Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
1.
Aerosp Med Hum Perform ; 92(8): 689-691, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503622

RESUMO

INTRODUCTION: In 1991, Bechtel and Berning proposed that a decrement in morale and well-being affects people working in isolated and confined environments during the third quarter of their mission. Studies conducted during such conditions have suggested that whereas some people may experience such a phenomenon, it is not a typical occurrence in space or space simulation environments. Possible reasons for varying outcomes include demand characteristic bias, individual personality traits, training omissions, experimental methodological issues, and the impact of mission events on crewmember well-being. Research related to a future Mars expedition needs to investigate the impact of these factors.Kanas N, Gushin V, Yusupova A. Whither the third quarter phenomenon? Aerosp Med Hum Perform. 2021; 92(8):689691.


Assuntos
Expedições , Voo Espacial , Astronautas , Humanos , Simulação de Ambiente Espacial
2.
Talanta ; 234: 122620, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364429

RESUMO

We developed a methodology for rapid quantification of extracellular neurotransmitters in mouse brain by PESI/MS/MS and longitudinal data analysis using the R and Stan-based Bayesian state-space model. We performed a rapid analysis for quantifying extracellular l-glutamic acid (L-Glu) and gamma-aminobutyric acid (GABA) in the mouse striatum by combined use of probe electrospray ionization/tandem mass spectrometry (PESI/MS/MS) and in vivo brain microdialysis. We optimized the PESI/MS/MS parameters with the authentic L-Glu, GABA, L-Glu-13C5,15N1, and GABA-D6 standards. We constructed calibration curves of L-Glu and GABA with the stable isotope internal standard correction method (L-Glu-13C5,15N1, and GABA-D6), demonstrating sufficient linearity (R > 0.999). Additionally, the quantitative method for L-Glu and GABA was validated with low-, middle-, and high-quality control samples. The intra- and inter-day accuracy and precision were 0.4%-7.5% and 1.7%-5.4% for L-Glu, respectively, and 0.1%-4.8% and 2.1%-5.7% for GABA, respectively, demonstrating high reproducibility of the method. To evaluate the feasibility of this method, microdialyses were performed on free-moving mice that were stimulated by high-K+-induced depolarization under different sampling conditions: 1) every 5 min for 150 min (n = 2) and 2) every 1 min for 30 min (n = 3). We applied the R and Stan-based Bayesian state-space model to each mouse's time-series data considering autocorrelation, and the model successfully detected abnormal changes in the L-Glu and GABA levels in each mouse. Thus, the L-Glu and GABA levels in all microdialysates approximately increased up to two- and seven-fold levels through high-K+-induced depolarization. Additionally, a 1-min temporal resolution was achieved using this method, thereby successfully monitoring microenvironmental changes in the extracellular L-Glu and GABA of the mouse striatum. In conclusion, this methodology using PESI/MS/MS and Bayesian state-space model allowed easy monitoring of neurotransmitters at high temporal resolutions and appropriate data interpretation considering autocorrelation of time-series data, which will reveal hidden pathological mechanisms of brain diseases, such as Parkinson's disease and Huntington's disease in the future.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Teorema de Bayes , Encéfalo , Análise de Dados , Ácido Glutâmico , Camundongos , Microdiálise , Neurotransmissores , Reprodutibilidade dos Testes , Simulação de Ambiente Espacial
3.
PLoS One ; 16(8): e0245642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34375334

RESUMO

The study aimed to model and quantify the health burden induced by four non-communicable diseases (NCDs) in Egypt, the first to be conducted in the context of a less developing county. The study used the State-Space model and adopted two Bayesian methods: Particle Filter and Particle Independent Metropolis-Hastings to model and estimate the NCDs' health burden trajectories. We drew on time-series data of the International Health Metric Evaluation, the Central Agency for Public Mobilization and Statistics (CAPMAS) Annual Bulletin of Health Services Statistics, the World Bank, and WHO data. Both Bayesian methods showed that the burden trajectories are on the rise. Most of the findings agreed with our assumptions and are in line with the literature. Previous year burden strongly predicts the burden of the current year. High prevalence of the risk factors, disease prevalence, and the disease's severity level all increase illness burden. Years of life lost due to death has high loadings in most of the diseases. Contrary to the study assumption, results found a negative relationship between disease burden and health services utilization which can be attributed to the lack of full health insurance coverage and the pattern of health care seeking behavior in Egypt. Our study highlights that Particle Independent Metropolis-Hastings is sufficient in estimating the parameters of the study model, in the case of time-constant parameters. The study recommends using state Space models with Bayesian estimation approaches with time-series data in public health and epidemiology research.


Assuntos
Doenças não Transmissíveis/epidemiologia , Teorema de Bayes , Efeitos Psicossociais da Doença , Egito/epidemiologia , Carga Global da Doença/métodos , Saúde Global , Serviços de Saúde , Humanos , Aceitação pelo Paciente de Cuidados de Saúde , Fatores de Risco , Simulação de Ambiente Espacial/métodos
4.
J R Soc Interface ; 18(181): 20210222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343451

RESUMO

Flying animals resort to fast, large-degree-of-freedom motion of flapping wings, a key feature that distinguishes them from rotary or fixed-winged robotic fliers with limited motion of aerodynamic surfaces. However, flapping-wing aerodynamics are characterized by highly unsteady and three-dimensional flows difficult to model or control, and accurate aerodynamic force predictions often rely on expensive computational or experimental methods. Here, we developed a computationally efficient and data-driven state-space model to dynamically map wing kinematics to aerodynamic forces/moments. This model was trained and tested with a total of 548 different flapping-wing motions and surpassed the accuracy and generality of the existing quasi-steady models. This model used 12 states to capture the unsteady and nonlinear fluid effects pertinent to force generation without explicit information of fluid flows. We also provided a comprehensive assessment of the control authority of key wing kinematic variables and found that instantaneous aerodynamic forces/moments were largely predictable by the wing motion history within a half-stroke cycle. Furthermore, the angle of attack, normal acceleration and pitching motion had the strongest effects on the aerodynamic force/moment generation. Our results show that flapping flight inherently offers high force control authority and predictability, which can be key to developing agile and stable aerial fliers.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Simulação de Ambiente Espacial
5.
Psychol Sci ; 32(8): 1262-1270, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252325

RESUMO

The visual world contains more information than we can perceive and understand in any given moment. Therefore, we must prioritize important scene regions for detailed analysis. Semantic knowledge gained through experience is theorized to play a central role in determining attentional priority in real-world scenes but is poorly understood. Here, we examined the relationship between object semantics and attention by combining a vector-space model of semantics with eye movements in scenes. In this approach, the vector-space semantic model served as the basis for a concept map, an index of the spatial distribution of the semantic similarity of objects across a given scene. The results showed a strong positive relationship between the semantic similarity of a scene region and viewers' focus of attention; specifically, greater attention was given to more semantically related scene regions. We conclude that object semantics play a critical role in guiding attention through real-world scenes.


Assuntos
Semântica , Percepção Visual , Movimentos Oculares , Humanos , Reconhecimento Visual de Modelos , Simulação de Ambiente Espacial
6.
Psychometrika ; 86(2): 378-403, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939062

RESUMO

Classic item response models assume that all items with the same difficulty have the same response probability among all respondents with the same ability. These assumptions, however, may very well be violated in practice, and it is not straightforward to assess whether these assumptions are violated, because neither the abilities of respondents nor the difficulties of items are observed. An example is an educational assessment where unobserved heterogeneity is present, arising from unobserved variables such as cultural background and upbringing of students, the quality of mentorship and other forms of emotional and professional support received by students, and other unobserved variables that may affect response probabilities. To address such violations of assumptions, we introduce a novel latent space model which assumes that both items and respondents are embedded in an unobserved metric space, with the probability of a correct response decreasing as a function of the distance between the respondent's and the item's position in the latent space. The resulting latent space approach provides an interaction map that represents interactions of respondents and items, and helps derive insightful diagnostic information on items as well as respondents. In practice, such interaction maps enable teachers to detect students from underrepresented groups who need more support than other students. We provide empirical evidence to demonstrate the usefulness of the proposed latent space approach, along with simulation results.


Assuntos
Avaliação Educacional , Simulação de Ambiente Espacial , Humanos , Probabilidade , Psicometria , Inquéritos e Questionários
7.
Artigo em Inglês | MEDLINE | ID: mdl-33808764

RESUMO

In this paper, we propose a latent pandemic space modeling approach for analyzing coronavirus disease 2019 (COVID-19) pandemic data. We developed a pandemic space concept that locates different regions so that their connections can be quantified according to the distances between them. A main feature of the pandemic space is to allow visualization of the pandemic status over time through the connectedness between regions. We applied the latent pandemic space model to dynamic pandemic networks constructed using data of confirmed cases of COVID-19 in 164 countries. We observed the ways in which pandemic risk evolves by tracing changes in the locations of countries within the pandemic space. Empirical results gained through this pandemic space analysis can be used to quantify the effectiveness of lockdowns, travel restrictions, and other measures in regard to reducing transmission risk across countries.


Assuntos
COVID-19 , Pandemias , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2 , Simulação de Ambiente Espacial
8.
IEEE J Biomed Health Inform ; 25(9): 3587-3595, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33755571

RESUMO

Predicting mortality risk in patients accurately during and after intensive care unit (ICU) stay is an essential component for supporting critical care decision-making. To date, various scoring systems have been designed for survival analysis and mortality prediction by providing risk scores based on patient's vital signs and lab results. However, it is challenging using these universal scores to represent the overall severity level of illness and to look into patient's deterioration leading to high mortality risk during ICU stay. Thus, a close monitoring of the severity level over time during ICU stay is more preferable. In this study, we design a new switching state-space model by correlating patient's condition dynamics in last hours of ICU stay to the risk probabilities in a short time period (1-6 days) after ICU discharge. More specifically, we propose to integrate a cumulative hazard function estimating survival probability into the autoregressive hidden Markov model using time-interval sequential SAPS II scores as features. We demonstrate the significant improvement of mortality prediction comparing to SAPS I, SAPS II, and SOFA scoring systems for the PhysioNet MIMIC II Challenge data.


Assuntos
Unidades de Terapia Intensiva , Sinais Vitais , Mortalidade Hospitalar , Humanos , Prognóstico , Fatores de Risco , Simulação de Ambiente Espacial , Análise de Sobrevida
9.
Biometrics ; 77(1): 352-361, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32243577

RESUMO

State-space models (SSMs) are a popular tool for modeling animal abundances. Inference difficulties for simple linear SSMs are well known, particularly in relation to simultaneous estimation of process and observation variances. Several remedies to overcome estimation problems have been studied for relatively simple SSMs, but whether these challenges and proposed remedies apply for nonlinear stage-structured SSMs, an important class of ecological models, is less well understood. Here we identify improvements for inference about nonlinear stage-structured SSMs fit with biased sequential life stage data. Theoretical analyses indicate parameter identifiability requires covariates in the state processes. Simulation studies show that plugging in externally estimated observation variances, as opposed to jointly estimating them with other parameters, reduces bias and standard error of estimates. In contrast to previous results for simple linear SSMs, strong confounding between jointly estimated process and observation variance parameters was not found in the models explored here. However, when observation variance was also estimated in the motivating case study, the resulting process variance estimates were implausibly low (near-zero). As SSMs are used in increasingly complex ways, understanding when inference can be expected to be successful, and what aids it, becomes more important. Our study illustrates (a) the need for relevant process covariates and (b) the benefits of using externally estimated observation variances for inference about nonlinear stage-structured SSMs.


Assuntos
Grupos de População Animal , Dinâmica não Linear , Animais , Modelos Teóricos , Dinâmica Populacional , Simulação de Ambiente Espacial
10.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190568, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33222635

RESUMO

There is strong interest in lunar exploration from governmental space agencies, private companies and the public. NASA is about to send humans to the lunar surface again within the next few years, and ESA has proposed the concept of the Moon Village, with the goal of a sustainable human presence and activity on the lunar surface. Although construction of the infrastructure for this permanent human settlement is envisaged for the end of this decade by many, there is no definite mission plan yet. While this may be unsatisfactory for the impatient, this fact actually carries great potential: this is the optimal time to develop a forward-looking science input and influence mission planning. Based on data from recent missions (SMART-1, Kaguya, Chang'E, Chandrayaan-1 and LRO) as well as simulation campaigns (e.g. ILEWG EuroMoonMars), we provide initial input on how astronomy could be incorporated into a future Moon Village, and how the presence of humans (and robots) on the Moon could help deploy and maintain astronomical hardware. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.


Assuntos
Astronomia/instrumentação , Meio Ambiente Extraterreno , Lua , Voo Espacial/instrumentação , Ecossistema , Humanos , Robótica/instrumentação , Simulação de Ambiente Espacial
11.
Astrobiology ; 20(11): 1303-1320, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179966

RESUMO

Between February 1 and 28, 2018, the Austrian Space Forum, in cooperation with the Oman Astronomical Society and research teams from 25 nations, conducted the AMADEE-18 mission, a human-robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman. As a part of the AMADEE-18 simulated Mars human exploration mission, the Remote Science Support team performed analyses of the Dhofar area (Oman) in an effort to characterize the region as a potential Mars analog site. The main motivation of this research was to study and register selected samples collected by analog astronauts during the AMADEE-18 mission with laboratory analytical methods and techniques comparable with those that are likely to be used on Mars in the future. The 25 samples representing unconsolidated sediments obtained during the simulated mission were studied by using optical microscopy, Raman spectroscopy, X-ray diffraction, laser-induced breakdown spectroscopy, and laser-induced fluorescence spectroscopy. The principal results show the existence of minerals and alteration processes related to volcanism, hydrothermalism, and weathering. The analogy between the Dhofar region and the Eridana Basin region of Mars is clearly noticeable, particularly as an analog for secondary minerals formed in a hydrothermal seafloor volcanic-sedimentary environment. The synergy between the techniques used in the present work provides a solid basis for the geochemical analyses and organic detection in the context of future human-robotic Mars expeditions. AMADEE-18 has been a prime test bed for geoscientific workflows with astrobiological relevance and has provided valuable insights for future space missions.


Assuntos
Marte , Minerais , Voo Espacial , Simulação de Ambiente Espacial , Astronautas , Exobiologia , Meio Ambiente Extraterreno , Humanos , Minerais/análise , Omã
12.
Astrobiology ; 20(11): 1338-1352, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179967

RESUMO

Terrestrial simulations for crewed missions are critically important for testing technologies and improving methods and procedures for future robotic and human planetary exploration. In February 2018, AMADEE-18 simulated a mission to Mars in the Dhofar region of Oman. During the mission, a field crew coordinated by the Österreichisches Weltraum Forum (OeWF) accomplished several experiments in the fields of astrobiology, space physiology and medicine, geology, and geophysics. Within the scientific payload of AMADEE-18, ScanMars provided geophysical radar imaging of the subsurface at the simulated landing site and was operated by analog astronauts wearing spacesuits during extra-vehicular activities. The analog astronauts were trained to operate a ground-penetrating radar instrument that transmits and then collects radio waves carrying information about the geological setting of the first few meters of the subsurface. The data presented in this work show signal returns from structures down to 4 m depth, associated with the geology of the investigated rocks. Integrating radar data and the analog astronauts' observations of the geology at the surface, it was possible to identify the contact between shallow sediments and bedrock, the local occurrence of conductive soils, and the presence of pebbly materials in the shallow subsurface, which together describe the geology of recent loose sediments overlying an older deformed bedrock. The results obtained by ScanMars confirm that subsurface radar sounding at martian landing sites is key for the geological characterization at shallow depths. The geologic model of the subsurface can be used as the basis for reconstructing palaeoenvironments and paleo-habitats, thus assisting scientific investigations looking for traces of present or past life on the Red Planet. Highlights The ScanMars experiment brings a ground-penetrating radar to the AMADEE-18 simulated Mars mission. The ScanMars radar was operated following procedures and training developed before the mission. Approximately 2000 m of radar data profiles have been acquired during the analog mission. Combining the results for ScanMars, orbital remote sensing data, and first-person observation in the field while wearing spacesuits (analog astronauts), it was possible to generate a geological model at the AMADEE-18 study site.


Assuntos
Meio Ambiente Extraterreno , Marte , Radar , Simulação de Ambiente Espacial , Astronautas , Exobiologia , Humanos , Omã
13.
Astrobiology ; 20(11): 1321-1337, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179969

RESUMO

As a part of the AMADEE-18 analog Mars mission, designed to study challenges associated with human-based exploration of the Red Planet, we focused our team efforts on testing means to localize an unmanned aerial vehicle (UAV) on Mars. Robot helicopters, such as the one selected for a technology demonstration as a part of NASA's Mars 2020 mission, are small and their performance is computationally limited. An essential aspect of navigation and path planning of an autonomous helicopter is accurate localization of the robot. In the absence of a global positioning system, a computationally efficient localization technology that can be applied on Mars is visual-inertial odometry (VIO). The AMADEE-18 mission provided an opportunity to test the feasibility of a state-of-the-art VIO algorithm and the camera in a Mars-like analog environment. The flight datasets included different terrain structures that challenged the functionality of VIO algorithms. The experiment has yielded valuable insights into the desired surface structure, texture, and mission times for surface relative navigation of UAV on Mars.


Assuntos
Marte , Voo Espacial , Simulação de Ambiente Espacial , Astronave , Robótica
14.
Astrobiology ; 20(11): 1287-1294, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179970

RESUMO

The aim of this study was to examine team functioning within the context of the AMADEE 18 Mars analog project, which took place in Oman in the winter of 2018. Five "Analog Astronauts" participated in this study. Each completed measures of individual-level variables, including demographics and personality, before the simulated Mars mission began. At several time points during the mission, and once at the end, participants completed measures of individual stress reactions, and teamwork-related variables, including several types of team conflict, citizenship behavior, in-role behavior, counterproductive behavior, and social loafing. Each participant also reported how well he or she felt the team performed. The results indicate an overall positive, successful teamwork experience. Factors including measurement issues, psychological simulation fidelity, and qualities of the team likely influenced these results. Measuring important team- and individual-level variables during additional space analog events, while considering factors related to psychological fidelity, will allow for the compilation of data to better understand the factors affecting teams in these unusual contexts.


Assuntos
Marte , Voo Espacial , Simulação de Ambiente Espacial , Astronautas , Feminino , Humanos , Relações Interpessoais , Masculino , Omã
15.
Astrobiology ; 20(11): 1276-1286, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179971

RESUMO

From February 1 to 28, 2018, the Austrian Space Forum, in cooperation with the Oman Astronomical Society and research teams from 25 nations, conducted the AMADEE-18 mission, a human-robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman. A carefully selected field crew, supported by a Mission Support Center in Innsbruck, Austria, conducted 19 experiments relevant to astrobiology, engineering disciplines, geoscience, operations research, and human factors. This expedition was the 12th in a series of analog missions that emulate selected aspects of the science expected for a human Mars mission, including the characterization of the (paleo)geological environment, human factors studies, and the search for biomarkers. In particular, an Exploration Cascade was deployed as a suggested workflow for coordinating the timing and location of the respective instruments and experiments. In validation of this workflow, the decision-making interaction between the field and the Mission Support Center was studied. This article introduces the AMADEE-18 mission and provides the mission-specific context for the other contributions of this special issue.


Assuntos
Expedições , Marte , Voo Espacial , Simulação de Ambiente Espacial , Exobiologia , Humanos , Omã
17.
Sci Rep ; 10(1): 17987, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093553

RESUMO

Prolonged periods of social isolation and spatial confinement do not only represent an issue that needs to be faced by a few astronauts during space missions, but can affect all of us as recently shown during pandemic situations. The fundamental question, how the brain adapts to periods of sensory deprivation and re-adapts to normality, has only received little attention. Here, we use eyes closed and eyes open resting-state electroencephalographic (EEG) recordings to investigate how neural activity is altered during 120 days of isolation in a spatially confined, space-analogue environment. After disentangling oscillatory patterns from 1/f activity, we show that isolation leads to a reduction in broadband power and a flattening of the 1/f spectral slope. Beyond that, we observed a reduction in alpha peak frequency during isolation, but did not find strong evidence for isolation-induced changes that are of oscillatory nature. Critically, all effects reversed upon release from isolation. These findings suggest that isolation and concomitant sensory deprivation lead to an enhanced cortical deactivation which might be explained by a reduction in the mean neuronal population firing rate.


Assuntos
Partículas alfa , Astronautas/estatística & dados numéricos , Encéfalo/fisiologia , Isolamento Social , Análise e Desempenho de Tarefas , Percepção Visual , Adulto , Nível de Alerta/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Simulação de Ambiente Espacial , Vigília/fisiologia
18.
Sci Rep ; 10(1): 18290, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106561

RESUMO

To protect Mars from microbial contamination, research on growth of microorganisms found in spacecraft assembly clean rooms under simulated Martian conditions is required. This study investigated the effects of low atmospheric pressure on the growth of chemoorganotrophic spacecraft bacteria and whether the addition of Mars relevant anaerobic electron acceptors might enhance growth. The 125 bacteria screened here were recovered from actual Mars spacecraft. Growth at 7 hPa, 0 °C, and a CO2-enriched anoxic atmosphere (called low-PTA conditions) was tested on five TSA-based media supplemented with anaerobic electron acceptors. None of the 125 spacecraft bacteria showed active growth under the tested low-PTA conditions and amended media. In contrast, a decrease in viability was observed in most cases. Growth curves of two hypopiezotolerant strains, Serratia liquefaciens and Trichococcus pasteurii, were performed to quantify the effects of the added anaerobic electron acceptors. Slight variations in growth rates were determined for both bacteria. However, the final cell densities were similar for all media tested, indicating no general preference for any specific anaerobic electron acceptor. By demonstrating that a broad diversity of chemoorganotrophic and culturable spacecraft bacteria do not grow under the tested conditions, we conclude that there may be low risk of growth of chemoorganotrophic bacteria typically recovered from Mars spacecraft during planetary protection bioburden screenings.


Assuntos
Carnobacteriaceae/crescimento & desenvolvimento , Meios de Cultura/química , Serratia liquefaciens/crescimento & desenvolvimento , Anaerobiose , Pressão Atmosférica , Elétrons , Meio Ambiente Extraterreno , Marte , Viabilidade Microbiana , Simulação de Ambiente Espacial , Astronave
20.
Sci Rep ; 10(1): 15594, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973159

RESUMO

Lunar habitation and exploration of space beyond low-Earth orbit will require small crews to live in isolation and confinement while maintaining a high level of performance with limited support from mission control. Astronauts only achieve approximately 6 h of sleep per night, but few studies have linked sleep deficiency in space to performance impairment. We studied crewmembers over 45 days during a simulated space mission that included 5 h of sleep opportunity on weekdays and 8 h of sleep on weekends to characterize changes in performance on the psychomotor vigilance task (PVT) and subjective fatigue ratings. We further evaluated how well bio-mathematical models designed to predict performance changes due to sleep loss compared to objective performance. We studied 20 individuals during five missions and found that objective performance, but not subjective fatigue, declined from the beginning to the end of the mission. We found that bio-mathematical models were able to predict average changes across the mission but were less sensitive at predicting individual-level performance. Our findings suggest that sleep should be prioritized in lunar crews to minimize the potential for performance errors. Bio-mathematical models may be useful for aiding crews in schedule design but not for individual-level fitness-for-duty decisions.


Assuntos
Fadiga , Modelos Teóricos , Desempenho Psicomotor , Privação do Sono/fisiopatologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Simulação de Ambiente Espacial , Adulto , Astronautas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Voo Espacial , Vigília , Tolerância ao Trabalho Programado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...