Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.966
Filtrar
2.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146415

RESUMO

Over the past four decades, space debris has been identified as a growing hazard for near-Earth space systems. With limited access to space debris tracking databases and only recent policy advancements made to secure a sustainable space environment and mission architecture, this manuscript aims to establish an autonomous trajectory maneuver to de-orbit spacecrafts back to Earth using collision avoidance techniques for the purpose of decommissioning or re-purposing spacecrafts. To mitigate the risk of colliding with another object, the spacecraft attitude slew maneuver requires high levels of precision. Thus, the manuscript compares two autonomous trajectory generations, sinusoidal and Pontragin's method. In order to determine the Euler angles (roll, pitch, and yaw) necessary for the spacecraft to safely maneuver around space debris, the manuscript incorporates way-point guidance as a collision avoidance approach. When the simulation compiled with both sinusoidal and Pontryagin trajectories, there were differences within the Euler angle spacecraft tracking that could be attributed to the increased fuel efficiency by over five orders of magnitude and lower computation time by over 15 min for that of Pontryagin's trajectory compared with that of the sinusoidal trajectory. Overall, Pontryagin's method produced an autonomous trajectory that is more optimal by conserving 37.9% more fuel and saving 40.5% more time than the sinusoidal autonomous trajectory.


Assuntos
Órbita , Astronave , Simulação por Computador , Planeta Terra
3.
Radiat Prot Dosimetry ; 198(9-11): 611-616, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005980

RESUMO

A new Open-Source dosemeter, SPACEDOS, has been developed for measurements of cosmic radiation on board spacecraft and small satellites. Its main advantages are that it is small and lightweight with low power consumption. It can be adjusted for specific applications, e.g. used in pressurized cabins of spacecraft or in vacuum environments in CubeSats or larger satellites. The open-source design enables better portability and reproduction of the results than other similar detectors. The detector has already successfully performed measurements on board the International Space Station. The obtained results are discussed and compared with those measured with thermoluminescent detectors located in the same position as SPACEDOS.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Doses de Radiação , Monitoramento de Radiação/métodos , Astronave , Dosimetria Termoluminescente
4.
Microbiome ; 10(1): 134, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35999570

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) has a detrimental impact on human health on Earth and it is equally concerning in other environments such as space habitat due to microgravity, radiation and confinement, especially for long-distance space travel. The International Space Station (ISS) is ideal for investigating microbial diversity and virulence associated with spaceflight. The shotgun metagenomics data of the ISS generated during the Microbial Tracking-1 (MT-1) project and resulting metagenome-assembled genomes (MAGs) across three flights in eight different locations during 12 months were used in this study. The objective of this study was to identify the AMR genes associated with whole genomes of 226 cultivable strains, 21 shotgun metagenome sequences, and 24 MAGs retrieved from the ISS environmental samples that were treated with propidium monoazide (PMA; viable microbes). RESULTS: We have analyzed the data using a deep learning model, allowing us to go beyond traditional cut-offs based only on high DNA sequence similarity and extending the catalog of AMR genes. Our results in PMA treated samples revealed AMR dominance in the last flight for Kalamiella piersonii, a bacteria related to urinary tract infection in humans. The analysis of 226 pure strains isolated from the MT-1 project revealed hundreds of antibiotic resistance genes from many isolates, including two top-ranking species that corresponded to strains of Enterobacter bugandensis and Bacillus cereus. Computational predictions were experimentally validated by antibiotic resistance profiles in these two species, showing a high degree of concordance. Specifically, disc assay data confirmed the high resistance of these two pathogens to various beta-lactam antibiotics. CONCLUSION: Overall, our computational predictions and validation analyses demonstrate the advantages of machine learning to uncover concealed AMR determinants in metagenomics datasets, expanding the understanding of the ISS environmental microbiomes and their pathogenic potential in humans. Video Abstract.


Assuntos
Microbiota , Astronave , Algoritmos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Aprendizado de Máquina , Metagenômica/métodos , Microbiota/genética
5.
Sci Rep ; 12(1): 13617, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948565

RESUMO

Shielding from space radiation, especially galactic cosmic rays (GCRs), is a significant safety challenge for future human activities in deep space. In this study, the shielding performances of potential materials [aluminum (Al), polyethylene (PE), and carbon fiber reinforced plastic (CFRP)] were investigated using Geant4 Monte Carlo simulation considering two types of biological scale parameters, the International Commission on Radiological Protection (ICRP) quality factor (QFICRP) and the plausible biological effectiveness (RBEγacute), for GCRs. The effective dose equivalent was reduced by 50% for QFICRP and 38% for RBEγacute when shielding using 20 g/cm2 of CFRP. A spacecraft made from CFRP will have a better radiation shielding performance than conventional Al-based spacecraft. The contribution of heavy ions for QFICRP based effective dose equivalent was larger by a factor of ~ 3 compared to that for RBEγacute based effective dose equivalent. The shielding materials efficiently reduced the effective dose equivalent due to ions with QFICRP > 3.36 and RBEγacute > 2.26. QFICRP and RBEγacute have advantages and disadvantages in quantifying the dose equivalent of space radiation, and the establishment of a standard parameter specified for a mixed radiation environment occupied by protons and heavy ions is necessary for practical dose assessment in deep space.


Assuntos
Radiação Cósmica , Proteção Radiológica , Voo Espacial , Radiação Cósmica/efeitos adversos , Humanos , Doses de Radiação , Comportamento de Redução do Risco , Astronave
6.
Science ; 377(6603): 285-291, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857591

RESUMO

Carbonaceous asteroids, such as (101955) Bennu, preserve material from the early Solar System, including volatile compounds and organic molecules. We report spacecraft imaging and spectral data collected during and after retrieval of a sample from Bennu's surface. The sampling event mobilized rocks and dust into a debris plume, excavating a 9-meter-long elliptical crater. This exposed material is darker, spectrally redder, and more abundant in fine particulates than the original surface. The bulk density of the displaced subsurface material was 500 to 700 kilograms per cubic meter, which is about half that of the whole asteroid. Particulates that landed on instrument optics spectrally resemble aqueously altered carbonaceous meteorites. The spacecraft stored 250 ± 101 grams of material, which will be delivered to Earth in 2023.


Assuntos
Meteoroides , Astronave , Planeta Terra , Minerais
7.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684842

RESUMO

In recent years, image segmentation techniques based on deep learning have achieved many applications in remote sensing, medical, and autonomous driving fields. In space exploration, the segmentation of spacecraft objects by monocular images can support space station on-orbit assembly tasks and space target position and attitude estimation tasks, which has essential research value and broad application prospects. However, there is no segmentation network designed for spacecraft targets. This paper proposes an end-to-end spacecraft image segmentation network using the semantic segmentation network DeepLabv3+ as the basic framework. We develop a multi-scale neural network based on sparse convolution. First, the feature extraction capability is improved by the dilated convolutional network. Second, we introduce the channel attention mechanism into the network to recalibrate the feature responses. Finally, we design a parallel atrous spatial pyramid pooling (ASPP) structure that enhances the contextual information of the network. To verify the effectiveness of the method, we built a spacecraft segmentation dataset on which we conduct experiments on the segmentation algorithm. The experimental results show that the encoder+ attention+ decoder structure proposed in this paper, which focuses on high-level and low-level features, can obtain clear and complete masks of spacecraft targets with high segmentation accuracy. Compared with DeepLabv3+, our method is a significant improvement. We also conduct an ablation study to research the effectiveness of our network framework.


Assuntos
Processamento de Imagem Assistida por Computador , Astronave , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
8.
Astrobiology ; 22(9): 1061-1071, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675686

RESUMO

Modeling risks for the forward contamination of planetary surfaces from endemic bioburdens on landed spacecraft requires precise data on the biocidal effects of space factors on microbial survival. Numerous studies have been published over the preceding 60 years on the survival of diverse microorganisms exposed to solar heating, solar ultraviolet (UV) irradiation, vacuum, ionizing radiation, desiccation, and many other planetary surface conditions. These data were generated with diverse protocols that can impair the interpretations of the results due to dynamic experimental errors inherent in all lab protocols. The current study (1) presents data on how metal surfaces can affect spore adhesion, (2) proposes doping and extraction protocols that can achieve very high recovery rates (close to 100%) from aluminum coupons with four Bacillus spp., (3) establishes a timeline in which dried spores on aluminum coupons should be used to minimize aging effects of spore monolayers, (4) confirms that vacuum alone does not dislodge spores dried on aluminum coupons, and (5) establishes that multiple UV irradiation sources yield similar results if properly cross-calibrated. The protocols are given to advance discussions in the planetary protection community on how to standardize lab protocols to align results from diverse labs into a coherent interpretation of how space conditions will degrade microbial survival over time.


Assuntos
Astronave , Esporos Bacterianos , Alumínio , Bacillus subtilis/efeitos da radiação , Meio Ambiente Extraterreno , Simulação de Ambiente Espacial , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta
9.
FEMS Microbiol Lett ; 369(1)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35675219

RESUMO

Astronauts undergo space travel to bring scientific information to benefit humanity under various missions of space agencies such as NASA, European Space Agency, Indian Space Research Organization etc. During space missions, they encounter several stressors namely microgravity, fluid shifts, cosmic radiation, sleep deprivation and alteration in the circadian rhythm perturbing the quality of sleep. In addition, confined spaces makes pathogen interaction more likely if a pathobiont gets introduced into spacecraft. Microbiota is the first line оf resistаnсe tо vаriоus disorders and diseаses. It direсtly influenсes the biосhemiсаl, рhysiоlоgiсаl, аnd immunоlоgiсаl раthwаys. 'Gut microbiota' is essential for maintenance of healthy gut barrier functions. 'Dysbiosis' refers to perturbation of microbiota which is correlated with several metabolic and psychological disorders. Microbial metabolites are implicated in maintenance of human health. Investigations conducted on astronauts in international space missions and on analog terrestrial models have indicated a 'dysbiosis' of the gut microbiota associated with spaceflights. 'Dysbiosis' of the gut microbiome observed in astronauts has been implicated in immune dysregulation and a probiotic enriched diet is proposed to restore immune homeostasis. This article not just summarizes the state of art research on dysbiosis of the gut microbiome of astronauts, but also a diet mediated correction plan to restore their health especially during long term space missions. A characterization of microbial metabolites of the gut to enable administration of astronaut specific probiotic, postbiotic or synbiotic to alleviate space associated dysbiosis is proposed. It is also recommended that astronauts maintain a balanced nutritious diet throughout life to promote a resilient microbiota that is not perturbed by space missions. Further, a bioregenerative life support system wherein a probiotic may be produced in space station is proposed.


Assuntos
Microbiota , Voo Espacial , Astronautas , Dieta , Disbiose , Humanos , Astronave
10.
Aerosp Med Hum Perform ; 93(6): 480-486, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35729763

RESUMO

BACKGROUND: Manually controlled docking of a spacecraft to a space station is an operational task that poses high demands on cognitive and perceptual functioning. Effective processing of visual information is crucial for success. Eye tracking can reveal the operator's attentional focus unobtrusively and objectively. Therefore, our aim was to test the feasibility of eye tracking during a simulation of manual docking and to identify links between visual information processing and performance.METHODS: We hypothesized that duration and number of gazes to specific regions of interest of the simulation (total dwell time and number of dwells) would be associated with docking accuracy. Eye movements were recorded in 10 subjects (30% women, M = 33.4 yr old) during the 6° head-down tilt bed rest study AGBRESA during 20 training sessions with the 6df learning program for spacecraft docking.RESULTS: Subjects' gaze was directed most frequently and longest to the vizor (185 dwells and 22,355 ms per task) followed by the two instrument displays (together 75 dwells and 4048 ms per task). We observed a significant positive relationship between number and duration of visual checks of speed and distance to the docking point and the accuracy of the docking maneuver.DISCUSSION: In conclusion, eye tracking provides valuable information related to docking accuracy that might prospectively offer the opportunity to improve docking training effectiveness.Piechowski S, Johannes B, Pustowalow W, Arz M, Mulder E, Jordan J, Wolf OT, Rittweger J. Visual attention relates to operator performance in spacecraft docking training. Aerosp Med Hum Perform. 2022; 93(6):480-486.


Assuntos
Movimentos Oculares , Astronave , Cognição , Simulação por Computador , Feminino , Humanos , Masculino
11.
Sensors (Basel) ; 22(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591235

RESUMO

The constant increase in the number of space objects and debris orbiting the Earth poses risks to satellites and other spacecraft, both in orbit and during the launching process. Therefore, the monitoring of space hazards to assess risk and prevent collisions has become part of the European Space Policy and requires the establishment of a dedicated Framework for Space Surveillance and Tracking (EU SST) Support. This article presents the CHEIA SST Radar, a new space tracking radar sensor developed and installed in Romania with the purpose of being included in the EU SST sensor network and of contributing to the joint database of space objects orbiting the Earth. The paper describes the processes of design, simulation, and implementation of the hardware and software building blocks that make up the radar system. It emphasizes the particular case of using an already existing system of two large parabolic antennas requiring an innovative retrofitting design to include them as the basis for a new quasi-monostatic radar using LFMCW probing signals. The preliminary design was validated by extensive simulations, and the initial operational testing carried out in December 2021 demonstrated the good performance of the radar in the measuring range and radial speed of LEO space objects.


Assuntos
Radar , Astronave , Simulação por Computador , Romênia , Software
12.
Aerosp Med Hum Perform ; 93(5): 467-469, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551723

RESUMO

INTRODUCTION: The previous Spacecraft Maximal Allowable Concentrations (SMACs) for propylene glycol were established based on a study of rodents exposed to propylene glycol (PG) aerosol for 6 h/d, 5 d/wk for 90 d. This study has been used as the basis for the few existing limits, but all exposure concentrations were well above the saturated vapor concentration of ∼100 ppm for pure propylene glycol at room temperature. For this reason, the Environmental Protection Agency and the Agency for Toxic Substances and Disease Registry noted that the method used to generate the aerosols for the two published studies of animal exposures are not relevant to exposure conditions for the general public, and most regulatory agencies have not established inhalation limits for propylene glycol, citing lack of data. Since publication of the PG SMACs in 2008, an acute inhalation study was conducted in healthy human subjects which allows us to revise our assessment. This manuscript provides the rationale for increasing the prior limits for PG in spacecraft air from 32 and 17 ppm to 64 and 32 ppm for off-nominal scenarios/releases (1-h and 24-h limits) and from 9, 3, and 1.5 ppm to 32 ppm for all nominal timeframes (7, 30, and 180 d). Due to a lack of longer-term exposure data, NASA has elected to eliminate the 1000-d SMAC limit at this time.Ryder VE, Williams ES. Revisions to limits for propylene glycol in spacecraft air. Aerosp Med Hum Perform. 2022; 93(5):467-469.


Assuntos
Propilenoglicol , Astronave , Animais , Humanos , Concentração Máxima Permitida , Propilenoglicol/toxicidade , Estados Unidos
13.
Appl Radiat Isot ; 185: 110222, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35397363

RESUMO

The production of Gd-148 had challenges for available methods in the literature, such as its high cost and low production amount. Therefore, we recommend a new production route of Gd-148 on natural Sm and Eu targets via particle accelerators. For this aim, we calculated and simulated cross-section, activity, the yield of product, and integral yield curves for 21 different nuclear reaction processes under certain conditions. Based on the obtained results, we proposed the radioisotope Gd-148 to use Radioisotope Thermoelectric Generators for deep space and planetary explorations in spacecraft and space-probes as a suitable energy source, instead of Pu-238.


Assuntos
Plutônio , Gadolínio , Radioisótopos , Astronave
14.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270873

RESUMO

In this paper, a neural adaptive fault-tolerant control scheme is proposed for the integrated attitude and position control of spacecraft proximity operations in the presence of unknown parameters, disturbances, and actuator faults. The proposed controller is made up of a relative attitude control law and a relative position control law. Both the relative attitude control law and relative position control law are designed by adopting the neural networks (NNs) to approximate the upper bound of the lumped unknowns. Benefiting from the indirect neural approximation, the proposed controller does not need any model information for feedback. In addition, only two adaptive parameters are required for the indirect neural approximation, and the online calculation burden of the proposed controller is therefore significantly reduced. Lyapunov analysis shows that the overall closed-loop system is ultimately uniformly bounded. The proposed controller can ensure the relative attitude, angular velocity, position, and velocity stabilize into the small neighborhoods around the origin. Lastly, the effectiveness and superior performance of the proposed control scheme are confirmed by a simulated example.


Assuntos
Algoritmos , Astronave , Simulação por Computador , Retroalimentação , Redes Neurais de Computação
15.
Sci Rep ; 12(1): 5022, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322088

RESUMO

The perturbative integral method was applied to quantify the contribution of external forces during a specific interval of time in trajectories of spacecraft around asteroids and under the Luni-solar influence. However, this method has not been used to quantify the contributions of drag in aerocapture and aerobraking. For this reason, the planet Mars is selected to apply this method during an aerogravity-assisted maneuver. Several trajectories are analyzed, making use of a drag device with area to mass ratios varying from 0.0 to 20.0 m2/kg, simulating solar sails or de-orbit devices. The mathematical model is based in the restricted three-body problem. The use of this maneuver makes it possible to obtain the variations of energy in the trajectory, replacing expensive maneuvers based on fuel consumption. To observe the effects of the maneuvers, different values of pericenter velocity and altitude were selected for prograde and retrograde orbits. The innovation of this research is the application of an integral method to quantify the delta-V of the aero gravity maneuver, comparing the cost of the maneuver with the traditional methods of space propulsion. The results allow the identification of orbits with conditions to capture, and the perturbative maps show the velocity variations.


Assuntos
Marte , Voo Espacial , Gravitação , Modelos Teóricos , Astronave
16.
Microbiome ; 10(1): 26, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35125119

RESUMO

A human spaceflight to Mars is scheduled for the next decade. In preparation for this unmatched endeavor, a plethora of challenges must be faced prior to the actual journey to Mars. Mission success will depend on the health of its crew and its working capacity. Hence, the journey to Mars will also depend on the microbiome and its far-reaching effects on individual crew health, the spaceship's integrity, and food supply. As human beings rely on their microbiome, these microbes are essential and should be managed to ensure their beneficial effects outweigh potential risks. In this commentary, we focus on the current state of knowledge regarding a healthy (gut) microbiome of space travelers based on research from the International Space Station and simulation experiments on Earth. We further indicate essential knowledge gaps of microbial conditions during long-term space missions in isolated confined space habitats or outposts and give detailed recommendations for microbial monitoring during pre-flight, in-flight, and post-flight. Finally, the conclusion outlines open questions and aspects of space traveler's health beyond the scope of this commentary. Video Abstract.


Assuntos
Marte , Microbiota , Voo Espacial , Astronautas , Espaços Confinados , Humanos , Astronave
17.
PLoS One ; 17(2): e0263729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139132

RESUMO

Due to the limited storage space of spacecraft and downlink bandwidth in the data delivery during planetary exploration, an efficient way for image compression onboard is essential to reduce the volume of acquired data. Applicable for planetary images, this study proposes a perceptual adaptive quantization technique based on Convolutional Neural Network (CNN) and High Efficiency Video Coding (HEVC). This technique is used for bitrate reduction while maintaining the subjective visual quality. The proposed algorithm adaptively determines the Coding Tree Unit (CTU) level Quantization Parameter (QP) values in HEVC intra-coding using the high-level features extracted by CNN. A modified model based on the residual network is exploited to extract the saliency map for a given image automatically. Furthermore, based on the saliency map, a CTU level QP adjustment technique combining global saliency contrast and local saliency perception is exploited to realize a flexible and adaptive bit allocation. Several quantitative performance metrics that efficiently correlate with human perception are used for evaluating image quality. The experimental results reveal that the proposed algorithm achieves better visual quality along with a maximum of 7.17% reduction in the bitrate as compared to the standard HEVC coding.


Assuntos
Compressão de Dados/métodos , Imagens de Satélites , Percepção Visual/fisiologia , Algoritmos , Humanos , Limite de Detecção , Redes Neurais de Computação , Planetas , Imagens de Satélites/métodos , Imagens de Satélites/normas , Astronave , Gravação em Vídeo/métodos , Gravação em Vídeo/normas
19.
Astrobiology ; 22(2): 210-224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981957

RESUMO

Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.


Assuntos
Microbiota , Voo Espacial , Ausência de Peso , Astronautas , Humanos , Astronave
20.
Microbiol Spectr ; 10(1): e0199421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019675

RESUMO

In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCE Sphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.


Assuntos
Genômica , Desenvolvimento Vegetal/fisiologia , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/fisiologia , Ácidos Indolacéticos , Metagenoma , Metagenômica , Filogenia , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , RNA Ribossômico 16S , Astronave , Sphingomonas/classificação , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...