Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.023
Filtrar
1.
J Mol Neurosci ; 74(3): 79, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162890

RESUMO

Diabetic neuropathic pain (DNP) is a diabetic complication that causes severe pain and deeply impacts the quality of the sufferer's daily life. Currently, contemporary clinical treatments for DNP generally exhibit a deficiency in effectiveness. Electroacupuncture (EA) is recognized as a highly effective and safe treatment for DNP with few side effects. Regrettably, the processes via which EA alleviates DNP are still poorly characterized. Transient receptor potential vanilloid 1 (TRPV1) and phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) are overexpressed on spinal cord dorsal horn (SCDH) in DNP rats, and co-localization is observed between them. Capsazepine, a TRPV1 antagonist, effectively reduced nociceptive hypersensitivity and downregulated the overexpression of phosphorylated CaMKIIα in rats with DNP. Conversely, the CaMKII inhibitor KN-93 did not have any impact on TRPV1. EA alleviated heightened sensitivity to pain caused by nociceptive stimuli and downregulated the level of TRPV1, p-CaMKIIα, and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) in DNP rats. Intrathecal injection of capsaicin, on the other hand, reversed the above effects of EA. These findings indicated that the CaMKII/CREB pathway on SCDH is located downstream of TRPV1 and is affected by TRPV1. EA alleviates DNP through the TRPV1-mediated CaMKII/CREB pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Neuropatias Diabéticas , Eletroacupuntura , Ratos Sprague-Dawley , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Eletroacupuntura/métodos , Ratos , Masculino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/metabolismo , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Transdução de Sinais , Corno Dorsal da Medula Espinal/metabolismo , Benzenossulfonamidas , Benzilaminas
2.
J Neurosci ; 44(39)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39174351

RESUMO

Nerve injury can induce aberrant changes in the spine; these changes are due to, or at least partly governed by, transcription factors that contribute to the genesis of neuropathic allodynia. Here, we showed that spinal nerve ligation (SNL, a clinical neuropathic allodynia model) increased the expression of the transcription factor Tbx5 in the injured dorsal horn in male Sprague Dawley rats. In contrast, blocking this upregulation alleviated SNL-induced mechanical allodynia, and there was no apparent effect on locomotor function. Moreover, SNL-induced Tbx5 upregulation promoted the recruitment and interaction of GATA4 and Brd4 by enhancing its binding activity to H3K9Ac, which was enriched at the Trpv1 promotor, leading to an increase in TRPV1 transcription and the development of neuropathic allodynia. In addition, nerve injury-induced expression of Fbxo3, which abates Fbxl2-dependent Tbx5 ubiquitination, promoted the subsequent Tbx5-dependent epigenetic modification of TRPV1 expression during SNL-induced neuropathic allodynia. Collectively, our findings indicated that spinal Tbx5-dependent TRPV1 transcription signaling contributes to the development of neuropathic allodynia via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic allodynia by targeting Tbx5.


Assuntos
Epigênese Genética , Hiperalgesia , Neuralgia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Proteínas com Domínio T , Canais de Cátion TRPV , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Masculino , Ratos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Hiperalgesia/metabolismo , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Neuralgia/metabolismo , Neuralgia/genética , Corno Dorsal da Medula Espinal/metabolismo
3.
Neuropharmacology ; 259: 110120, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159835

RESUMO

A large portion of neuropathic pain suffering patients may also concurrently experience neuropathic itch, with a negative impact on the quality of life. The limited understanding of neuropathic itch and the low efficacy of current anti-itch therapies dictate the urgent need of a better comprehension of molecular mechanisms involved and development of relevant animal models. This study was aimed to characterize the itching phenotype in a model of trauma-induced peripheral neuropathy, the spared nerve injury (SNI), and the molecular events underlying the overlap with the nociceptive behavior. SNI mice developed hyperknesis and spontaneous itch 7-14 days after surgery that was prevented by gabapentin treatment. Itch was associated with pain hypersensitivity, loss of intraepidermal nerve fiber (IENF) density and increased epidermal thickness. In coincidence with the peak of scratching behavior, SNI mice showed a spinal overexpression of IBA1 and GFAP, microglia and astrocyte markers respectively. An increase of the itch neuropeptide B-type natriuretic peptide (BNP) in NeuN+ cells, of its downstream effector interleukin 17 (IL17) along with increased pERK1/2 levels occurred in the spinal cord dorsal horn and DRG. A raise in BNP and IL17 was also detected at skin level. Stimulation of HaCat cells with conditioned medium from BV2-stimulated SH-SY5Y cells produced a dramatic reduction of HaCat cell viability. This study showed that SNI mice might represent a model for neuropathic itch and pain. Collectively, our finding suggest that neuropathic itch might initiate at spinal level, then affecting skin epidermis events, through a glia-mediated neuroinflammation-evoked BNP/IL17 mechanism.


Assuntos
Modelos Animais de Doenças , Neuralgia , Doenças Neuroinflamatórias , Prurido , Animais , Prurido/metabolismo , Prurido/patologia , Neuralgia/metabolismo , Neuralgia/etiologia , Camundongos , Masculino , Doenças Neuroinflamatórias/metabolismo , Humanos , Gabapentina/farmacologia , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Células HaCaT , Microglia/metabolismo , Microglia/efeitos dos fármacos , Hiperalgesia/metabolismo , Proteínas dos Microfilamentos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Proteínas de Ligação ao Cálcio
4.
Brain Struct Funct ; 229(7): 1757-1768, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052094

RESUMO

Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.


Assuntos
Astrócitos , Modelos Animais de Doenças , Neuralgia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neuralgia/patologia , Neuralgia/metabolismo , Masculino , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Ratos , Bulbo/metabolismo , Bulbo/patologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Dendritos/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/ultraestrutura
5.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38955487

RESUMO

Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.


Assuntos
Astrócitos , Potenciação de Longa Duração , Receptores de Dopamina D1 , Receptores de Dopamina D5 , Sinapses , Animais , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Potenciação de Longa Duração/fisiologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Camundongos , Masculino , Receptores de Dopamina D5/metabolismo , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/genética , Feminino , Sinapses/fisiologia , Sinapses/metabolismo , Gânglios Espinais/citologia , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/citologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
6.
Neural Dev ; 19(1): 13, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049046

RESUMO

The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.


Assuntos
Gânglios Espinais , Proteínas de Homeodomínio , Neuritos , Corno Dorsal da Medula Espinal , Fatores de Transcrição , Animais , Camundongos , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/citologia , Neuritos/metabolismo , Neuritos/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso
7.
Biochem Biophys Res Commun ; 729: 150362, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972142

RESUMO

The therapeutic benefits of photobiomodulation (PBM) in pain management, although well documented, are accompanied by concerns about potential risks, including pain, particularly at higher laser intensities. This study investigated the effects of laser intensity on pain perception using behavioral and electrophysiological evaluations in rats. Our results show that direct laser irradiation of 1000 mW/cm2 to the sciatic nerve transiently increases the frequency of spontaneous firing in the superficial layer without affecting the deep layer of the spinal dorsal horn, and this effect reverses to pre-irradiation levels after irradiation. Interestingly, laser irradiation at 1000 mW/cm2, which led to an increase in spontaneous firing, did not prompt escape behavior. Furthermore, a significant reduction in the time to initiate escape behavior was observed only at 9500 mW/cm2 compared to 15, 510, 1000, and 4300 mW/cm2. This suggests that 1000 mW/cm2, the laser intensity at which an increase in spontaneous firing was observed, corresponds to a stimulus that did not cause pain. It is expected that a detailed understanding of the risks and mechanisms of PBM from a neurophysiological perspective will lead to safer and more effective use of PBM.


Assuntos
Terapia com Luz de Baixa Intensidade , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Animais , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Ratos , Corno Dorsal da Medula Espinal/efeitos da radiação , Nervo Isquiático/efeitos da radiação , Nervo Isquiático/fisiologia , Potenciais de Ação/efeitos da radiação
8.
Neuroreport ; 35(11): 692-701, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38874969

RESUMO

OBJECTIVE: Diabetic neuropathic pain (DNP) is one of the most prevalent symptoms of diabetes. The alteration of proteins in the spinal cord dorsal horn (SCDH) plays a significant role in the genesis and the development of DNP. Our previous study has shown electroacupuncture could effectively relieve DNP. However, the potential mechanism inducing DNP's genesis and development remains unclear and needs further research. METHODS: This study established DNP model rats by intraperitoneally injecting a single high-dose streptozotocin; 2 Hz electroacupuncture was used to stimulate Zusanli (ST36) and Kunlun (BL60) of DNP rats daily from day 15 to day 21 after streptozotocin injection. Behavioral assay, quantitative PCR, immunofluorescence staining, and western blotting were used to study the analgesic mechanism of electroacupuncture. RESULTS: The bradykinin B1 receptor (B1R) mRNA, nuclear factor-κB p65 (p65), substance P, and calcitonin gene-related peptide (CGRP) protein expression were significantly enhanced in SCDH of DNP rats. The paw withdrawal threshold was increased while body weight and fasting blood glucose did not change in DNP rats after the electroacupuncture treatment. The expression of B1R, p65, substance P, and CGRP in SCDH of DNP rats was also inhibited after the electroacupuncture treatment. CONCLUSION: This work suggests that the potential mechanisms inducing the allodynia of DNP rats were possibly related to the increased expression of B1R, p65, substance P, and CGRP in SCDH. Downregulating B1R, p65, substance P, and CGRP expression levels in SCDH may achieve the analgesic effect of 2 Hz electroacupuncture treatment.


Assuntos
Diabetes Mellitus Experimental , Regulação para Baixo , Eletroacupuntura , Hiperalgesia , Ratos Sprague-Dawley , Receptor B1 da Bradicinina , Corno Dorsal da Medula Espinal , Animais , Eletroacupuntura/métodos , Masculino , Corno Dorsal da Medula Espinal/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Receptor B1 da Bradicinina/metabolismo , Receptor B1 da Bradicinina/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/terapia , Ratos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Substância P/metabolismo
9.
Aging (Albany NY) ; 16(11): 9680-9691, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843384

RESUMO

OBJECTIVE: Spinal cord injury (SCI) is a devastating disease for which there is no safe and effective treatment at present. Daphnoretin is a natural discoumarin compound isolated from Wikstroemia indica with various pharmacological activities. Our study aimed to investigate the role of Daphnoretin in NF-κB pathway activation and inflammatory response after SCI. METHODS: A mouse SCI model was constructed, and the Basso Mouse Scale Score and subscore were used to evaluate the effect of Daphnoretin on the movement capacity of mice. The effect of Daphnoretin on the activation of glial cells in the mouse model and BV2 cells was observed by immunofluorescence. PCR and ELISA were used to detect the expression of inflammatory factors, and Western blot was performed to detect the protein expression associated with NF-κB pathway. RESULTS: Daphnoretin inhibited the loss of movement ability and the activation of glial cells in mice after SCI, and it also inhibited the activation of NF-κB pathway and the expression of inflammatory factors TNF-α and IL-1ß in vivo and in vitro. CONCLUSIONS: Daphnoretin can inhibit the activation of NF-κB pathway and the inflammatory response induced by SCI. Our study demonstrates the potential of Daphnoretin on clinical application for the treatment of SCI.


Assuntos
NF-kappa B , Transdução de Sinais , Traumatismos da Medula Espinal , Animais , NF-kappa B/metabolismo , Camundongos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
10.
BMC Oral Health ; 24(1): 552, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735923

RESUMO

Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.


Assuntos
Canais de Cálcio Tipo L , Dor Facial , Músculo Masseter , Gânglio Trigeminal , Animais , Masculino , Ratos , Canais de Cálcio/metabolismo , Dor Facial/metabolismo , Músculo Masseter/metabolismo , Síndromes da Dor Miofascial , Oligonucleotídeos Antissenso/farmacologia , Limiar da Dor , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Gânglio Trigeminal/metabolismo
11.
Neuroscience ; 548: 39-49, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38697463

RESUMO

Chronic inflammatory pain is the highest priority for people with osteoarthritis when seeking medical attention. Despite the availability of NSAIDs and glucocorticoids, central sensitization and peripheral sensitization make pain increasingly difficult to control. Previous studies have identified the ubiquitination system as an important role in the chronic inflammatory pain. Our study displayed that the E3 ubiquitin ligase tripartite motif-containing 14 (Trim14) was abnormally elevated in the serum of patients with osteoarthritis and pain, and the degree of pain was positively correlated with the degree of Trim14 elevation. Furthermore, CFA-induced inflammatory pain rat model showed that Trim14 was significantly increased in the L3-5 spinal dorsal horn (SDH) and dorsal root ganglion (DRG), and in turn the inhibitor of nuclear factor Kappa-B isoform α (IκBα) was decreased after Trim14 elevation. After intrathecal injection of Trim14 siRNA to inhibit Trim14 expression, IκBα expression was reversed and increased, and the pain behaviors and anxiety behaviors of rats were significantly relieved. Overall, these findings suggested that Trim14 may contribute to chronic inflammatory pain by degrading IκBα, and that Trim14 may become a novel therapeutic target for chronic inflammatory pain.


Assuntos
Dor Crônica , Inflamação , Inibidor de NF-kappaB alfa , Osteoartrite , Ratos Sprague-Dawley , Transdução de Sinais , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Dor Crônica/metabolismo , Gânglios Espinais/metabolismo , Inflamação/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais/fisiologia , Corno Dorsal da Medula Espinal/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
12.
Zhen Ci Yan Jiu ; 49(5): 448-455, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764115

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) at different intensities on nociceptive discharges of wide dynamic range (WDR) neurons in the spinal dorsal horns (DHs) of rats, so as to explore its regulatory characteristics on nociceptive signals at the spinal level. METHODS: A total of 25 male SD rats were used in the present study. A microelectrode array was used to record the discharge activity of WDR neurons in the lumbar spinal DHs of normal rats. After finding the WDR neuron, electrical stimulation (pulse width of 2 ms) was administered to the plantar receptive field (RF) for determining its response component of discharges according to the latency of action potential generation (Aß ï¼»0 to 20 msï¼½, Aδ ï¼»20 to 90 msï¼½, C ï¼»90 to 500 msï¼½ and post-discharge ï¼»500 to 800 msï¼½). High-intensity electrical stimulation was continuously applied to the RF at the paw's plantar surface to induce DHs neuronal windup response. Subsequently, EA stimulation at different intensities (1 mA and 2 mA) was applied to the left "Zusanli"(ST36) at a frequency of 2 Hz/15 Hz for 10 min. The induction of WDR neuronal windup was then repeated under the same conditions. The quantity of nociceptive discharge components and the windup response of WDR neurons before and after EA stimulations at different intensities were compared. RESULTS: Compared to pre-EA, both EA1 mA and EA2 mA significantly reduced the number of Aδ and C component discharges of WDR neurons during stimulation, as well as post-discharge (P<0.01, P<0.001). The inhibitory rate of C component by EA2 mA was significantly higher than that by EA1 mA (P<0.05). Meanwhile, both EA1 mA and EA2 mA attenuated the windup response of WDR neurons (P<0.05, P<0.01), and the effect of EA2 mA was stronger than that of EA1 mA (P<0.05). Further analysis showed that when EA1 mA and EA2 mA respectively applied to both non-receptive field (non-RF) and RF, a significant reduction in the number of Aδ component, C component and post-discharge was observed (P<0.05, P<0.01). EA2 mA at the non-RF and RF demonstrated a significant inhibitory effect on the windup response of WDR neurons (P<0.01, P<0.05), but EA1 mA only at the non-RF showed a significant inhibitory effect on the windup response (P<0.01). CONCLUSIONS: EA can suppress nociceptive discharges of spinal DHs WDR neurons in rats. The inhibitory impact of EA is strongly correlated with the location and intensity of EA stimulation, and EA2 mA has a stronger inhibitory effect than EA1 mA.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Humanos , Nociceptividade , Corno Dorsal da Medula Espinal/fisiopatologia , Células do Corno Posterior/fisiologia , Potenciais de Ação
13.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750803

RESUMO

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Assuntos
Analgésicos , Antracenos , Carbamatos , Canais de Potássio KCNQ , Fenilenodiaminas , Animais , Masculino , Carbamatos/farmacologia , Fenilenodiaminas/farmacologia , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/efeitos dos fármacos , Antracenos/farmacologia , Camundongos , Analgésicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neuralgia/tratamento farmacológico , Células do Corno Posterior/efeitos dos fármacos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/fisiologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 710: 149873, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583230

RESUMO

Photobiomodulation (PBM) has attracted attention as a treatment for chronic pain. Previous studies have reported that PBM of the sciatic nerve inhibits neuronal firing in the superficial layers (lamina I-II) of the spinal dorsal horn of rats, which is evoked by mechanical stimulation that corresponds to noxious stimuli. However, the effects of PBM on the deep layers (lamina III-IV) of the spinal dorsal horn, which receive inputs from innocuous stimuli, remain poorly understood. In this study, we examined the effect of PBM of the sciatic nerve on firing in the deep layers of the spinal dorsal horn evoked by mechanical stimulation. Before and after PBM, mechanical stimulation was administered to the cutaneous receptive field using 0.6-26.0 g von Frey filaments (vFFs), and vFF-evoked firing in the deep layers of the spinal dorsal horn was recorded. The vFF-evoked firing frequencies were not altered after the PBM for any of the vFFs. The inhibition rate for 26.0 g vFF-evoked firing was approximately 13 % in the deep layers and 70 % in the superficial layers. This suggests that PBM selectively inhibits the transmission of pain information without affecting the sense of touch. PBM has the potential to alleviate pain while preserving the sense of touch.


Assuntos
Terapia com Luz de Baixa Intensidade , Ratos , Animais , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Neurônios , Nervo Isquiático , Dor , Medula Espinal/fisiologia
15.
Biochem Biophys Res Commun ; 710: 149896, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604072

RESUMO

Pain is a widespread motivation for seeking healthcare and stands as a substantial global public health concern. Despite comprehensive investigations into the mechanisms of pain sensitization induced by inflammation, efficacious treatments options remain scarce. Neutrophil extracellular traps (NETs) have been associated with the progression and tissue damage of diverse inflammatory diseases. This study aims to explore the impact of NETs on the progression of inflammatory pain and explore potential therapeutic approaches. Initially, we observed neutrophil infiltration and the formation of NETs in the left hind paw of mice with inflammatory pain induced by complete Freund's adjuvant (CFA). Furthermore, we employed the peptidyl arginine deiminase 4 (PAD4) inhibitor Cl-amidine (diluted at 50 mg/kg in saline, administered via tail vein injection once daily for three days) to impede NETs formation and administered DNase1 (diluted at 10 mg/kg in saline, once daily for three days) to break down NETs. We investigated the pathological importance of peripheral NETs formation in inflammatory pain and its influence on the activation of spinal dorsal horn microglia. The findings indicate that neutrophils infiltrating locally generate NETs, leading to an increased release of inflammatory mediators that worsen peripheral inflammatory reactions. Consequently, this results in the transmission of more harmful peripheral stimuli to the spinal cord, triggering microglial activation and NF-κB phosphorylation, thereby escalating neuroinflammation and fostering pain sensitization. Suppression of peripheral NETs can mitigate peripheral inflammation in mice with inflammatory pain, reverse mechanical and thermal hypersensitivity by suppressing microglial activation in the spinal cord, ultimately diminishing inflammatory pain. In conclusion, these discoveries propose that obstructing or intervening with NETs introduces a novel therapeutic avenue for addressing inflammatory pain.


Assuntos
Armadilhas Extracelulares , Camundongos , Animais , Dor/tratamento farmacológico , Inflamação/patologia , Neutrófilos/patologia , Corno Dorsal da Medula Espinal
16.
Neuron ; 112(8): 1302-1327.e13, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38452762

RESUMO

Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.


Assuntos
Parvalbuminas , Corno Dorsal da Medula Espinal , Camundongos , Animais , Células do Corno Posterior/fisiologia , Locomoção , Interneurônios/fisiologia , Medula Espinal
17.
Biomed Pharmacother ; 173: 116369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452657

RESUMO

Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.


Assuntos
Ácidos Araquidônicos , Benzamidas , Carbamatos , Endocanabinoides , Nociceptividade , Humanos , Endocanabinoides/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Corno Dorsal da Medula Espinal , Analgésicos/farmacologia , Inflamação/tratamento farmacológico , Amidoidrolases
18.
Neurobiol Dis ; 194: 106471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461868

RESUMO

Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.


Assuntos
Neuralgia , Receptores de AMPA , Espermina , Animais , Feminino , Ratos , Hiperalgesia , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , RNA Interferente Pequeno , Espermina/análogos & derivados , Corno Dorsal da Medula Espinal/metabolismo , Nervos Espinhais , Regulação para Cima
19.
Brain Res ; 1832: 148842, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447599

RESUMO

BACKGROUND: Idiopathic trigeminal neuralgia (TN) cases encountered frequently in daily practice indicate significant gaps that still need to be illuminated in the etiopathogenesis. In this study, a novel TN animal model was developed by compressing the dorsal horn (DH) of the upper cervical spinal cord. METHODS: Eighteen rabbits were equally divided into three groups, namely control (CG), sham (SG), and spinal cord compression (SCC) groups. External pressure was applied to the left side at the C3 level in the SCC group. Dorsal hemilaminectomy was performed in the SG, and the operative side was closed without compression. No procedure was implemented in the control group. Samples from the SC, TG, and ION were taken after seven days. For the histochemical staining, damage and axons with myelin were scored using Hematoxylin and Eosin and Toluidine Blue, respectively. Immunohistochemistry, nuclei, apoptotic index, astrocyte activity, microglial labeling, and CD11b were evaluated. RESULTS: Mechanical allodynia was observed on the ipsilateral side in the SCC group. In addition, both the TG and ION were partially damaged from SC compression, which resulted in significant histopathological changes and increased the expression of all markers in both the SG and SCC groups compared to that in the CG. There was a notable increase in tissue damage, an increase in the number of apoptotic nuclei, an increase in the apoptotic index, an indication of astrocytic gliosis, and an upsurge in microglial cells. Significant increases were noted in the SG group, whereas more pronounced significant increases were observed in the SCC group. Transmission electron microscopy revealed myelin damage, mitochondrial disruption, and increased anchoring particles. Similar changes were observed to a lesser extent in the contralateral spinal cord. CONCLUSION: Ipsilateral trigeminal neuropathic pain was developed due to upper cervical SCC. The clinical finding is supported by immunohistochemical and ultrastructural changes. Thus, alterations in the DH due to compression of the upper cervical region should be considered as a potential cause of idiopathic TN.


Assuntos
Medula Cervical , Neuralgia , Neuralgia do Trigêmeo , Animais , Coelhos , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/metabolismo , Neuralgia do Trigêmeo/patologia , Medula Cervical/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Nervo Trigêmeo , Corno Dorsal da Medula Espinal/metabolismo , Hiperalgesia/metabolismo
20.
Cells ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474361

RESUMO

Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.


Assuntos
Gliose , Células do Corno Posterior , Humanos , Gliose/metabolismo , Células do Corno Posterior/metabolismo , Dor/metabolismo , Corno Dorsal da Medula Espinal , Derivados da Morfina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA