt 2): 131782, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34375825

RESUMO

The current study was dedicated to finding the effect of soil amendments (biochar and compost) on plants belonging to Poaceae and Fabaceae families. Plants selected for the phytoremediation experiment included wheat (Triticum aestivum), maize (Zea mays), white clover (Trifolium repens), alfalfa (Medicago sativa), and ryegrass (Lolium multiflorum). The physiological and microbial parameters of plants and soil were affected negatively by the 4 % TPHs soil contamination. The studied physiological parameters were fresh and dried biomass, root and shoot length, and chlorophyll content. Microbial parameters included root and shoot endophytic count. Soil parameters included rhizospheric CFUs and residual TPHs. Biochar with wheat, maize, and ryegrass (Fabaceae family) and compost with white clover and alfalfa (Poaceae family) improved plant growth parameters and showed better phytoremediation of TPHs. Among different plants, the highest TPH removal (68.5 %) was demonstrated by ryegrass with compost, followed by white clover with biochar (68 %). Without any soil amendment, ryegrass and alfalfa showed 59.55 and 35.21 % degradation of TPHs, respectively. Biochar and compost alone removed 27.24 % and 6.01 % TPHs, respectively. The interactive effect of soil amendment and plant type was also noted for studied parameters and TPHs degradation.


Assuntos
Compostagem , Lolium , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Humanos , Hidrocarbonetos , Medicago sativa , Poaceae , Solo , Poluentes do Solo/análise
17.
Chemosphere ; 286(Pt 3): 131805, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34391113

RESUMO

Phytomining of noble metals (NMs) offers a promising possibility of metal extraction at sites where traditional mining activities or recovering NMs from low-grade minerals are not competitive. In addition to conventional mining, producing NMs from secondary resources strengthening the circular economy has been paid worldwide attention. The review presented in this paper links three scientific areas as the essential elements to form the phytomining chain of NMs. The accumulation of NMs in plants is the first step, referred as the phytoextraction process. This is followed by heightening the concentration of NMs via the enrichment stage. Eventually, although less well understood, extraction methods of NMs from biomass solid remains as well as from diverse secondary sources particularly incineration ashes are discussed that assist to visualize the potential pathways in phytomining.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Incineração , Metais , Metais Pesados/análise , Mineração , Poluentes do Solo/análise
18.
Chemosphere ; 286(Pt 3): 131860, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34391116

RESUMO

Stabilization/solidification (S/S) is a low-cost and effective remedial technique for dredged contaminated sediments. Quick lime (CaO)-activated and reactive magnesia (MgO)-activated ground granulated blast furnace slag (GGBS) are effective and low-carbon S/S binders. However, the existence of metals, especially Zn, in contaminated sediments, may hinder the hydration of GGBS. This study compared the performance and mechanisms of CaO-GGBS, MgO-GGBS and ordinary Portland cement (OPC) for the treatment of Zn-contaminated clay slurry using unconfined compressive strength (UCS) test, one-stage batch leaching test, and mineralogical and thermal analyses. The results showed that the application of the MgO-GGBS (GGBS dosage of 10 % and MgO of 0 %-3 % (of dry clay by mass)) had positive effects on the mechanical strength and Zn immobilization of the contaminated clay slurry while the CaO-GGBS affected negatively and the situation became even worse at a higher CaO dosage (0 %-1.5 % of dry clay by mass). In comparison with OPC, the application of MgO-GGBS produced higher mechanical strength and that for CaO-GGBS was the lowest. The Zn leaching difference depends on initial Zn concentrations. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) results showed that a retarder, calcium zinc hydroxide, formed in the immobilization process when adding the CaO-GGBS binder, hindering the GGBS hydration and further leading to inferior strength and higher Zn leachability. The clay slurry treated by the MgO-GGBS binder was found to have a higher calcium silicate hydrate content which explained its high strength and low leachability.


Assuntos
Poluentes do Solo , Argila , Óxido de Magnésio , Solo , Poluentes do Solo/análise , Zinco
19.
Chemosphere ; 286(Pt 3): 131810, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399259

RESUMO

In this study, the composite materials using different ratios of biochar (BC) to nano-hydroxyapatite (nHAP) were prepared for the remediation of lead (Pb) and cadmium (Cd) contaminated water and soil. The sorption and the immobilization experiments indicated a higher sorption capacity and immobilization efficiency of Pb compared to those of Cd. The characteristics of XRD, FTIR, SEM, and XPS manifested that dissolution-precipitation, cation exchange, complexation, and cation-π interaction were the main four mechanisms for the sorption of Pb2+ and Cd2+ using composite material PC1 (nHAP/BC = 1/1). From semi-quantitative analysis, the mineral effect accounted for the majority of the immobilization of Pb and Cd. Due to obvious Pb-precipitates in the sorbed material, dissolution-precipitation primarily affected the sorption of Pb using PC1, while the immobilization of Cd was mainly attributable to cation exchange. Such results corresponded to the stable Pb-precipitates and unstable Cd-compounds in soil, among which the latter was prone to be released into the environment. The sorption capacity in aqueous solutions and the immobilization efficiencies in the soil for both Pb and Cd increased with the addition of nHAP, which were linearly correlated to the nHAP proportion in the composite materials. In future practical applications, the percentages of composite materials can be designed according to the specific pollutant concentration. This study sheds light on the explicit immobilization mechanisms for Pb and Cd in aqueous solutions to better understand their behaviors in the soil remediated by relevant materials.


Assuntos
Cádmio , Poluentes do Solo , Adsorção , Carvão Vegetal , Durapatita , Chumbo , Solo , Poluentes do Solo/análise , Água
20.
Chemosphere ; 286(Pt 3): 131885, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34411930

RESUMO

In Istanbul, which is surrounded by the sea on 3 sides, thousands of tons of seaweed that have formed naturally every year are washed ashore. In this study, the usability of these seaweeds which are landfilling already in fertilizer production was discussed. Liquid fertilizer production was carried out using 3 different physical and 4 different biological methods, and the produced fertilizers were diluted in 5 different ratios (1%, 10%, 25%, 50%, and 100%) and applied to cress seed. The effect of each fertilizer and its concentration on seed germination, plant length, number of leaves, and soil moisture-holding capacity was studied. The data obtained were analyzed using Response Surface Methodology (RSM). The results showed that if seaweed was fermented with anaerobic seed sludge for 15 days and applied to the plant by diluting it to 15-25%, plant growth will be supported at an optimum level. It has also been shown that if the seaweed was fermented with yeast culture for 18 days and fed with a concentration of >90%, the moisture-holding capacity of the soil could be increased by up to 27%.


Assuntos
Alga Marinha , Poluentes do Solo , Fertilizantes/análise , Esgotos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...