Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.098
Filtrar
1.
Arch Microbiol ; 204(8): 476, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829937

RESUMO

Despite the worldwide use of 16S rRNA to identify bacterial species, the use of this gene does not discriminate the 750 species in the genus Streptomyces. A MLST scheme was constructed with rpoB, gyrB, recA, trpB and atpD genes to access the genomic variances in Streptomyces species evolution. We analyze the housekeeping genes in 49 Streptomyces isolates from Antarctic soil. It was used two different databases, GenBank and EzBioCloud to compare the 16S sequences. The species founded in both databases are not the same, but in both cases, a few isolates achieve the necessary high percentage to consider the identification. There is a lack of deposited sequences in the other genes, as the data in GenBank proved to be insufficient. Isolate LMA323St_9 has the potential to be studied as a novel species. Besides that, the use of housekeeping genes gives robust phylogenetic information to understand in group relationships.


Assuntos
Streptomyces , Regiões Antárticas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
2.
Arch Microbiol ; 204(8): 456, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788783

RESUMO

An isolate of Streptomyces decoyicus M* (code of the isolate) was identified by the sequencing of 16S rRNA gene. It was grown on solid media and secondary metabolites were extracted with n-butanol. The extract was dried and run in a sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE, 10%). Two main bands obtained were sliced and the metabolites were regained in n-butanol. These two samples were then identified by gas-chromatography-mass spectrometry (GC-MS), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that tromethamine- and 1-dodecanol were the main constituents (band 1: 61% and 17.7%; band 2: 41% and 54%, respectively). This finding maintained that the isolate of Streptomyces decoyicus produced high amounts tromethamine- and 1-dodecanol under the conditions investigated.


Assuntos
Dodecanol , Trometamina , 1-Butanol , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Streptomyces
3.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 34(3): 269-276, 2022 Jul 05.
Artigo em Chinês | MEDLINE | ID: mdl-35896490

RESUMO

OBJECTIVE: To evaluate the storage stability of metabolites from actinomycetes Streptomyces nigrogriseolus XD 2-7 and the mollcuscicidal activity against Oncomelania hupensis in the laboratory, and to preliminarily explore the mechanisms of the molluscicidal activity. METHODS: The fermentation supernatant of S. nigrogriseolus XD 2-7 was prepared and stored at -20, 4 °C and 28 °C without light for 10 d; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation supernatant was boiled in a 100 °C water bath for 30 min and recovered to room temperature, and then the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The pH values of the fermentation supernatant were adjusted to 4.0, 6.0 and 9.0 with concentrated hydrochloric acid and sodium hydroxide, and the fermentation supernatant was stilled at room temperature for 12 h, with its pH adjusted to 7.0; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation product of S. nigrogriseolus XD 2-7was isolated and purified four times with macroporous resin, silica gel and octadecylsilane bonded silica gel. The final products were prepared into solutions at concentrations of 10.00, 5.00, 2.50, 1.25 mg/L and 0.63 mg/L, and the molluscicidal effect of the final productswas tested against O. hupensis following immersion for 72 h, while dechlorination water served as blank controls, and 0.10 mg/L niclosamide served as positive control. The adenosine triphosphate (ATP) and adenosine diphosphate (ADP) levels were measured in in O. hupensis soft tissues using high performance liquid chromatography (HPLC) following exposure to the final purified fermentation products of S. nigrogriseolus XD 2-7. RESULTS: After the fermentation supernatant of S. nigrogriseolus XD 2-7 was placed at -20, 4 °C and 28 °C without light for 10 d, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100% (30/30) O. hupensis mortality. Following boiling at 100 °C for 30 min, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100.00% (30/30) O. hupensis mortality. Following storage at pH values of 4.0 and 6.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 100.00% (30/30) O. hupensis mortality, and following storage at a pH value of 9.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 33.33% (10/30) O. hupensis mortality (χ2 = 30.000, P < 0.05). The minimum concentration of the final purified fermentation products of S. nigrogriseolus XD 2-7 was 1.25 mg/L for achieving a 100% (30/30) O. hupensis mortality. The ATP level was significantly lower in O. hupensis soft tissues exposed to 0.10 mg/L and 1.00 mg/L of the final purified fermentation products of S. nigrogriseolus XD 2-7 than in controls (F = 7.274, P < 0.05), while no significant difference was detected in the ADP level between the treatment group and controls (F = 2.485, P > 0.05). CONCLUSIONS: The active mollcuscicidal ingredients of the S. nigrogriseolus XD 2-7 metabolites are maintained stably at -20, 4 °C and 28 °C for 10 d, and are heat and acid resistant but not alkali resistant. The metabolites from S. nigrogriseolus XD 2-7 may cause energy metabolism disorders in O. hupensis, leading to O. hupensis death.


Assuntos
Moluscocidas , Caramujos , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina , Animais , Moluscocidas/farmacologia , Sílica Gel/farmacologia , Streptomyces , Água
4.
Mar Drugs ; 20(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35877742

RESUMO

Two new phenylhydrazone derivatives and one new alkaloid, penzonemycins A-B (1-2) and demethylmycemycin A (3), together with three known compounds including an alkaloid (4) and two sesquiterpenoids (5-6), were isolated from the Streptomyces sp. SCSIO 40020 obtained from the Pearl River Estuary sediment. Their structures and absolute configurations were assigned by 1D/2D NMR, mass spectroscopy and X-ray crystallography. Compound 1 was evaluated in four human cancer cell lines by the SRB method and displayed weak cytotoxicity in three cancer cell lines, with IC50 values that ranged from 30.44 to 61.92 µM, which were comparable to those of the positive control cisplatin. Bioinformatic analysis of the putative biosynthetic gene cluster indicated a Japp-Klingemann coupling reaction involved in the hydrazone formation of 1 and 2.


Assuntos
Alcaloides , Streptomyces , Estuários , Humanos , Hidrazonas , Estrutura Molecular , Rios , Streptomyces/química , Streptomyces/genética
5.
Mar Drugs ; 20(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35877748

RESUMO

Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey's method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 µM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 µM).


Assuntos
Streptomyces , Animais , Vias Biossintéticas , Células Endoteliais/metabolismo , Humanos , Camundongos , Família Multigênica , Peptídeo Sintases/genética , Peptídeos/metabolismo , Streptomyces/metabolismo
6.
Biomed Res Int ; 2022: 6600403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860806

RESUMO

Streptomyces is amongst the most amenable genera for biotechnological applications, and it is extensively used as a scaffold for drug development. One of the most effective therapeutic applications in the treatment of cancer is targeted therapy. Small molecule therapy is one of them, and it has gotten a lot of attention recently. Streptomyces derived compounds namely streptenols A, C, and F-I and streptazolin were subjected for ADMET property assessment. Our computational studies based on molecular docking effectively displayed the synergistic effect of streptomyces-derived compounds on the gynecological cancer target PIK3CA. These compounds were observed with the highest docking scores as well as promising intermolecular interaction stability throughout the molecular dynamic simulation. Molecular docking and molecular dynamic modeling techniques were utilized to investigate the binding mode stability of drugs using a pharmacophore scaffold, as well as physicochemical and pharmacokinetic aspects linked to alpelisib. With a root mean square fluctuation of the protein backbone of less than 0.7 nm, they demonstrated a steady binding mode in the target binding pocket. They have also prompted hydrogen bonding throughout the simulations, implying that the chemicals have firmly occupied the active site. A comprehensive study showed that streptenol D, streptenol E, streptenol C, streptenol G, streptenol F, and streptenol B can be considered as lead compounds for PIK3CA-based inhibitor design. To warrant the treatment efficacy against cancer, comprehensive computational research based on proposed chemicals must be assessed through in vitro studies.


Assuntos
Neoplasias , Streptomyces , Classe I de Fosfatidilinositol 3-Quinases , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
7.
Arch Biochem Biophys ; 727: 109338, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35779593

RESUMO

The genome of Streptomyces avermitilis contains 33 cytochrome P450 genes. Among the P450 gene products of S. avermitilis, we characterized the biochemical function and structural aspects of CYP184A1. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that CYP184A1 induced an epoxidation reaction to produce 9,10-epoxystearic acid. Steady-state kinetic analysis yielded a kcat value of 0.0067 min-1 and a Km value 10 µM. The analysis of its crystal structures illustrated that the overall CYP184A1 structure adopts the canonical scaffold of cytochrome P450 and possesses a narrow and deep substrate pocket architecture that is required for binding to linear chain fatty acids. In the structure of the CYP184A1 oleic acid complex (CYP184A1-OA), C9-C10 of oleic acid was bound to heme for the productive epoxidation reaction. This study elucidates the roles of P450 enzymes in the oxidative metabolism of fatty acids in Streptomyces species.


Assuntos
Ácidos Graxos , Streptomyces , Sistema Enzimático do Citocromo P-450/química , Ácidos Graxos/metabolismo , Cinética , Ácidos Oleicos/metabolismo
8.
Phytochemistry ; 201: 113292, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780923

RESUMO

Marine-derived actinomycetes from the genus Streptomycete have a huge potential for the production of metabolites with structural and bioactive uniqueness and diversity. This study described the isolation and structural elucidation of twenty metabolites, including seven previously unreported compounds galbonolide H, galbonolide I, streptophenylpropionic acid A, treptophenylpropyl ester A, streptophenvaleramide A, seco-geldanamycin A and streptorapamycin A, from the marine-associated Streptomycete sp. ZZ1944. Structures of the isolated compounds were elucidated by a combination of extensive NMR spectroscopic analyses, HRESIMS data, optical rotation and ECD calculations. The structure of galbonolide H was also confirmed by a single crystal X-ray diffraction. Both autolytimycin and seco-geldanamycin A showed potent activity against the proliferation of glioma, lung cancer, colorectal cancer and breast cancer cells. Autolytimycin blocked cell cycle of glioma cells and seco-geldanamycin A induced apoptosis of glioma cells.


Assuntos
Antineoplásicos , Glioma , Streptomyces , Antineoplásicos/farmacologia , Cristalografia por Raios X , Glioma/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Streptomyces/química
9.
J Antibiot (Tokyo) ; 75(8): 432-444, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778609

RESUMO

Streptomyces represents an important reservoir for biologically active natural products. Understanding the biosynthetic mechanism and the mode of gene expression is important for enhanced metabolite production and evaluation of biological activities. This review provides an overview of biosynthetic studies investigating reveromycin and ß-carboline biomediators that enhanced the production of reveromycin in Streptomyces sp. SN-593 through activation of the LuxR family regulator. Furthermore, based on the optimal expression of a pathway specific regulator controlling the mevalonate pathway gene cluster, Streptomyces sp. SN-593 was developed as a platform for terpenoid compounds mass production.


Assuntos
Streptomyces , Carbolinas/metabolismo , Família Multigênica , Streptomyces/genética , Streptomyces/metabolismo , Terpenos/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
World J Microbiol Biotechnol ; 38(10): 170, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904625

RESUMO

The infections caused by Pseudomonas aeruginosa are difficult to treat due to its multidrug resistance. A promising strategy for controlling P. aeruginosa infection is targeting the quorum sensing (QS) system. Actinomycin D isolated from the metabolite of endophyte Streptomyces cyaneochromogenes RC1 exhibited good anti-QS activity against P. aeruginosa PAO1. Actinomycin D (50, 100, and 200 µg/mL) significantly inhibited the motility as well as reduced the production of multiple virulence factors including pyocyanin, protease, rhamnolipid, and siderophores. The images of confocal laser scanning microscopy and scanning electron microscopy revealed that the treatment of actinomycin D resulted in a looser and flatter biofilm structure. Real-time quantitative PCR analysis showed that the expression of QS-related genes lasI, rhlI, rhlR, pqsR, pslA, and pilA were downregulated dramatically. The production of QS signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone and N-butanoyl-L-homoserine lactone were also decreased by actinomycin D. These findings suggest that actinomycin D, a potent in vitro anti-virulence agent, is a promising candidate to treat P. aeruginosa infection by interfering with the QS systems.


Assuntos
Percepção de Quorum , Streptomyces , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Dactinomicina/metabolismo , Dactinomicina/farmacologia , Endófitos/metabolismo , Pseudomonas aeruginosa/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Virulência/genética
11.
Molecules ; 27(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35889414

RESUMO

The aim of this study was to determine the influence of effective microorganisms (EM) present in biological formulations improving soil quality on degradation of two herbicides, diflufenican and flurochloridone. Three commercially available formulations containing EM were used: a formulation containing Bifidobacterium, Lactobacillus, Lactococcus, Streptococcus, Bacillus, and Rhodopseudomonas bacteria and the yeast Saccharomyces cerevisiae; a formulation containing Streptomyces, Pseudomonas, Bacillus, Rhodococcus, Cellulomonas, Arthrobacter, Paenibacillusa, and Pseudonocardia bacteria; and a formulation containing eight strains of Bacillus bacteria, B. megaterium, B. amyloliquefaciens, B. pumilus, B. licheniformis, B. coagulans, B. laterosporus, B. mucilaginosus, and B. polymyxa. It was demonstrated that those formulations influenced degradation of herbicides. All studied formulations containing EM reduced the diflufenican degradation level, from 35.5% to 38%, due to an increased acidity of the soil environment and increased durability of that substance at lower pH levels. In the case of flurochloridone, all studied EM formulations increased degradation of that active substance by 19.3% to 31.2% at the most. For control samples, equations describing kinetics of diflufenican and flurochloridone elimination were plotted, and a time of the half-life of these substances in laboratory conditions was calculated, amounting to 25.7 for diflufenican and 22.4 for flurochloridone.


Assuntos
Bacillus , Herbicidas , Streptomyces , Bacillus/metabolismo , Herbicidas/metabolismo , Niacinamida/análogos & derivados , Pirrolidinonas , Solo , Streptomyces/metabolismo
12.
Molecules ; 27(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35889415

RESUMO

Antibiotic-resistant bacteria are the primary source of one of the growing public health problems that requires global attention, indicating an urgent need for new antibiotics. Marine ecosystems are characterized by high biodiversity and are considered one of the essential sources of bioactive chemical compounds. Bacterial associates of marine invertebrates are commonly a source of active medicinal and natural products and are important sources for drug discovery. Hence, marine invertebrate-associated microbiomes are a fruitful resource for excavating novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, which exhibited antimicrobial and antitumor activity. In addition, this isolate harbors several natural product biosynthetic gene clusters, suggesting it has the potential to produce bioactive natural products. The present study aimed to investigate the metabolic profile of the isolated Streptomyces sp. SCSIO 001680 (strain 63) and to predict their potential role in the host's survival. The crude metabolic extracts of strain 63 cultivated in two different media were characterized by ultra-high-performance liquid chromatography and high-resolution mass spectrometry. The metabolomics approach provided us with characteristic chemical fingerprints of the cellular processes and the relative abundance of specific compounds. The Global Products Social Molecular Networking database was used to identify the metabolites. While 434 metabolites were detected in the extracts, only a few compounds were identified based on the standards and the public spectral libraries, including desferrioxamines, marineosin A, and bisucaberin, halichoblelide, alternarin A, pachastrelloside A, streptodepsipeptide P1 1B, didemnaketal F, and alexandrolide. This finding suggests that this strain harbors several novel compounds. In addition, the metabolism of the microbiome of marine invertebrates remains poorly represented. Thus, our data constitute a valuable complement to the study of metabolism in the host microbiome.


Assuntos
Produtos Biológicos , Streptomyces , Antibacterianos/química , Organismos Aquáticos , Produtos Biológicos/química , Ecossistema , Metabolômica , Streptomyces/metabolismo
13.
Microb Genom ; 8(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775972

RESUMO

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
14.
Microbiome ; 10(1): 108, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841078

RESUMO

BACKGROUND: Rhizodeposits regulate rhizosphere interactions, processes, nutrient and energy flow, and plant-microbe communication and thus play a vital role in maintaining soil and plant health. However, it remains unclear whether and how alteration in belowground carbon allocation and chemodiversity of rhizodeposits influences microbiome functioning in the rhizosphere ecosystems. To address this research gap, we investigated the relationship of rhizosphere carbon allocation and chemodiversity with microbiome biodiversity and functioning during peanut (Arachis hypogaea) continuous mono-cropping. After continuously labeling plants with 13CO2, we studied the chemodiversity and composition of rhizodeposits, along with the composition and diversity of active rhizosphere microbiome using metabolomic, amplicon, and shotgun metagenomic sequencing approaches based on DNA stable-isotope probing (DNA-SIP). RESULTS: Our results indicated that enrichment and depletion of rhizodeposits and active microbial taxa varied across plant growth stages and cropping durations. Specifically, a gradual decrease in the rhizosphere carbon allocation, chemodiversity, biodiversity and abundance of plant-beneficial taxa (such as Gemmatimonas, Streptomyces, Ramlibacter, and Lysobacter), and functional gene pathways (such as quorum sensing and biosynthesis of antibiotics) was observed with years of mono-cropping. We detected significant and strong correlations between rhizodeposits and rhizosphere microbiome biodiversity and functioning, though these were regulated by different ecological processes. For instance, rhizodeposits and active bacterial communities were mainly governed by deterministic and stochastic processes, respectively. Overall, the reduction in carbon deposition and chemodiversity during peanut continuous mono-cropping tended to suppress microbial biodiversity and its functions in the rhizosphere ecosystem. CONCLUSIONS: Our results, for the first time, provide the evidence underlying the mechanism of rhizosphere microbiome malfunctioning in mono-cropped systems. Our study opens new avenues to deeply disentangle the complex plant-microbe interactions from the perspective of rhizodeposits chemodiversity and composition and will serve to guide future microbiome research for improving the functioning and services of soil ecosystems. Video abstract.


Assuntos
Microbiota , Streptomyces , Carbono , DNA , Microbiota/genética , Raízes de Plantas/microbiologia , Plantas , Rizosfera , Solo , Microbiologia do Solo
15.
Org Lett ; 24(28): 5171-5175, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35815821

RESUMO

An analogue of the Streptomyces metabolite JBIR-141, featuring a delicate N-nitrosohydroxylamine, a 3-acyltetramic acid, and an oxazoline, was synthesized by a convergent strategy from l-alanine, l-threonine, and l-glutamic acid. Key steps were the cyclization of an Ala-Thr derivative to give the oxazoline, a Dieckmann condensation affording the 3-acyltetramic acid, and the N-nitrosation of a hydroxylamino derivative of glutamic acid. An adequate protecting group strategy was established for coupling the three building blocks.


Assuntos
Oxidiazóis , Streptomyces , Ciclização , Streptomyces/metabolismo
16.
Nucleic Acids Res ; 50(13): 7751-7760, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801861

RESUMO

The rise of antibiotic-resistant bacteria represents a major threat to global health, creating an urgent need to discover new antibiotics. Natural products derived from the genus Streptomyces represent a rich and diverse repertoire of chemical molecules from which new antibiotics are likely to be found. However, a major challenge is that the biosynthetic gene clusters (BGCs) responsible for natural product synthesis are often poorly expressed under laboratory culturing conditions, thus preventing the isolation and screening of novel chemicals. To address this, we describe a novel approach to activate silent BGCs through rewiring endogenous regulation using synthetic gene regulators based upon CRISPR-Cas. First, we refine CRISPR interference (CRISPRi) and create CRISPR activation (CRISPRa) systems that allow for highly programmable and effective gene repression and activation in Streptomyces. We then harness these tools to activate a silent BGC by perturbing its endogenous regulatory network. Together, this work advances the synthetic regulatory toolbox for Streptomyces and facilitates the programmable activation of silent BGCs for novel chemical discovery.


Assuntos
Produtos Biológicos , Streptomyces , Antibacterianos , Sistemas CRISPR-Cas/genética , Família Multigênica , Streptomyces/genética
17.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807259

RESUMO

Iron-deficiency-induced anemia is associated with poor neurological development, including decreased learning ability, altered motor functions, and numerous pathologies. Siderophores are iron chelators with low molecular weight secreted by microorganisms. The proposed catechol-type pathway was identified based on whole-genome sequences and bioinformatics tools. The intended pathway consists of five genes involved in the biosynthesis process. Therefore, the isolated catechol-type siderophore (Sid) from Streptomyces tricolor HM10 was evaluated through an anemia-induced rat model to study its potential to accelerate recovery from anemia. Rats were subjected to an iron-deficient diet (IDD) for 42 days. Anemic rats (ARs) were then divided into six groups, and normal rats (NRs) fed a standard diet (SD) were used as a positive control group. For the recovery experiment, ARs were treated as a group I; fed an IDD (AR), group II; fed an SD (AR + SD), group III, and IV, fed an SD with an intraperitoneal injection of 1 µg Sid Kg-1 (AR + SD + Sid1) and 5 µg Sid Kg-1 (AR + SD + Sid5) twice per week. Group V and VI were fed an iron-enriched diet (IED) with an intraperitoneal injection of 1 µg Sid Kg-1 (AR + IED + Sid1) and 5 µg Sid Kg-1 (AR + IED + Sid5) twice per week, respectively. Weight gain, food intake, food efficiency ratio, organ weight, liver iron concentration (LIC) and plasma (PIC), and hematological parameters were investigated. The results showed that ~50-60 mg Sid L-1 medium could be producible, providing ~25-30 mg L-1 purified Sid under optimal conditions. Remarkably, the AR group fed an SD with 5 µg Sid Kg-1 showed the highest weight gain. The highest feed efficiency was observed in the AR + SD + Sid5 group, which did not significantly differ from the SD group. Liver, kidneys, and spleen weight indicated that diet and Sid concentration were related to weight recovery in a dose-dependent manner. Liver iron concentration (LIC) in the AR + IED + Sid1 and AR + IED + Sid5 groups was considerably higher than in the AR + SD + Sid1 AR + SD + Sid5 groups or the AR + SD group compared to the AR group. All hematological parameters in the treated groups were significantly closely attenuated to SD groups after 28 days, confirming the efficiency of the anemia recovery treatments. Significant increases were obtained in the AR + SD + Sid5 and AR + IED + Sid5 groups on day 14 and day 28 compared to the values for the AR + SD + Sid1 and AR + IED + Sid1 groups. The transferrin saturation % (TSAT) and ferritin concentration (FC) were significantly increased with time progression in the treated groups associatively with PIC. In comparison, the highest significant increases were noticed in ARs fed IEDs with 5 µg Kg-1 Sid on days 14 and 28. In conclusion, this study indicated that Sid derived from S. tricolor HM10 could be a practical and feasible iron-nutritive fortifier when treating iron-deficiency-induced anemia (IDA). Further investigation focusing on its mechanism and kinetics is needed.


Assuntos
Anemia Ferropriva , Anemia , Morte Súbita do Lactente , Anemia/tratamento farmacológico , Anemia/etiologia , Animais , Catecóis , Ferro/metabolismo , Ratos , Sideróforos/farmacologia , Streptomyces , Aumento de Peso
18.
Org Lett ; 24(24): 4444-4448, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35699427

RESUMO

Mohangamide A is a pseudo-dimeric nonribosomal peptide biosynthesized along with its monomer, WS9326A, and is expected to be formed by the head-to-tail cyclodimerization of linear WS9326A and another identical peptide chain with a different acyl side chain. In vitro experiments with the N-acetylcysteamine thioesters of the corresponding monomeric intermediates and thioesterase domains of Streptomyces sp. SNM55 and S. calvus showed that this cyclodimerization reaction is directed by the substrate structures and occurs only with both linear intermediates.


Assuntos
Streptomyces , Peptídeos Cíclicos , Especificidade por Substrato
19.
Microbiol Res ; 262: 127077, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35688098

RESUMO

Streptomyces gilvosporeus F607 produces large amounts of natamycin in a process regulated by multiple networks, including two-component systems (TCSs). The macR and macS genes, which are annotated as rs12540 and rs12545, respectively, in S. gilvosporeus F607, affect natamycin biosynthesis and sporulation. The findings of this study indicate that deletion of macRS from S. gilvosporeus F607 prevents the production of natamycin, delays spore formation (according to scanning electron microscopy), and results in aerial hyphae lacking compartments separated by septa (according to transmission electron microscopy). Real-time quantitative polymerase chain reaction (RT-qPCR) analyses revealed that the expression levels of natamycin biosynthesis-related genes and genes essential for septum formation during sporulation were affected in the ΔmacRS mutant strain. Molecular simulations and electrophoretic mobility shift assays (EMSAs) suggested MacR not only interacted with the intergenic region of sgnM and sgnR, but also with the promoter of penicillin-binding protein gene ftsL required for cell division. sgnR promoter was presumed to be the binding target of MacR based on the RT-qPCR results. MacR had different affinity with two binding sites: one was located at ftsL promoter region with a perfect inverted repeats 'TGAGTACGCGTACTCA', the other was located at the presumed sgnR promoter with an imperfect inverted repeats 'TGAAGGTGCTGGACTCA'. We propose a hypothesis of a three-level regulatory pathway based on pleiotropic transcriptional regulator MacR and its target genes sgnR and ftsL; the pathway activates natamycin biosynthesis and influences septum development via direct and indirect effects in S. gilvosporeus F607.


Assuntos
Natamicina , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Natamicina/metabolismo , Regiões Promotoras Genéticas , Streptomyces/metabolismo
20.
J Agric Food Chem ; 70(27): 8309-8316, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35773185

RESUMO

Phytopathogenic fungi could affect the growth of agricultural products and result in serious economic losses. To develop novel and potent fungicides, secondary metabolites of an oceanic mesophotic zone Streptomyces sp. NBU3104 was isolated by metabolomics and genomics, which led to the discovery of eight novel antimycins I-P (1-8), including antimycin I (1), six rare acetylated actimycins J-N (2-6), P (8), and an unusual deformylated antimycin O (7). The chemical structures of these metabolites were identified using nuclear magnetic resonance (NMR) spectroscopic analysis, high-resolution electrospray ionization mass spectrometry (HRESIMS) data, and the known reported metabolites in the literature. Their absolute configurations were elucidated by comparison of coupling constant and experimental electronic circular dichroism (ECD) spectra. Among them, compound 1 exhibited excellent inhibitory activities against phytopathogenic fungi, such as Candida albicans, Penicillium expansum, Penicillium citrinum, and Botrytis cinerea. Furthermore, compound 1 could effectively control gray mold of apple in vivo (minimum inhibitory concentration (MIC) = 8 µg/mL). The structure-activity relations of antimycins I-P (1-8) suggested that the aldehyde group in 3-formamidosalicylate unit moiety should be the key factor in their antifungal activities.


Assuntos
Actinobacteria , Streptomyces , Antifúngicos/química , Antimicina A/análogos & derivados , Candida albicans , Streptomyces/química , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...