RESUMO
BACKGROUND: Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS: We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS: Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.
Assuntos
Diatomáceas , Diatomáceas/genética , Nitrogênio/metabolismo , Plâncton , Esporos , Expressão GênicaRESUMO
In clinical practice, cisplatin is the most commonly used chemotherapy drug to treat a range of malignancies. Severe ROS-regulated nephrotoxicity, however, restricts its applicability. Currently, the main mechanisms leading to cisplatin-induced nephrotoxicity in clinical settings involve hydration or diuresis. However, not all patients can be treated with massive hydration or diuretics. Therefore, it is crucial to develop a treatment modality that can effectively reduce nephrotoxicity through a foodborne route. Selenium has been reported to have strong antioxidant as well as anticancer effects when administered as spore oil. Herein, we established cellular and animal models of cisplatin-induced nephrotoxicity and synthesized spore oil-functionalized nano-selenium (GLSO@SeNPs). We found that GLSO@SeNPs inhibit the mitochondrial apoptotic pathway by maintaining oxidative homeostasis and regulating related signaling pathways (the MAPK, caspase, and AKT signaling pathways). In vivo, GLSO@SeNPs could effectively improve cisplatin-induced renal impairment, effectively maintaining oxidative homeostasis in renal tissues and thus inhibiting the process of renal injury. In addition, GLSO@SeNPs were converted into selenocysteine (SeCys2), which may exert protective effects. Furthermore, GLSO@SeNPs could effectively modulate the ratio of immune cells in kidneys and spleen, reducing the proportions of CD3+CD4+ T cells, CD3+CD8+ T cells, and M1 phenotype macrophages and increasing the proportion of anti-inflammatory regulatory T cells. In summary, in this study, we synthesized food-derived spore oil-functionalized nanomaterials, and we explored the mechanisms by which GLSO@SeNPs inhibit cisplatin-induced nephrotoxicity. Our study provides a basis and rationale for the inhibition of cisplatin-induced nephrotoxicity by food-derived nutrients.
Assuntos
Cisplatino , Selênio , Animais , Cisplatino/farmacologia , Selênio/farmacologia , Linfócitos T CD8-Positivos , Rim , Estresse Oxidativo , Imunidade , Esporos , ApoptoseRESUMO
Enterocytozoon hepatopenaei (EHP), an obligate intracellular parasite classified as microsporidia, is an emerging pathogen with a significant impact on the global shrimp aquaculture industry. The understanding of how microsporidia germinate has been a key factor in exploring its infection process. However, the germination process of EHP was rarely reported. To gain insight into the germination process, we conducted a high-throughput sequencing analysis of purified EHP spores that had undergone in vitro germination treatment. This analysis revealed 137 differentially expressed genes, with 84 up-regulated and 53 down-regulated genes. While the functions of some of the genes remain unknown, this study provides important data on the transcriptomic changes before and after EHP germination, which can aid in further studies on the EHP infection mechanism.
Assuntos
Enterocytozoon , Penaeidae , Animais , Transcriptoma , Penaeidae/parasitologia , Perfilação da Expressão Gênica , Enterocytozoon/genética , EsporosRESUMO
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Assuntos
Ascomicetos , Sordariales , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética , Ascomicetos/genética , Sordariales/genética , Recombinação Genética/genética , EsporosRESUMO
Spore-forming bacteria accumulate dipicolinic acid (DPA) to form spores to survive in extreme environments. Vibrational spectroscopy is widely used to detect DPA and elucidate the existence of the bacteria, while vegetative cells, another form of spore-forming bacteria, have not been studied extensively. Herein, we applied coherent anti-Stokes Raman scattering (CARS) microscopy to spectroscopically identify both spores and vegetative cells without staining or molecular tagging. The spores were identified by the strong CARS signals due to DPA. Furthermore, we observed bright spots in the vegetative cells in the CARS image at 1735 cm-1. The vegetative cells contained molecular species with C=O bonds because this vibrational mode was associated with the carbonyl group. One of the candidate molecular species is diketopimelic acid (DKP), a DPA precursor. This hypothesis was verified by comparing the spectrum obtained by the vegetative cells with that of the DKP analogue (ketopimelic acid) and with the result obtained by DFT calculation. The results indicate that the observed vegetative cell is in the sporulation process. CARS spectra can be used to monitor the maturation and preformation of spores.
Assuntos
Bactérias , Análise Espectral Raman , Análise Espectral Raman/métodos , Esporos , Esporos Bacterianos , VibraçãoRESUMO
Although Clostridium novyi-NT is an anti-cancer bacterial therapeutic which germinates within hypoxic tumors to kill cancer cells, the actual germination triggers for C. novyi-NT are still unknown. In this study, we screen candidate germinants using combinatorial experimental designs and discover by serendipity that D-valine is a potent germinant, inducing 50% spore germination at 4.2 mM concentration. Further investigation revealed that five D-valine analogs are also germinants and four of these analogs are enantiomeric pairs. This stereoflexible effect of L- and D-amino acids shows that spore germination is a complex process where enantiomeric interactions can be confounders. This study also identifies L-cysteine as a germinant, and hypoxanthine and inosine as co-germinants. Several other amino acids promote (L-valine, L-histidine, L-threonine and L-alanine) or inhibit (L-arginine, L-glycine, L-lysine, L-tryptophan) germination in an interaction-dependent manner. D-alanine inhibits all germination, even in complex growth media. This work lays the foundation for improving the germination efficacy of C. novyi-NT spores in tumors.
Assuntos
Esporos Bacterianos , Valina , Valina/metabolismo , Valina/farmacologia , Esporos Bacterianos/metabolismo , Aminoácidos/metabolismo , Alanina , Esporos/metabolismoRESUMO
A new myxosporean parasite, Ortholinea nupchi n. sp. (Myxozoa; Bivalvulida), was isolated from the urinary bladder of the olive flounder Paralichthys olivaceus cultured on Jeju Island, Korea. Mature spores were subspherical in the valvular and apical views and ellipsoidal in the sutural view. The spores measured 7.6 ± 0.5 µm in length, 6.7 ± 0.3 µm in thickness, and 7.3 ± 0.5 µm in width. Two pyriform polar capsules measured 3.2 ± 0.1 µm in length and 2.7 ± 0.1 µm in width and were located at the same level at the anterior half of the myxospores. The suture line was straight in the middle of the spores, and the surface ridges ranged between five and seven, forming an intricate pattern. The result of the 18S rDNA comparison showed ≤ 93.0% similarity with other Ortholinea species. The phylogenetic tree demonstrated that O. nupchi n. sp. was closest to O. auratae and clustered with oligochaete-infecting myxosporeans (OIM) having urinary system infection tropism. Based on the comparison of environmental and host factors in the phylogenetic groups of the OIM clade, we propose that the infection of O. nupchi n. sp. originated from marine oligochaetes.
Assuntos
Doenças dos Peixes , Linguado , Myxozoa , Doenças Parasitárias em Animais , Animais , Bexiga Urinária/parasitologia , Linguado/parasitologia , Filogenia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , República da Coreia , Esporos , DNA Ribossômico/genética , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologiaRESUMO
During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration-dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non-chlorophyllous and crypto-chlorophyllous). The fatty acid concentration was determined by gas chromatograph-mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high-resolution liquid chromatography with a DAD-UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non-chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto-chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto-chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre-existing lipids and less fatty acids as 'building blocks' for cell membranes than non-chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.
Assuntos
Ácidos Graxos , Gleiquênias , Ácidos Graxos/metabolismo , Gleiquênias/metabolismo , Esporos/fisiologia , Metabolismo dos Lipídeos , Ácido Oleico/metabolismo , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismoRESUMO
Mucormycosis is an invasive fungal infection caused by certain members of the fungal order of Mucorales. The species most frequently identified as the etiological agents of mucormycosis belong to the genera Rhizopus, Lichtheimia, and Mucor. The frequency of systemic mucormycosis has been increasing, mainly because of increasing numbers of susceptible patients. Furthermore, Mucorales display intrinsic resistance to the majority of routinely used antifungal agents (e.g., echinocandins and short-tailed azoles), which limits the number of possible therapeutic options. All the above-mentioned issues urge the improvement of molecular identification methods and the discovery of new antifungal targets and strategies. Spore coat proteins (CotH) constitute a kinase family present in many pathogenic bacteria and fungi and participate in the spore formation in these organisms. Moreover, some of them can act as virulence factors being receptors of the human GRP78 protein during Rhizopus delemar-induced mucormycosis. We identified 17 cotH-like genes in the Mucor lusitanicus genome database. Successful disruption of five cotH genes in Mucor was performed using the CRISPR-Cas9 system. The CotH3 and CotH4 proteins play a role in adaptation to different temperatures as well as in developing the cell wall structure. We also show CotH4 protein is involved in spore wall formation by affecting the total chitin content and, thus, the composition of the spore wall. The role of CotH3 and CotH4 proteins in virulence was confirmed in two invertebrate models and a diabetic ketoacidosis (DKA) mouse model. IMPORTANCE Current treatment options for mucormycosis are inadequate, resulting in high mortality rates, especially among immunosuppressed patients. The development of novel therapies for mucormycosis has been hampered by lack of understanding of the pathogenetic mechanisms. The importance of the cell surface CotH proteins in the pathogenesis of Rhizopus-mediated mucormycosis has been recently described. However, the contribution of this family of proteins to the virulence of other mucoralean fungi and their functionality in vital processes remain undefined. Through the use of the CRISPR-Case9 gene disruption system, we demonstrate the importance of several of the CotH proteins to the virulence of Mucor lusitanicus by using three infection models. We also report on the importance of one of these proteins, CotH4, to spore wall formation by affecting chitin content. Therefore, our studies extend the importance of CotH proteins to Mucor and identify the mechanism by which one of the CotH proteins contributes to the development of a normal fungal cell wall, thereby indicating that this family of proteins can be targeted for future development of novel therapeutic strategies of mucormycosis.
Assuntos
Mucorales , Mucormicose , Animais , Camundongos , Humanos , Mucor/genética , Mucormicose/microbiologia , Virulência/genética , Mucorales/genética , EsporosRESUMO
Proteins of the DELLA family integrate environmental signals to regulate growth and development throughout the plant kingdom. Plants expressing non-degradable DELLA proteins underpinned the development of high-yielding 'Green Revolution' dwarf crop varieties in the 1960s. In vascular plants, DELLAs are regulated by gibberellins, diterpenoid plant hormones. How DELLA protein function has changed during land plant evolution is not fully understood. We have examined the function and interactions of DELLA proteins in the moss Physcomitrium (Physcomitrella) patens, in the sister group of vascular plants (Bryophytes). PpDELLAs do not undergo the same regulation as flowering plant DELLAs. PpDELLAs are not degraded by diterpenes, do not interact with GID1 gibberellin receptor proteins and do not participate in responses to abiotic stress. PpDELLAs do share a function with vascular plant DELLAs during reproductive development. PpDELLAs also regulate spore germination. PpDELLAs interact with moss-specific photoreceptors although a function for PpDELLAs in light responses was not detected. PpDELLAs likely act as 'hubs' for transcriptional regulation similarly to their homologues across the plant kingdom. Taken together, these data demonstrate that PpDELLA proteins share some biological functions with DELLAs in flowering plants, but other DELLA functions and regulation evolved independently in both plant lineages.
Assuntos
Proteínas de Arabidopsis , Bryopsida , Traqueófitas , Bryopsida/metabolismo , Germinação , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Traqueófitas/metabolismo , Esporos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
There is growing evidence that shows Clostridium (Clostridioides) difficile is a pathogen of One Health importance with a complex dissemination pathway involving animals, humans, and the environment. Thus, environmental discharge and agricultural recycling of human and animal waste have been suspected as factors behind the dissemination of Clostridium difficile in the community. Here, the presence of C. difficile in 12 wastewater treatment plants (WWTPs) in Western Australia was investigated. Overall, C. difficile was found in 90.5% (114/126) of raw sewage influent, 48.1% (50/104) of treated effluent, 40% (2/5) of reclaimed irrigation water, 100% (38/38) of untreated biosolids, 95.2% (20/21) of anaerobically digested biosolids, and 72.7% (8/11) of lime-amended biosolids. Over half of the isolates (55.3% [157/284]) were toxigenic, and 97 C. difficile ribotypes (RTs) were identified, with RT014/020 the most common (14.8% [42/284]). Thirteen C. difficile isolates with the toxin gene profile A+ B+ CDT+ (positive for genes coding for toxins A and B and the binary C. difficile transferase toxin [CDT]) were found, including the hypervirulent RT078 strain. Resistance to the antimicrobials fidaxomicin, vancomycin, metronidazole, rifaximin, amoxicillin-clavulanate, meropenem, and moxifloxacin was uncommon; however, resistance to clindamycin, erythromycin, and tetracycline was relatively frequent at 56.7% (161/284), 14.4% (41/284), and 13.7% (39/284), respectively. This study revealed that toxigenic C. difficile was commonly encountered in WWTPs and being released into the environment. This raises concern about the possible spillover of C. difficile into animal and/or human populations via land receiving the treated waste. In Western Australia, stringent measures are in place to mitigate the health and environmental risk of recycling human waste; however, further studies are needed to elucidate the public health significance of C. difficile surviving the treatment processes at WWTPs. IMPORTANCE Clostridium difficile infection (CDI) is a leading cause of antimicrobial-associated diarrhea in health care facilities. Extended hospital stays and recurrences increase the cost of treatment and morbidity and mortality. Community-associated CDI (CA-CDI) cases, with no history of antimicrobial use or exposure to health care settings, are increasing. The isolation of clinically important C. difficile strains from animals, rivers, soil, meat, vegetables, compost, treated wastewater, and biosolids has been reported. The objective of this study was to characterize C. difficile in wastewater treatment plants (WWTPs) in Australia. We found that C. difficile can survive the treatment processes of WWTPs, and toxigenic C. difficile was being released into the environment, becoming a potential source/reservoir for CA-CDI.
Assuntos
Clostridioides difficile , Infecções por Clostridium , Purificação da Água , Animais , Humanos , Clostridioides difficile/genética , Clostridioides , Austrália Ocidental/epidemiologia , Biossólidos , Antibacterianos/farmacologia , Infecções por Clostridium/epidemiologia , Clostridium/genética , Esporos , Testes de Sensibilidade MicrobianaRESUMO
Ustilago maydis expresses a number of proteases during its pathogenic lifecycle. Some of the proteases including both intracellular and extracellular ones have previously been shown to influence the virulence of the pathogen. However, any role of secreted proteases in the sporulation process of U. maydis have not been explored earlier. In this study we have investigated the biological function of one such secreted protease, Ger1 belonging to aspartic protease A1 family. An assessment of the real time expression of ger1 revealed an infection specific expression of the protein especially during late phases of infection. We also evaluated any contribution of the protein in the pathogenicity of the fungus. Our data revealed an involvement of Ger1 in the sporulation and spore germination processes of U. maydis. Ger1 also showed positive influence on the pathogenicity of the fungus and accordingly the ger1 deletion mutant exhibited reduced pathogenicity. The study also demonstrated the protease activity associated with Ger1 to be essential for its biological function. Fluorescence microscopy of maize plants infected with U. maydis cells expressing Ger1-mcherry-HA also revealed that Ger1 is efficiently secreted within maize apoplast.
Assuntos
Ácido Aspártico Proteases , Basidiomycota , Ustilago , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Ustilago/genética , Ustilago/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos/metabolismoRESUMO
The molecular composition and structural organization of the cell wall of filamentous fungi underlie the ability of the host to identify them as pathogens. Although the organization of the fungal cell wall, composed of 90% polysaccharides, is similar from one fungus to another, small variations condition their ability to trigger pattern recognition receptors. Because the incidence of mucormycosis, an emerging life-threatening infection caused by the species of the order Mucorales is increasing worldwide, the precise composition of the cell wall of two strains of Lichtheimia corymbifera was investigated in the early growth stages of germination (spores and germ-tubes) using trimethylsilylation and confocal microscopy. This study also characterizes the response of THP-1 cells to Mucorales. The study identified the presence of uncommon monosaccharides (fucose, galactose, and glucuronic acid) whose respective proportions vary according to the germination stage, revealing early parietal reorganization. Immunofluorescence studies confirmed the exposure of ß-glucan on the surface of swollen spores and germ-tubes. Both spores and germ-tubes of L. corymbifera promoted an early and strong pro-inflammatory response, through TLR-2. Our results show the singularity of the cell wall of the order Mucorales, opening perspectives for the development of specific diagnostic biomarkers.
Lichtheimia corymbifera is a causative agent of mucormycosis, an emerging invasive fungal infection. Deciphering cell wall composition can lead to the identification of a polysaccharide epitope, which could be used as a biomarker, useful for the diagnosis of mucormycosis.
Assuntos
Mucorales , Mucormicose , Animais , Mucorales/fisiologia , Mucormicose/diagnóstico , Mucormicose/veterinária , Esporos , Interações Hospedeiro-PatógenoRESUMO
Introduction: To present a safer tumor therapy based on bacteria and identify in detail how the activation and infection behavior of spores can be controlled remotely by near-infrared light (NIR-irradiation) based on nanoheaters' modification. Methods: Spores bring a better tolerance to surface modification. Transitive gold-nanorods-allied-nanoclusters-modified spores (Spore@NRs/NCs) were constructed by covalent glutaraldehyde crosslink. The photothermal properties of nanoheaters before and after attachment to spores were studied by recording temperature-irradiation time curves. The controlled viability and infection behavior of Spore@NRs/NCs were investigated by NIR-irradiation. Results: In this work, a controllable sterilizing effect to activated vegetative bacteria was obtained obviously. When met with a suitable growth-environment, Spore@NRs/NCs could germinate, activate into vegetative bacteria and continue to reproduce. Without NIR-irradiation, nanoheaters could not affect the activity of both spores and vegetative bacterial cells. However, with NIR-irradiation after incubating in growth medium, nanoheaters on spores could control the spores' germination and affect the growth curve as well as the viability of the vegetative bacterial cells. For Spore@NRs/NCs (Spore:NCs:NRs=1:1:4, 67.5 µg mL-1), a ~98% killing rate of vegetative bacterial cells was obtained with NIR-irradiation (2.8 W cm-2, 20 min) after 2 h-incubation. In addition, these nanoheaters modified on spores could be taken not only to the vegetative bacteria cells, but also to the first-generation bacteria cells with their excellent photothermal and bactericidal performance, as well as synergetic anticancer effect. NIR-irradiation after 2 h-incubation could also trigger Spore@NRs/NCs (1:1:4, 6 µL) to synergistically reduce the viability of HCT116 cells to 15.63±2.90%. Conclusion: By using NIR-irradiation, the "transitive" nanoheaters can remotely control the activity of both bacteria (germinated from spore) and cancer cells. This discovery provides basis and a feasible plan for controllable safer treatment of bacteria therapy, especially anaerobes with spores in hypoxic areas of the malignant solid tumors.
Assuntos
Neoplasias , Esporos , Humanos , Bactérias , Temperatura , Esporos Bacterianos , Neoplasias/terapiaRESUMO
The study's goal was to develop a spore-based paper strip biosensor for detecting ß-lactam antibiotics in milk using the enzyme induction principle. A new spore-based paper strip biosensor has been developed after important operating parameters such as spore volume, substrate volume, exposure time and temperature, and incubation time and temperature were optimised. The limit of detection for various ß-lactam antibiotics, including amoxicillin, penicillin, ampicillin, carbenicillin, cloxacillin, nafcillin, oxacillin, cephalothin, cefalexin, cefoxitin, cefazolin, and cefuroxime, was determined in milk with detection sensitivity of 1 ppb, 2 ppb, 2 ppb, 10 ppb, 10 ppb, 10 ppb, 20 ppb, 10 ppb 1000 ppb, 10 ppb 300 ppb and 100 ppb, respectively. It was also tested with other contaminants such non-ß-lactam antibiotics, pesticides, aflatoxin, heavy metals, and other chemical contaminants, and no interference was found, indicating that the created biosensor had a low rate of false positive and negative results. In comparison to the AOAC-approved CHARM-ROSA ß-lactam strip test, which identified 7 raw milk and zero pasteurised milk samples positive for ß-lactam antibiotics, the sensor was further analysed and verified using 200 raw milk and 105 pasteurised milk samples. This indicates a perfect match between our biosensor and the AOAC-approved CHARM-ROSA ß-lactam strip test. The developed spore-based paper strip biosensors are expected to be useful in the rapid and cost-effective detection of ß-lactam antibiotic residues in milk samples at the dairy farm, reception dock, and production units, respectively.
Assuntos
Lactamas , beta-Lactamas , Animais , Leite/química , Antibacterianos/análise , Monobactamas , Esporos/químicaRESUMO
The spore morphology and wall ultrastructure of 12 species of Ctenitis from Southern Cone of America were studied using light microscope, scanning and transmission electron microscope. The study was carried out with herbarium material from Argentine and Brazilian institutions. Equatorial diameters, polar diameters and laesura length were measured. The spores are monolete with echinate or folded ornamentation. In the echinate type, the spines are conical, with broad base and attenuate apex. In the rugate type, the folds are inflated, linear, sinuous, subglobose or handle-shape. The perispore surface is scabrate, rugulate, microverrucose or psilate. Stratification and ultrastructure in the species analyzed are very similar. The exospore is smooth and two-layered in section. Simple and branched channels are observed mainly in the outer exospore. The perispore is composed of two layers, the inner one forms the ornamentation and the outer covers all the outer and inner surfaces. Immature spores were found in all samples of C. fenestralis. The characteristics of the studied spores like macro-ornamentation, color and fold length provide relevant information to differentiate some species or groups of species within the genus.
Assuntos
Dryopteridaceae , Esporos/ultraestrutura , Microscopia , BrasilRESUMO
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Assuntos
Microsporídios , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/genética , Microscopia Crioeletrônica , Filogenia , Peptídeos , EsporosRESUMO
Kelp habitats contribute to marine productivity and diversity, making understanding the constraints on their distribution important. In the Gulf of St. Lawrence, Alaria esculenta occupies a subset of Saccharina latissima's range. Since tolerance to sedimentation by early life stages was suggested to cause this contrasting distribution, we tested the influence of sediment levels on spore attachment and development. For both species, the proportion of attached spores that developed decreased with increasing sediment. However, spore attachment and gametophyte density increased with sediment concentration but only for Saccharina. At the maximum sediment level examined, spore attachment and gametophyte densities of the two species were similar, contrary to the idea that sediment effects on early life stages explain differences in adult distribution. Further investigation, particularly with higher sediment loads, is required to confirm this conclusion. As turbidity is increasing globally, understanding the mechanisms underpinning changes in seaweed distribution will facilitate appropriate local-scale management.
Assuntos
Kelp , Feófitas , Alga Marinha , Esporos , EcossistemaRESUMO
Microbial diversity can restrict the invasion and impact of alien microbes into soils via resource competition. However, this theory has not been tested on various microbial invaders with different ecological traits, particularly spore-forming bacteria. Here we investigated the survival capacity of two introduced spore-forming bacteria, Bacillus mycoides (BM) and B. pumillus (BP) and their impact on the soil microbiome niches with low and high diversity. We hypothesized that higher soil bacterial diversity would better restrict Bacillus survival via resource competition, and the invasion would alter the resident bacterial communities' niches only if inoculants do not escape competition with the soil community (e.g. through sporulation). Our findings showed that BP could not survive as viable propagules and transiently impacted the bacterial communities' niche structure. This may be linked to its poor resource usage and low growth rate. Having better resource use capacities, BM better survived in soil, though its survival was weakly related to the remaining resources left for them by the soil community. BM strongly affected the community niche structure, ultimately in less diverse communities. These findings show that the inverse diversity-invasibility relationship can be valid for some spore-forming bacteria, but only when they have sufficient resource use capacity.
Assuntos
Inoculantes Agrícolas , Bacillus , Solo , Microbiologia do Solo , Bactérias , EsporosRESUMO
Spores are an infectious form of the zoonotic bacterial pathogen, Bacillus anthracis. The outermost spore layer is the exosporium, comprised of a basal layer and an external glycoprotein nap layer. The major structural proteins of the inner basal layer are CotY (at the mother cell central pole or bottlecap) and ExsY around the rest of the spore. The basis for the cap or noncap specificity of the CotY and ExsY proteins is currently unknown. We investigated the role of sequence differences between these proteins in localization during exosporium assembly. We found that sequence differences were less important than the timing of expression of the respective genes in the positioning of these inner basal layer structural proteins. Fusion constructs with the fluorescent protein fused at the N-terminus resulted in poor incorporation whereas fusions at the carboxy terminus of CotY or ExsY resulted in good incorporation. However, complementation studies revealed that fusion constructs, although accurate indicators of protein localization, were not fully functional. A model is presented that explains the localization patterns observed. Bacterial two-hybrid studies in Escherichia coli hosts were used to examine protein-protein interactions with full-length and truncated proteins. The N-terminus amino acid sequences of ExsY and CotY appear to be recognized by spore proteins located in the spore interspace, consistent with interactions seen with ExsY and CotY with the interspace proteins CotE and CotO, known to be involved with exosporium attachment.