RESUMO
Photosynthetic active radiation (PAR) refers to photons between 400 and 700 nm. These photons drive photosynthesis, providing carbohydrates for plant metabolism and development. Far-red radiation (FR, 701-750 nm) is excluded in this definition because no FR is absorbed by the plant photosynthetic pigments. However, including FR in the light spectrum provides substantial benefits for biomass production and resource-use efficiency. We investigated the effects of continuous FR addition and end-of-day additional FR to a broad white light spectrum (BW) on carbohydrate concentrations in the top and bottom leaves of sweet basil (Ocimum basilicum L.), a species that produces the raffinose family oligosaccharides raffinose and stachyose and preferentially uses the latter as transport sugar. Glucose, fructose, sucrose, raffinose, and starch concentrations increased significantly in top and bottom leaves with the addition of FR light. The increased carbohydrate pools under FR light treatments are associated with more efficient stachyose production and potentially improved phloem loading through increased sucrose homeostasis in intermediary cells. The combination of a high biomass yield, increased resource-use efficiency, and increased carbohydrate concentration in leaves in response to the addition of FR light offers opportunities for commercial plant production in controlled growth environments.
Assuntos
Ocimum basilicum , Rafinose/metabolismo , Carboidratos , Oligossacarídeos/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Sacarose/metabolismoRESUMO
Division of labor is central to the ecological success of social insects. Among foragers of the honey bee, specialization for collecting nectar or pollen correlates with their sensitivity to sucrose. So far, differences in gustatory perception have been mostly studied in bees returning to the hive, but not during foraging. Here, we showed that the phase of the foraging visit (i.e. beginning or end) interacts with foraging specialization (i.e. predisposition to collect pollen or nectar) to modulate sucrose and pollen sensitivity in foragers. In concordance with previous studies, pollen foragers presented higher sucrose responsiveness than nectar foragers at the end of the foraging visit. On the contrary, pollen foragers were less responsive than nectar foragers at the beginning of the visit. Consistently, free-flying foragers accepted less concentrated sucrose solution during pollen gathering than immediately after entering the hive. Pollen perception also changes throughout foraging, as pollen foragers captured at the beginning of the visit learned and retained memories better when they were conditioned with pollen + sucrose as reward than when we used sucrose alone. Altogether, our results support the idea that changes in foragers' perception throughout the foraging visit contributes to task specialization.
Assuntos
Comportamento Alimentar , Néctar de Plantas , Abelhas , Animais , Sacarose , Aprendizagem , Percepção GustatóriaRESUMO
BACKGROUND: Chronic aflatoxin B1 (AFB1) exposure may increase the risk of multiple neuropsychiatric disorders. Stress is considered one of the main contributors to major depressive disorder. Whether and how chronic AFB1 exposure affects vulnerability to stress is unclear. METHODS: Mice were exposed for three weeks to AFB1 (100 µg/kg/d) and/or chronic mild stress (CMS). The vulnerability behaviors in response to stress were assessed in the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST). Microglial pyroptosis was investigated using immunofluorescence, enzyme-linked immunosorbent assays, and western blot assay in the hippocampus of mice. Hippocampal neurogenesis and the effects of AFB1-treated microglia on proliferation and differentiation of neural stem/precursor cells (NSPCs) were assessed via immunofluorescence in the hippocampus of mice. RESULTS: Mice exposed to CMS in the presence of AFB1 exhibited markedly greater vulnerability to stress than mice treated with CMS or AFB1 alone, as indicated by reduced sucrose preference and longer immobility time in the forced swimming test. Chronic aflatoxin B1 exposure resulted in changes in the microglial morphology and increase in TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. When mice were exposed to both CMS and AFB1, pyroptosis-related molecules (such as NLRP3, caspase-1, GSDMD-N, and interleukin-1ß) were significantly upregulated in the hippocampus. These molecules were also significantly enhanced by AFB1 in primary microglial cultures. AFB1-treated mice showed decrease in the numbers of BrdU+, BrdU-DCX+, and BrdU-NeuN+ cells in the hippocampal dentate gyrus, as well as the percentages of BrdU+ cells that were NeuN+ in the presence or absence of CMS when compared with vehicle-treated mice. The combination of AFB1 and CMS exacerbated these effects to an even greater extent. The number of DCX+ cells correlated negatively with the percentage of ameboid microglia, TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. AFB1-treated microglia suppressed the proliferation and neuronal differentiation of NSPCs in vitro. CONCLUSION: Chronic AFB1 exposure induces microglial pyroptosis, promoting an adverse neurogenic microenvironment that impairs hippocampal neurogenesis, which may render mice more vulnerable to stress.
Assuntos
Transtorno Depressivo Maior , Microglia , Camundongos , Animais , Aflatoxina B1/toxicidade , Piroptose , Bromodesoxiuridina , Hipocampo , SacaroseRESUMO
BACKGROUND: Nitrogen is very important for crop yield and quality. Crop producers face the challenge of reducing the use of mineral nitrogen while maintaining food security and other ecosystem services. The first step towards understanding the metabolic responses that could be used to improve nitrogen use efficiency is to identify the genes that are up- or downregulated under treatment with different forms and rates of nitrogen. We conducted a transcriptome analysis of barley (Hordeum vulgare L.) cv. Anni grown in a field experiment in 2019. The objective was to compare the effects of organic (cattle manure) and mineral nitrogen (NH4NO3; 0, 40, 80 kg N ha-1) fertilizers on gene activity at anthesis (BBCH60) and to associate the genes that were differentially expressed between treatment groups with metabolic pathways and biological functions. RESULTS: The highest number of differentially expressed genes (8071) was found for the treatment with the highest mineral nitrogen rate. This number was 2.6 times higher than that for the group treated with a low nitrogen rate. The lowest number (500) was for the manure treatment group. Upregulated pathways in the mineral fertilizer treatment groups included biosynthesis of amino acids and ribosomal pathways. Downregulated pathways included starch and sucrose metabolism when mineral nitrogen was supplied at lower rates and carotenoid biosynthesis and phosphatidylinositol signaling at higher mineral nitrogen rates. The organic treatment group had the highest number of downregulated genes, with phenylpropanoid biosynthesis being the most significantly enriched pathway for these genes. Genes involved in starch and sucrose metabolism and plant-pathogen interaction pathways were enriched in the organic treatment group compared with the control treatment group receiving no nitrogen input. CONCLUSION: These findings indicate stronger responses of genes to mineral fertilizers, probably because the slow and gradual decomposition of organic fertilizers means that less nitrogen is provided. These data contribute to our understanding of the genetic regulation of barley growth under field conditions. Identification of pathways affected by different nitrogen rates and forms under field conditions could help in the development of more sustainable cropping practices and guide breeders to create varieties with low nitrogen input requirements.
Assuntos
Hordeum , Animais , Bovinos , Hordeum/genética , Solo/química , Fertilizantes/análise , Esterco , Ecossistema , Minerais , Nitrogênio/análise , Perfilação da Expressão Gênica , Sacarose , AgriculturaRESUMO
Streptococcus mutans, found in the human oral cavity, is a significant contributor to the pathogenesis of dental caries. This bacterium expresses three genetically distinct types of glucosyltransferases named GtfB (GTF-I), GtfC (GTF-SI) and GtfD (GTF-S) that play critical roles in the development of dental plaque. The catalytic domains of GtfB, GtfC and GtfD contain conserved active-site residues for the overall enzymatic activity that relate to hydrolytic glycosidic cleavage of sucrose to glucose and fructose, release of fructose and generation of a glycosyl-enzyme intermediate in the reducing end. In a subsequent transglycosylation step, the glucosyl moiety is transferred to the nonreducing end of an acceptor to form a growing glucan polymer chain made up of glucose molecules. It has been proposed that both sucrose breakdown and glucan synthesis occur in the same active site of the catalytic domain, although the active site does not appear to be large enough to accommodate both functions. These three enzymes belong to glycoside hydrolase family 70 (GH70), which shows homology to glycoside hydrolase family 13 (GH13). GtfC synthesizes both soluble and insoluble glucans (α-1,3 and α-1,6 glycosidic linkages), while GtfB and GtfD synthesize only insoluble or soluble glucans, respectively. Here, crystal structures of the catalytic domains of GtfB and GtfD are reported. These structures are compared with previously determined structures of the catalytic domain of GtfC. With this work, apo structures and inhibitor-complex structures with acarbose are now available for the catalytic domains of GtfC and GtfB. The structure of GtfC with maltose allows further identification and comparison of active-site residues. A model of sucrose binding to GtfB is also included. The new structure of the catalytic domain of GtfD affords a structural comparison of the three S. mutans glycosyltransferases. Unfortunately, the catalytic domain of GtfD is not complete since crystallization resulted in the structure of a truncated protein lacking approximately 200 N-terminal residues of domain IV.
Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Domínio Catalítico , Cristalografia por Raios X , Glucosiltransferases/química , Glucose , Sacarose , Frutose , GlucanosRESUMO
Molecular permeation through phospholipid membranes is a fundamental biological process for small molecules. Sucrose is one of the most widely used sweeteners and a key factor in the pathogenesis of obesity and diabetes, yet a detailed understanding of its mechanism involved in permeability into phospholipid membranes is still lacking. Here, using giant unimolecular vesicles (GUVs) reconstituting membrane properties, we compared the osmotic behavior of sucrose in GUVs and HepG2 cells to explore the effect of sucrose on membrane stability in the absence of protein enhancers. The results suggested that the particle size and potential of GUVs and the cellular membrane potential changed significantly with increasing the sucrose concentration (p < 0.05). In microscopic images of cells containing GUVs and sucrose, the fluorescence intensity of vesicles was 537 ± 17.69 after 15 min, and the value was significantly higher than that of microscopic images of cells without sucrose addition (p < 0.05). These changes suggested that the permeability of the phospholipid membrane became larger under a sucrose environment. This study provides a theoretical basis for better insight on the role of sucrose in the physiological environment.
Assuntos
Sacarose , Lipossomas Unilamelares , Sacarose/metabolismo , Lipossomas Unilamelares/metabolismo , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , PermeabilidadeRESUMO
One of the main stages of cryopreservation of meristematic tissues in vegetative plants is a clonal micropropagation, which includes isolating the explants of the raw material in vitro and optimizing the culture medium for micropropagation. As the result of our studies, the optimal periods for in vitro micropropagation are: first - isolation of explants from initiated shoots of dormant buds (blackcurrants and raspberries) in January-March; the second - from actively growing shoots (blackcurrants and raspberries) in May-June, from the formed mustache (strawberry) in July-August. The optimal drugs for sterilization of raspberry explants are: a) 0.1% HgCl2 (6 min), then 3% H2O2 (15 min); b) chlorine-containing bleach «Domestos¼ in the dilution of H2O 1:9 (10 min). For blackcurrant: a) 0.1% HgCl2 (5 min) in combination with 0.1% fungicide "Topaz" (30 min); b) 0.1% HgCl2 (5 min) in combination with the treatment with KMnO4 (30 min); c) "Domestos" in the dilution of H2O 1:5 (20 min). For strawberry: a) 0.1% HgCl2 (6 min) followed by treatment with 3% H2O2 10 (min); b) 1% deochlor (7 min), 3% H2O2 (10 min); c) "Domestos" in the dilution of H2O 1:5 (8 min) with subsequent treatment 0,1% HgCl2 -7 min, then 0,20 mg/l ÐÐnO4 - 30 min. Optimal compositions of culture media for micropropagation of blackcurrant - Murashige and Skoog (MS) medium with 0.5 mg L-1 BAP, 0.5 mg L-1 GA3, 0.1 mg L-1 IBA and 20 g L-1 glucose. For raspberry -MS medium with 0.5 mg L-1 BAP, 0.1 mg L-1 IBA, 10 mg L-1 iron chelate and 30 g L-1 sucrose. For strawberry - MS medium with 0.3 mg L-1 BAP, 0.01 mg L-1 IBA, 0.2 mg L-1 GA3, 10 mg L-1 iron chelate and 30 g L-1 sucrose. Based on these studies, the cryobank was created, which include the germplasm of in vitro meristematic tissues in 66 cultivars, hybrids and wild-growing forms of blackcurrant, raspberry and strawberry. Therefore, the aim of the research was to obtain aseptic plants, clonal micropropagation and the creation of a cryogenic collection of germplasm based on the developed technology.
Assuntos
Fragaria , Raízes de Plantas , Brotos de Planta , Frutas , Peróxido de Hidrogênio/farmacologia , Cloreto de Mercúrio , SacaroseAssuntos
COVID-19 , Edulcorantes , Humanos , Edulcorantes/efeitos adversos , SARS-CoV-2 , Sacarose/efeitos adversosRESUMO
Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 mice were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.
Assuntos
Frutose , Açúcares , Humanos , Camundongos , Feminino , Animais , Masculino , Açúcares/farmacologia , Camundongos Endogâmicos C57BL , Frutose/farmacologia , Carboidratos/farmacologia , Sacarose/farmacologia , Camundongos Endogâmicos , Preferências Alimentares , PaladarRESUMO
Introduction: Insulin resistance in muscle can originate from a sedentary lifestyle, hypercaloric diets, or exposure to endocrine-disrupting pollutants such as arsenic. In skeletal muscle, insulin stimulates glucose uptake by translocating GLUT4 to the sarcolemma. This study aimed to evaluate the alterations induced by sucrose and arsenic exposure in vivo on the pathways involved in insulinstimulated GLUT4 translocation in the quadriceps and gastrocnemius muscles. Methods: Male Wistar rats were treated with 20% sucrose (S), 50 ppm sodium arsenite (A), or both (A+S) in drinking water for 8 weeks. We conducted an intraperitoneal insulin tolerance (ITT) test on the seventh week of treatment. The quadriceps and gastrocnemius muscles were obtained after overnight fasting or 30 min after intraperitoneal insulin injection. We assessed changes in GLUT4 translocation to the sarcolemma by cell fractionation and abundance of the proteins involved in GLUT4 translocation by Western blot. Results: Male rats consuming S and A+S gained more weight than control and Atreated animals. Rats consuming S, A, and A+S developed insulin resistance assessed through ITT. Neither treatments nor insulin stimulation in the quadriceps produced changes in GLUT4 levels in the sarcolemma and Akt phosphorylation. Conversely, A and A+S decreased protein expression of Tether containing UBX domain for GLUT4 (TUG), and A alone increased calpain-10 expression. All treatments reduced this muscle's protein levels of VAMP2. Conversely, S and A treatment increased basal GLUT4 levels in the sarcolemma of the gastrocnemius, while all treatments inhibited insulin-induced GLUT4 translocation. These effects correlated with lower basal levels of TUG and impaired insulin-stimulated TUG proteolysis. Moreover, animals treated with S had reduced calpain-10 protein levels in this muscle, while A and A+S inhibited insulin-induced Akt phosphorylation. Conclusion: Arsenic and sucrose induce systemic insulin resistance due to defects in GLUT4 translocation induced by insulin. These defects depend on which muscle is being analyzed, in the quadriceps there were defects in GLUT4 retention and docking while in the gastrocnemius the Akt pathway was impacted by arsenic and the proteolytic pathway was impaired by arsenic and sucrose.
Assuntos
Arsênio , Resistência à Insulina , Ratos , Masculino , Animais , Insulina/metabolismo , Resistência à Insulina/fisiologia , Calpaína , Músculo Quadríceps , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Ratos Wistar , Músculo Esquelético/metabolismo , Transdução de SinaisRESUMO
Formic acid is the main component of the ant's major weapon against enemies. Being mainly used as a chemical defense, the acid is also exploited for recruitment and trail marking. The repelling effect of the organic acid is used by some mammals and birds which rub themselves in the acid to eliminate ectoparasites. Beekeepers across the world rely on this effect to control the parasitic mite Varroa destructor. Varroa mites are considered the most destructive pest of honey bees worldwide and can lead to the loss of entire colonies. Formic acid is highly effective against Varroa mites but can also kill the honeybee queen and worker brood. Whether formic acid can also affect the behavior of honey bees is unknown. We here study the effect of formic acid on sucrose responsiveness and cognition of honey bees treated at different live stages in field-relevant doses. Both behaviors are essential for survival of the honey bee colony. Rather unexpectedly, formic acid clearly improved the learning performance of the bees in appetitive olfactory conditioning, while not affecting sucrose responsiveness. This exciting side effect of formic acid certainly deserves further detailed investigations.
Assuntos
Formigas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Varroidae , Abelhas , Animais , Cognição , Translocases Mitocondriais de ADP e ATP , Sacarose , MamíferosRESUMO
Persimmon (Diospyros kaki) fruit have significant variation between pollination-constant non-astringent (PCNA) and pollination-constant astringent (PCA) persimmons. The astringency type affects not only the soluble tannin concentration but also the accumulation of individual sugars. Thus, we comprehensively investigate the gene expression and metabolite profiles of individual sugars to resolve the formation of flavor differences in PCNA and PCA persimmon fruit. The results showed that soluble sugar, starch content, sucrose synthase, and sucrose invertase were significantly different between PCNA and PCA persimmon fruit. The sucrose and starch metabolism pathway was considerably enriched, and six sugar metabolites involving this pathway were significantly differentially accumulated. In addition, the expression patterns of diferentially expressed genes (such as bglX, eglC, Cel, TPS, SUS, and TREH genes) were significantly correlated with the content of deferentially accumulated metabolites (such as starch, sucrose, and trehalose) in the sucrose and starch metabolism pathway. These results indicated that the sucrose and starch metabolism pathway maintained a central position of sugar metabolism between PCNA and PCA persimmon fruit. Our results provide a theoretical basis for exploring functional genes related to sugar metabolism and provide useful resources for future studies on the flavor differences between PCNA and PCA persimmon fruit.
Assuntos
Diospyros , Proantocianidinas , Transcriptoma , Diospyros/genética , Diospyros/metabolismo , Açúcares/metabolismo , Proantocianidinas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Adstringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Polinização/genética , Metaboloma , Sacarose/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
E-liquids have become increasingly popular in society in recent years. A wide variety of flavors and nicotine strengths make it possible for every user to get a product according to their wishes. Many of these e-liquids are marketed with countless different flavors, which are often characterized by a strong and sweet smell. Sweeteners, such as sucralose, are therefore commonly added as sugar substitutes. However, recent studies have shown the potential formation of highly toxic chlorinated compounds. This can be explained by the high temperatures (above 120 °C) within the heating coils and the used basic composition of these liquids. Nevertheless, the legal situation is composed of proposals without clear restrictions, only recommendations for tobacco products. For this reason, a high level of interest lies within the establishment of fast, reliable and cost-effective methods for the detection of sucralose in e-liquids. In this study, a number of 100 commercially available e-liquids was screened for sucralose in order to identify the suitability of ambient mass spectrometry and near-infrared spectroscopy for this application. A highly sensitive high-performance liquid chromatography coupled to a tandem mass spectrometer method was used as reference method. Furthermore, the advantages and limitations of the two mentioned methods are highlighted in order to provide a reliable quantification of sucralose. The results clearly revile the necessity for product quality due to the absence of declaration on many of the used products. Further on, it could be shown, that both methods are suitable for the quantification of sucralose in e-liquids, with beneficial economic and ecological aspects, over classical analytical tools including high-performance liquid chromatography. Clear correlations between the reference and novel developed methods are displayed. In summary, these methods enable an important contribution to ensure consumer protection and elimination of confuse package labelling.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Espectroscopia de Luz Próxima ao Infravermelho , Sacarose/análise , Edulcorantes/análise , Espectrometria de MassasRESUMO
Although casual drinkers are a majority of the alcohol drinking population, understanding of the long-term effects of chronic exposure to lower levels of alcohol is limited. Chronic exposure to lower doses of ethanol may facilitate the development of alcohol use disorders, potentially because of ethanol effects on reward learning and motivation. Indeed, our previously published findings showed that chronic low-dose ethanol exposure enhanced motivation for sucrose in male, but not female, mice. As the ventral hippocampus (vHPC) is sensitive to disruption by higher doses of chronic ethanol and tracks reward-related information, we hypothesized that this region is impacted by low-dose ethanol and, further, that manipulating vHPC activity would alter reward motivation. In vivo electrophysiological recordings of vHPC population neural activity during progressive ratio testing revealed that vHPC activity was suppressed in the period immediately after reward seeking (lever press) in ethanol-naive controls, whereas suppression of vHPC activity anticipated reward seeking in ethanol-exposed mice. In both ethanol-naive and exposed mice, vHPC activity was suppressed before a reward magazine entry. Temporally selective inhibition of vHPC using optogenetics increased motivation for sucrose in ethanol-naive controls, but not in ethanol-exposed mice. Further, regardless of exposure history, vHPC inhibition promoted checking of the reward magazine, indicating a role for vHPC in reward tracking. There was no effect of chemogenetic inhibition of the vHPC either during training or testing on sucrose reward motivation. These results reveal novel ethanol-induced alterations in vHPC neural activity that shift how vHPC activity is able to regulate reward seeking.
Assuntos
Alcoolismo , Etanol , Camundongos , Animais , Masculino , Etanol/farmacologia , Hipocampo/fisiologia , Recompensa , Sacarose/farmacologia , Condicionamento OperanteRESUMO
Introducción: Los endulzantes naturales con bajo nivel calórico son aquellos que sirven como reemplazo de la sacarosa y mantienen la característica dulce de los productos, sin embargo, la fruta milagrosa no se ha utilizado en aplicacione sagroindustriales, pese a que esta posee características que pueden sustituir a la azúcar blanca, debido a su poder de endulzante natural. Objetivo: Determinar la incidencia de la fruta milagrosa(Synsepalum dulcificum) y el efecto de dos variedades de cacao (Theobroma cacao) sobre las características físico-químicas y sensoriales en la elaboración de chocolate. Materiales y métodos: A partir de 3 concentraciones de fruta milagrosa y 2 tipos de cacao, empleando un diseño bifactorial A*B, se determinaron las características físico-químicas y sensoriales del chocolate.Resultados: Se encontró diferencia significativa (p<0,05)entre los tratamientos en estudio. La concentración del 40 %+ cacao nacional sitúo los mejores valores para las características físico químicas, en cuanto a los polifenoles totales el menor contenido se sitúo en concentraciones de 20 % tanto para el cacao Nacional y CCN51 con valores de 47.82 y 50.23respectivamente. Sin embargo, el T3 = 30 % + cacao Nacional, obtuvo la mejor valoración en los perfiles sensoriales (sabor, aroma y aceptabilidad)Conclusiones: El uso la fruta milagrosa (S. dulcificum) en lugar del azúcar convencional permite darle valor agregado ala barra de chocolate. Cabe destacar que las distintas concentraciones influyen sobre las características físico-químicas(Humedad, pH y grasa) y en el contenido de polifenoles totales. La inclusión del 30 % de fruta milagrosa como edulcorante natural en la formulación de chocolate permite obtener un producto con buenos atributos sensoriales y aceptables por el consumidor. (AU)
Introduction: Natural sweeteners with low caloric levelare those that serve as a replacement for sucrose and maintain the sweet characteristic of the products, however, miracle fruit has not been used in agroindustrial applications, despite the fact that this has characteristics that can replacewhite sugar, due to its power as a natural sweetener. Objective: To determine the incidence of miracle fruit(Synsepalum dulcificum) and the effect of two varieties of cocoa (Theobroma cacao) on the physicochemical and sensorycharacteristics in chocolate production. Materials and methods: From 3 concentrations of miraculous fruit and 2 types of cocoa, using a bifactorial A*B design, the physicochemical and sensory characteristics ofchocolate were determined.Results: Significant differences were found (p<0.05) between the treatments under study. The concentration of 40 %+ national cocoa had the best values for the physical-chemical characteristics, while the lowest total polyphenol contentwas found in concentrations of 20 % for both national cocoaand CCN51 with values of 47.82 and 50.23, respectively.However, T3 = 30 % + National cocoa, obtained the best valuation in sensory profiles (flavor, aroma and acceptability).Conclusions: The use of miracle fruit (S. dulcificum) instead of conventional sugar allows giving added value to thechocolate bar. It should be noted that the different concentrations influence the physicochemical characteristics (moisure, pH and fat) and the total polyphenol content. The inclusion of 30 % of miracle fruit as a natural sweetener in thechocolate formulation allows obtaining a product with goodsensory attributes and acceptable to the consumer.(AU)
Assuntos
Chocolate , Cacau , Adoçantes não Calóricos , Edulcorantes , SacaroseRESUMO
BACKGROUND: Rhizome is vital for carbon and nitrogen metabolism of the whole plant. However, the effect of carbon and nitrogen in the rhizome on rhizome expansion remains unclear. RESULTS: Three wild Kentucky bluegrass (Poa pratensis L.) germplasms with different rhizome expansion capacity (strong expansion capacity, 'YZ'; medium expansion capacity, 'WY'; and weak expansion capacity, 'AD') were planted in the field and the rhizomes number, tiller number, rhizome dry weight, physiological indicators and enzyme activity associated carbon and nitrogen metabolisms were measured. Liquid chromatography coupled to mass spectrometry (LC-MS) was utilized to analyze the metabolomic of the rhizomes. The results showed that the rhizome and tiller numbers of the YZ were 3.26 and 2.69-fold of that of the AD, respectively. The aboveground dry weight of the YZ was the greatest among all three germplasms. Contents of soluble sugar, starch, sucrose, NO3--N, and free amino acid were significantly higher in rhizomes of the YZ than those of the WY and AD (P < 0.05). The activities of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and sucrose phosphate synthase (SPS) of the YZ were the highest among all three germplasm, with values of 17.73 A·g- 1 h- 1, 5.96 µmol·g- 1 min- 1, and 11.35 mg·g- 1 h- 1, respectively. Metabolomics analyses revealed that a total of 28 differentially expressed metabolites (DEMs) were up-regulated, and 25 DEMs were down-regulated in both comparison groups (AD vs. YZ group and WY vs. YZ group). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that metabolites related to histidine metabolism, tyrosine metabolism, tryptophan metabolism, and phenylalanine metabolism were associated with rhizomes carbon and nitrogen metabolism. CONCLUSIONS: Overall, the results suggest that soluble sugar, starch, sucrose, NO3--N, and free amino acid in rhizome are important to and promote rhizome expansion in Kentucky bluegrass, while tryptamine, 3-methylhistidine, 3-indoleacetonitrile, indole, and histamine may be key metabolites in promoting carbon and nitrogen metabolism of rhizome.
Assuntos
Poa , Rizoma , Rizoma/metabolismo , Poa/metabolismo , Carbono/metabolismo , Kentucky , Nitrogênio/metabolismo , Sacarose/metabolismo , Aminoácidos/metabolismo , Amido/metabolismoRESUMO
This study evaluated chemical compositions of green coffee beans from multi-production regions and correlated this information with thermal contaminants in roasted coffee. Using multivariate statistical techniques, formation of 5-hydroxymethylfurfural (5-HMF), furan, 2- and 3-methylfuran were positively correlated with lipid, sucrose, glutamic acid, phenylalanine, margaric acid, linolenic acid and trigonelline in green coffee beans. Moreover, significant positive correlations between acrylamide (AA) levels with aspartic acid, serine, alanine, histidine, asparagine, protein, and caffeine was found in green beans. Despite this, 5-HMF, furan, 2- and 3-methylfuran showed negative correlations with active constitutes (neochlorogenic acid, cryptochlorogenic acid, caffeine, total phenolics (TPC) and total flavonoids contents (TFC)), and several amino acids, and there were slight negative relationships between AA and myristic acid, palmitic acid, chlorogenic acid, sucrose, lipid, TPC and TFC. This study provides valuable enlightenment for the selection of proper coffee beans for production of coffee with high nutrition and low chemical hazardous risks.
Assuntos
Cafeína , Coffea , Coffea/química , Furanos , Sacarose , LipídeosRESUMO
Molasses with abundant sugars is widely used for bioethanol production. Although the ethanologenic bacterium Zymomonas mobilis can use glucose, fructose, and sucrose for ethanol production, levan production from sucrose reduces the ethanol yield of molasses fermentation. To increase ethanol production from sucrose-rich molasses, Z. mobilis was adapted in molasses, sucrose, and fructose in parallel. Adaptation in fructose is the most effective route to generate an evolved strain F74 with improved molasses utilization, which is majorly due to a G99S mutation in Glf for enhanced fructose import. Subsequent sacB deletion and sacC overexpression in F74 to divert sucrose metabolism from levan production to ethanol production further enhanced ethanol productivity 28.6% to 1.35 g/L/h. The efficient utilization of molasses by diverting sucrose metabolic flux through adaptation and genome engineering not only generated an excellent ethanol producer using molasses but also provided the strategy for developing microbial cell factories.
Assuntos
Engenharia Metabólica , Zymomonas , Zymomonas/genética , Melaço , Sacarose/metabolismo , Frutose/metabolismo , Etanol/metabolismo , Frutanos/metabolismo , FermentaçãoRESUMO
The influences of sodium chloride (NaCl)/sucrose on starch properties as affected by starch structural characteristics are little understood. In this study, the effects were observed in relation to the chain length distribution (from size exclusion chromatography) and granular packing (inferred through morphological observation and determination of swelling factor and paste transmittance) of starches. Adding NaCl/sucrose dramatically delayed the gelatinization of starch that had a high ratio of short-to-long amylopectin chains and had loose granular packing. The effects of NaCl on the viscoelasticity of gelatinizing starch were related to the flexibility of amylopectin internal structure. Effects of NaCl/sucrose on starch retrogradation varied with starch structure, co-solute concentration, and analytical method. The co-solute-induced changes in retrogradation were highly associated with amylose chain length distribution. Sucrose strengthened the weak network formed by short amylose chains, while the effect was not significant on amylose chains that were capable of forming strong networks.