Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454113

RESUMO

In archaeal microorganisms, the compaction and organization of the chromosome into a dynamic but condensed structure is mediated by diverse chromatin-organizing proteins in a lineage-specific manner. While many archaea employ eukaryotic-type histones for nucleoid organization, this is not the case for the crenarchaeal model species Sulfolobus acidocaldarius and related species in Sulfolobales, in which the organization appears to be mostly reliant on the action of small basic DNA-binding proteins. There is still a lack of a full understanding of the involved proteins and their functioning. Here, a combination of in vitro and in vivo methodologies is used to study the DNA-binding properties of Sul12a, an uncharacterized small basic protein conserved in several Sulfolobales species displaying a winged helix-turn-helix structural motif and annotated as a transcription factor. Genome-wide chromatin immunoprecipitation and target-specific electrophoretic mobility shift assays demonstrate that Sul12a of S. acidocaldarius interacts with DNA in a non-sequence specific manner, while atomic force microscopy imaging of Sul12a-DNA complexes indicate that the protein induces structural effects on the DNA template. Based on these results, and a contrario to its initial annotation, it can be concluded that Sul12a is a novel chromatin-organizing protein.


Assuntos
Proteínas Arqueais , Sulfolobus acidocaldarius , Archaea/genética , Proteínas Arqueais/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sulfolobales/genética , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33782110

RESUMO

Archaeal viruses represent one of the most mysterious parts of the global virosphere, with many virus groups sharing no evolutionary relationship to viruses of bacteria or eukaryotes. How these viruses interact with their hosts remains largely unexplored. Here we show that nonlytic lemon-shaped virus STSV2 interferes with the cell cycle control of its host, hyperthermophilic and acidophilic archaeon Sulfolobus islandicus, arresting the cell cycle in the S phase. STSV2 infection leads to transcriptional repression of the cell division machinery, which is homologous to the eukaryotic endosomal sorting complexes required for transport (ESCRT) system. The infected cells grow up to 20-fold larger in size, have 8,000-fold larger volume compared to noninfected cells, and accumulate massive amounts of viral and cellular DNA. Whereas noninfected Sulfolobus cells divide symmetrically by binary fission, the STSV2-infected cells undergo asymmetric division, whereby giant cells release normal-sized cells by budding, resembling the division of budding yeast. Reinfection of the normal-sized cells produces a new generation of giant cells. If the CRISPR-Cas system is present, the giant cells acquire virus-derived spacers and terminate the virus spread, whereas in its absence, the cycle continues, suggesting that CRISPR-Cas is the primary defense system in Sulfolobus against STSV2. Collectively, our results show how an archaeal virus manipulates the cell cycle, transforming the cell into a giant virion-producing factory.


Assuntos
Vírus de Archaea/patogenicidade , Divisão Celular Assimétrica , Células Gigantes/metabolismo , Sulfolobales/virologia , Proteínas Arqueais/metabolismo , Sistemas CRISPR-Cas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Gigantes/virologia , Sulfolobales/genética , Sulfolobales/fisiologia
3.
FEMS Microbiol Rev ; 45(4)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33476388

RESUMO

Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.


Assuntos
Archaea , Sulfolobales , Archaea/genética , Biologia , Ferro
4.
RNA Biol ; 18(3): 421-434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32957821

RESUMO

CRISPR type III systems, which are abundantly found in archaea, recognize and degrade RNA in their specific response to invading nucleic acids. Therefore, these systems can be harnessed for gene knockdown technologies even in hyperthermophilic archaea to study essential genes. We show here the broader usability of this posttranscriptional silencing technology by expanding the application to further essential genes and systematically analysing and comparing silencing thresholds and escape mutants. Synthetic guide RNAs expressed from miniCRISPR cassettes were used to silence genes involved in cell division (cdvA), transcription (rpo8), and RNA metabolism (smAP2) of the two crenarchaeal model organisms Saccharolobus solfataricus and Sulfolobus acidocaldarius. Results were systematically analysed together with those obtained from earlier experiments of cell wall biogenesis (slaB) and translation (aif5A). Comparison of over 100 individual transformants revealed gene-specific silencing maxima ranging between 40 and 75%, which induced specific knockdown phenotypes leading to growth retardation. Exceedance of this threshold by strong miniCRISPR constructs was not tolerated and led to specific mutation of the silencing miniCRISPR array and phenotypical reversion of cultures. In two thirds of sequenced reverted cultures, the targeting spacers were found to be precisely excised from the miniCRISPR array, indicating a still hypothetical, but highly active recombination system acting on the dynamics of CRISPR spacer arrays. Our results indicate that CRISPR type III - based silencing is a broadly applicable tool to study in vivo functions of essential genes in Sulfolobales which underlies a specific mechanism to avoid malignant silencing overdose.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Silenciamento de Genes , Inativação Gênica , Genes Arqueais , Genes Essenciais , Genes Letais , Sulfolobales/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Divisão Celular/genética , Ordem dos Genes , Marcação de Genes , Vetores Genéticos/genética , Mutação , Óperon , Fenótipo , RNA Guia , Sulfolobales/metabolismo
5.
Sci China Life Sci ; 64(5): 678-696, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33140167

RESUMO

CRISPR-Cas systems provide the small RNA-based adaptive immunity to defend against invasive genetic elements in archaea and bacteria. Organisms of Sulfolobales, an order of thermophilic acidophiles belonging to the Crenarchaeotal Phylum, usually contain both type I and type III CRISPR-Cas systems. Two species, Saccharolobus solfataricus and Sulfolobus islandicus, have been important models for CRISPR study in archaea, and knowledge obtained from these studies has greatly expanded our understanding of molecular mechanisms of antiviral defense in all three steps: adaptation, expression and crRNA processing, and interference. Four subtypes of CRISPR-Cas systems are common in these organisms, including I-A, I-D, III-B, and III-D. These cas genes form functional modules, e.g., all genes required for adaptation and for interference in the I-A immune system are clustered together to form aCas and iCas modules. Genetic assays have been developed to study mechanisms of adaptation and interference by different CRISPR-Cas systems in these model archaea, and these methodologies are useful in demonstration of the protospacer-adjacent motif (PAM)-dependent DNA interference by I-A interference modules and multiple interference activities by III-B Cmr systems. Ribonucleoprotein effector complexes have been isolated for Sulfolobales III-B and III-D systems, and their biochemical characterization has greatly enriched the knowledge of molecular mechanisms of these novel antiviral immune responses.


Assuntos
Imunidade Adaptativa/genética , Sistemas CRISPR-Cas , Sulfolobales/genética , Sulfolobales/imunologia , DNA Arqueal/genética , Genes Arqueais , Modelos Biológicos , RNA Arqueal/genética , Transcrição Genética
6.
Environ Microbiol ; 23(7): 3568-3584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32776389

RESUMO

The order Sulfolobales was one of the first named Archaeal lineages, with globally distributed members from terrestrial thermal acid springs (pH < 4; T > 65°C). The Sulfolobales represent broad metabolic capabilities, ranging from lithotrophy, based on inorganic iron and sulfur biotransformations, to autotrophy, to chemoheterotrophy in less acidophilic species. Components of the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle, as well as sulfur oxidation, are nearly universally conserved, although dissimilatory sulfur reduction and disproportionation (Acidianus, Stygiolobus and Sulfurisphaera) and iron oxidation (Acidianus, Metallosphaera, Sulfurisphaera, Sulfuracidifex and Sulfodiicoccus) are limited to fewer lineages. Lithotrophic marker genes appear more often in highly acidophilic lineages. Despite the presence of facultative anaerobes and one confirmed obligate anaerobe, oxidase complexes (fox, sox, dox and a new putative cytochrome bd) are prevalent in many species (even facultative/obligate anaerobes), suggesting a key role for oxygen among the Sulfolobales. The presence of fox genes tracks with a putative antioxidant OsmC family peroxiredoxin, an indicator of oxidative stress derived from mixing reactive metals and oxygen. Extreme acidophily appears to track inversely with heterotrophy but directly with lithotrophy. Recent phylogenetic re-organization efforts are supported by the comparative genomics here, although several changes are proposed, including the expansion of the genus Saccharolobus.


Assuntos
Acidianus , Fontes Termais , Sulfolobaceae , Archaea/genética , Oxirredução , Filogenia , Sulfolobaceae/genética , Sulfolobales
7.
Biomolecules ; 10(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172134

RESUMO

Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Sulfolobales/genética , Sulfolobales/imunologia , RNA/genética , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 117(33): 19643-19652, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759221

RESUMO

Living organisms expend metabolic energy to repair and maintain their genomes, while viruses protect their genetic material by completely passive means. We have used cryo-electron microscopy (cryo-EM) to solve the atomic structures of two filamentous double-stranded DNA viruses that infect archaeal hosts living in nearly boiling acid: Saccharolobus solfataricus rod-shaped virus 1 (SSRV1), at 2.8-Å resolution, and Sulfolobus islandicus filamentous virus (SIFV), at 4.0-Å resolution. The SIFV nucleocapsid is formed by a heterodimer of two homologous proteins and is membrane enveloped, while SSRV1 has a nucleocapsid formed by a homodimer and is not enveloped. In both, the capsid proteins wrap around the DNA and maintain it in an A-form. We suggest that the A-form is due to both a nonspecific desolvation of the DNA by the protein, and a specific coordination of the DNA phosphate groups by positively charged residues. We extend these observations by comparisons with four other archaeal filamentous viruses whose structures we have previously determined, and show that all 10 capsid proteins (from four heterodimers and two homodimers) have obvious structural homology while sequence similarity can be nonexistent. This arises from most capsid residues not being under any strong selective pressure. The inability to detect homology at the sequence level arises from the sampling of viruses in this part of the biosphere being extremely sparse. Comparative structural and genomic analyses suggest that nonenveloped archaeal viruses have evolved from enveloped viruses by shedding the membrane, indicating that this trait may be relatively easily lost during virus evolution.


Assuntos
Vírus de Archaea/química , Vírus de DNA/química , DNA Viral/química , Sulfolobales/virologia , Sulfolobus/virologia , Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de Archaea/ultraestrutura , Evolução Biológica , Capsídeo/química , Capsídeo/ultraestrutura , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , DNA Viral/genética , Ambientes Extremos , Genoma Viral , Filogenia
9.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156822

RESUMO

The UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. acidocaldarius Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination.IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pili system of Sulfolobales (Ups) pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.


Assuntos
Fímbrias Bacterianas/genética , Sulfolobales/genética , Sulfolobus acidocaldarius/genética , Reparo do DNA , Fímbrias Bacterianas/classificação , Fímbrias Bacterianas/efeitos da radiação , Glicosilação , Sulfolobales/efeitos da radiação , Sulfolobus acidocaldarius/efeitos da radiação , Raios Ultravioleta
10.
World J Microbiol Biotechnol ; 36(3): 51, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157408

RESUMO

Culture-independent molecular-based approaches can be used to identify genes of interest from environmental sources that have desirable properties such as thermo activity. For this study, a putative thermo stable endoglucanase gene was identified from a mixed culture resulting from the inoculation of Brock-CMcellulose (1%) broth with mudspring water from Mt. Makiling, Laguna, Philippines that had been incubated at 90 °C. Genomic DNA was extracted from the cellulose-enriched mixed culture and endo1949 forward and reverse primers were used to amplify the endoglucanase gene, which was cloned into pCR-script plasmid vector. Blastn alignment of the sequenced insert revealed 99.69% similarity to the glycosyl hydrolase, sso1354 (CelA1; Q97YG7) from Saccharolobus solfataricus. The endoglucanase gene (GenBank accession number MK984682) was determined to be 1,021 nucleotide bases in length, corresponding to 333 amino acids with a molecular mass of ~ 37 kDa. The endoglucanase gene was inserted into a pET21 vector and transformed in E. coli BL21 for expression. Partially purified recombinant Mt. Makiling endoglucanase (MM-Engl) showed a specific activity of 187.61 U/mg and demonstrated heat stability up to 80 °C. The thermo-acid stable endoglucanase can be used in a supplementary hydrolysis step to further hydrolyze the lignocellulosic materials that were previously treated under high temperature-dilute acid conditions, thereby enhancing the release of more glucose sugars for bioethanol production.


Assuntos
Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , DNA , Genômica , Água/metabolismo , Sequência de Aminoácidos , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Sequência de Bases , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Peso Molecular , Filipinas , Proteínas Recombinantes , Alinhamento de Sequência , Sulfolobales/enzimologia , Sulfolobales/genética , Temperatura , Microbiologia da Água
11.
Environ Microbiol ; 21(10): 3696-3710, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31188531

RESUMO

Species in the archaeal order Sulfolobales thrive in hot acid and exhibit remarkable metabolic diversity. Some species are chemolithoautotrophic, obtaining energy through the oxidation of inorganic substrates, sulphur in particular, and acquiring carbon through the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) CO2 -fixation cycle. The current model for sulphur oxidation in the Sulfolobales is based on the biochemical analysis of specific proteins from Acidianus ambivalens, including sulphur oxygenase reductase (SOR) that disproportionates S° into H2 S and sulphite (SO3 2- ). Initial studies indicated SOR catalyses the essential first step in oxidation of elemental sulphur, but an ancillary role for SOR as a 'recycle' enzyme has also been proposed. Here, heterologous expression of both SOR and membrane-bound thiosulphate-quinone oxidoreductase (TQO) from Sulfolobus tokodaii 'restored' sulphur oxidation capacity in Sulfolobus acidocaldarius DSM639, but not autotrophy, although earlier reports indicate this strain was once capable of chemolithoautotrophy. Comparative transcriptomic analyses of Acidianus brierleyi, a chemolithoautotrophic sulphur oxidizer, and S. acidocaldarius DSM639 showed that while both share a strong transcriptional response to elemental sulphur, S. acidocaldarius DSM639 failed to upregulate key 3-HP/4-HB cycle genes used by A. brierleyi to drive chemolithoautotrophy. Thus, the inability for S. acidocaldarius DSM639 to grow chemolithoautotrophically may be rooted more in gene regulation than the biochemical capacity.


Assuntos
Crescimento Quimioautotrófico , Sulfolobales/metabolismo , Enxofre/metabolismo , Processos Autotróficos , Oxirredução , Oxirredutases/metabolismo , Tiossulfatos/metabolismo
12.
Commun Biol ; 2: 103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911678

RESUMO

Chaperonins are molecular chaperones that play critical physiological roles, but they can be pathogenic. Malfunctional chaperonins cause chaperonopathies of great interest within various medical specialties. Although the clinical-genetic aspects of many chaperonopathies are known, the molecular mechanisms causing chaperonin failure and tissue lesions are poorly understood. Progress is necessary to improve treatment, and experimental models that mimic the human situation provide a promising solution. We present two models: one prokaryotic (the archaeon Pyrococcus furiosus) with eukaryotic-like chaperonins and one eukaryotic (Chaetomium thermophilum), both convenient for isolation-study of chaperonins, and report illustrative results pertaining to a pathogenic mutation of CCT5.


Assuntos
Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Chaperoninas/genética , Suscetibilidade a Doenças , Chaperonas Moleculares/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo , Células Eucarióticas/metabolismo , Proteínas Fúngicas , Humanos , Methanosarcinales/genética , Methanosarcinales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutação , Conformação Proteica , Sulfolobales/genética , Sulfolobales/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-28206708

RESUMO

The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as 'extreme thermophiles' and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs-basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377 For further resources related to this article, please visit the WIREs website.


Assuntos
Sulfolobales/metabolismo , Thermoanaerobacter/metabolismo , Thermococcales/metabolismo , Thermus/metabolismo , Biocatálise , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Glicólise , Engenharia Metabólica , Metais/química , Metais/metabolismo , Enxofre/metabolismo
14.
Extremophiles ; 20(3): 291-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26995682

RESUMO

The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.


Assuntos
Processos Autotróficos , Transporte de Elétrons , Formaldeído/metabolismo , Processos Heterotróficos , Fontes Hidrotermais/microbiologia , Sulfolobales/metabolismo , Ácidos/análise , Carbono/metabolismo , Fontes Hidrotermais/química , Ferro/análise , Oxirredução , Sulfolobales/isolamento & purificação
15.
Appl Environ Microbiol ; 81(22): 7860-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341207

RESUMO

Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.


Assuntos
Fontes Termais/microbiologia , Nanoarchaeota/fisiologia , Nanoarchaeota/virologia , Sulfolobales/fisiologia , Fontes Termais/virologia , Metagenômica , Nanoarchaeota/classificação , Nanoarchaeota/genética , Parques Recreativos , RNA Ribossômico 16S/genética , Análise de Célula Única , Sulfolobales/genética , Wyoming
16.
J Virol ; 89(21): 10934-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26292330

RESUMO

UNLABELLED: SSV-type integrases, encoded by fuselloviruses which infect the hyperthermophilic archaea of the Sulfolobales, are archaeal members of the tyrosine recombinase family. These integrases catalyze viral integration into and excision from a specific site on the host genome. In the present study, we have established an in vitro integration/excision assay for SSV2 integrase (Int(SSV2)). Int(SSV2) alone was able to catalyze both integration and excision reactions in vitro. A 27-bp specific DNA sequence is minimally required for the activity of the enzyme, and its flanking sequences influence the efficiency of integration by the enzyme in a sequence-nonspecific manner. The enzyme forms a tetramer through interactions in the N-terminal part (residues 1 to 80), interacts nonspecifically with DNA and performs chemical catalysis in the C-terminal part (residues 165 to 328), and appears to recognize and bind the specific site of recombination in the middle portion (residues 81 to 164). It is worth noting that an N-terminally truncated mutant of Int(SSV2) (residues 81 to 328), which corresponded to the putative product of the 3'-end sequence of the Int(SSV2) gene of the integrated SSV2 genome, was unable to form tetramers but possessed all the catalytic properties of full-length Int(SSV2) except for the slightly reduced recombination activity. Our results suggest that, unlike λ integrase, SSV-type integrases alone are capable of catalyzing viral DNA recombination with the host genome in a simple and reversible fashion. IMPORTANCE: Archaea are host to a variety of viruses. A number of archaeal viruses are able to integrate their genome into the host genome. Many known archaeal viral integrases belong to a unique type, or the SSV type, of tyrosine recombinases. SSV-type integrases catalyze viral integration into and excision from a specific site on the host genome. However, the molecular details of the recombination process have yet to be fully understood because of the lack of an established in vitro recombination assay system. Here we report an in vitro assay for integration and excision by SSV2 integrase, a member of the SSV-type integrases. We show that SSV2 integrase alone is able to catalyze both integration and excision and reveal how different parts of the target DNA and the enzyme serve their roles in these processes. Therefore, our results provide mechanistic insights into a simple recombination process catalyzed by an archaeal integrase.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Fuselloviridae/enzimologia , Integrases/fisiologia , Filogenia , Sulfolobales/virologia , Integração Viral/genética , Sequência de Bases , Cromatografia em Gel , Análise por Conglomerados , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas In Vitro , Modelos Genéticos , Dados de Sequência Molecular , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase , Ligação Proteica , Análise de Sequência de DNA , Especificidade por Substrato
17.
J Bacteriol ; 197(18): 2941-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148716

RESUMO

UNLABELLED: The ups operon of Sulfolobus species is highly induced upon UV stress. Previous studies showed that the pili encoded by this operon are involved in cellular aggregation, which is essential for subsequent DNA exchange between cells, resulting in homologous recombination. The presence of this pilus system increases the fitness of Sulfolobus cells under UV light-induced stress conditions, as the transfer of DNA takes place in order to repair UV-induced DNA lesions via homologous recombination. Four conserved genes (saci_1497 to saci_1500) which encode proteins with putative DNA processing functions are present downstream of the ups operon. In this study, we show that after UV treatment the cellular aggregation of strains with saci_1497, saci_1498, and saci_1500 deletions is similar to that of wild-type strains; their survival rates, however, were reduced and similar to or lower than those of the pilus deletion strains, which could not aggregate anymore. DNA recombination assays indicated that saci_1498, encoding a ParB-like protein, plays an important role in DNA transfer. Moreover, biochemical analysis showed that the endonuclease III encoded by saci_1497 nicks UV-damaged DNA. In addition, RecQ-like helicase Saci_1500 is able to unwind homologous recombination intermediates, such as Holliday junctions. Interestingly, a saci_1500 deletion mutant was more sensitive to UV light but not to the replication-stalling agents hydroxyurea and methyl methanesulfonate, suggesting that Saci_1500 functions specifically in the UV damage pathway. Together these results suggest a role of Saci_1497 to Saci_1500 in the repair or transfer of DNA that takes place after UV-induced damage to the genomic DNA of Sulfolobus acidocaldarius. IMPORTANCE: Sulfolobales species increase their fitness after UV stress by a UV-inducible pilus system that enables high rates of DNA exchange between cells. Downstream of the pilus operon, three genes that seem to play a role in the repair or transfer of the DNA between Sulfolobus cells were identified, and their possible functions are discussed. Next to the previously described role of UV-inducible pili in the exchange of DNA, we have thereby increased our knowledge of DNA transfer at the level of DNA processing. This paper therefore contributes to the overall understanding of the DNA exchange mechanism among Sulfolobales cells.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Sulfolobales/metabolismo , Sulfolobales/efeitos da radiação , Raios Ultravioleta , Proteínas de Bactérias/genética , DNA Bacteriano , Sulfolobales/genética
18.
Environ Microbiol ; 17(5): 1600-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25142282

RESUMO

Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.


Assuntos
Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Éteres de Glicerila/metabolismo , Fontes Termais/microbiologia , Lipídeos de Membrana/metabolismo , Archaea/genética , Desulfurococcales/genética , Desulfurococcales/isolamento & purificação , Meio Ambiente , Éteres de Glicerila/análise , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/análise , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Microbiologia do Solo , Sulfolobales/genética , Sulfolobales/isolamento & purificação , Temperatura , Thermoplasmales/genética , Thermoplasmales/isolamento & purificação , Tibet
19.
J Theor Biol ; 349: 167-9, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24560724

RESUMO

I reply to the suggestion of Podar et al. (2013) that the split genes of Nanoarchaeun equitans are a derived character, showing that their analysis is mistaken. In particular, I show that the split genes both proteins and tRNAs have not been split in N. equitans and have been on the contrary merged in the nanoarchaeon sequenced recently by Podar et al. (2013). This implies that the main argument of Podar et al. (2013) that there should be: "a unique propensity for splitting in the Nanoarchaeota that is most dramatically manifested in the Nanoarchaeum equitans lineage" is false. On the other hand, the analysis seems to favor the hypothesis that the split genes are an ancestral character. This would strengthen to greater extent a model for the origin of the tRNA molecule.


Assuntos
Proteínas Arqueais/genética , Genoma Arqueal , Nanoarchaeota/fisiologia , Sulfolobales/fisiologia , Simbiose
20.
Archaea ; 2013: 723871, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23710131

RESUMO

Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L(-1), (2) Pond-B: 66°C and 2248 mg L(-1), (3) Pond-C: 88°C and 198 mg L(-1), and (4) Pond-D: 67°C and 340 mg L(-1). In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations.


Assuntos
Archaea/classificação , Archaea/genética , Fontes Termais/microbiologia , Consórcios Microbianos , Sequência de Bases , Biodiversidade , DNA Arqueal/genética , Genes Arqueais , Japão , Consórcios Microbianos/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfolobales/classificação , Sulfolobales/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...