RESUMO
INTRODUCTION: Acne vulgaris is a common chronic inflammatory disorder of the pilosebaceous unit. Survivin is an apoptosis inhibitor protein, and it contributes crucially to cell cycle regulation. This study measures the serum level of survivin in acne and post-acne scarring patients, and assesses the possible effect of isotretinoin therapy on its level. METHODS: Sixty participants, including 40 acne patients (Group IA, IB), and 20 age- and sex-matched controls (Group II) were included. Group IA included 20 patients with active moderate-to-severe acne without scarring, and this group was further prescribed oral isotretinoin therapy for 3 months. Group IB included 20 patients with post-acne scarring of a duration not more than 6 months, without evident active acne lesions. Serum survivin levels were measured in the three groups using an enzyme-linked immunosorbent assay. RESULTS: There was a statistically significant higher serum survivin level in the acne scar group, followed by the active acne group, than in controls. In addition, there was a statistically significant reduction in survivin levels after treatment, and it was positively correlated with a reduction in the global acne grading system (GAGS) in the active acne group. CONCLUSIONS: Survivin may play a role in the evolution of acne and acne scarring, and it could be a possible target for isotretinoin therapy.
Assuntos
Acne Vulgar , Fármacos Dermatológicos , Humanos , Isotretinoína/efeitos adversos , Cicatriz/induzido quimicamente , Cicatriz/patologia , Survivina , Acne Vulgar/tratamento farmacológico , Pele/patologia , Fármacos Dermatológicos/efeitos adversos , Resultado do TratamentoRESUMO
As a critical member in wound healing, vascular endothelial cells (ECs) impaired under high levels of reactive oxygen species (ROS) would hamper neovascularization. Mitochondria transfer can reduce intracellular ROS damage under pathological condition. Meanwhile, platelets can release mitochondria and alleviate oxidative stress. However, the mechanism by which platelets promote cell survival and reduce oxidative stress damage has not been clarified. Here, first, we selected ultrasound as the best method for subsequent experiments by detecting the growth factors and mitochondria released from manipulation platelet concentrates (PCs), as well as the effect of manipulation PCs on the proliferation and migration of HUVECs. Then, we found that sonicate platelet concentrates (SPC) decreased the level of ROS in HUVECs treated with hydrogen peroxide in advance, increased mitochondrial membrane potential, and reduced apoptosis. By transmission electron microscope, we saw that two kinds of mitochondria, free or wrapped in vesicles, were released by activated platelets. In addition, we explored that platelet-derived mitochondria were transferred to HUVECs partly by means of dynamin-dependent clathrin-mediated endocytosis. Consistently, we determined that platelet-derived mitochondria reduced apoptosis of HUVECs caused by oxidative stress. What is more, we screened survivin as the target of platelet-derived mitochondria via high-throughput sequencing. Finally, we demonstrated that platelet-derived mitochondria promoted wound healing in vivo. Overall, these findings revealed that platelets are important donors of mitochondria, and platelet-derived mitochondria can promote wound healing by reducing apoptosis caused by oxidative stress in vascular endothelial cells. And survivin is a potential target. These results further expand the knowledge of the platelet function and provide new insights into the role of platelet-derived mitochondria in wound healing.
Assuntos
Células Endoteliais , Estresse Oxidativo , Espécies Reativas de Oxigênio , Survivina , Cicatrização , MitocôndriasRESUMO
OBJECTIVES: Ginsenoside Rg1 (Rg1) has been well-documented to be effective against ischemic/reperfusion (I/R) injury. However, whether it has therapeutic effect on delayed neuronal death is still unclear. The aim of this study is to investigate the effect of Rg1 on delayed neuronal death and elucidate its underlying mechanism. METHODS: Delayed neuronal death model was prepared by global cerebral ischemia-reperfusion in rats, Rg1 was intravenously administered once a day. Nissl and Fluoro Jade B staining were carried out to evaluate the effect of Rg1 on delayed neuronal death. Western blot and qPCR were used to investigate the levels of HBXIP and Survivin. HBXIP/Survivin complex was observed by co-immunoprecipitation. AAV-CMV-shRNA (HBXIP) was used to observe the role of HBXIP on delayed neuronal death improved by Rg1. KEY FINDINGS: Rg1 attenuated delayed neuronal death at the dose of 20 mg/kg, which also improved the mRNA and protein levels of HBXIP, as well as Survivin. Moreover, administration of Rg1 promoted the formation of HBXIP/Survivin complex, which contributed to the reduction of caspases signaling pathway. Knockdown of HBXIP abolished the alleviation of DND and inhibition of caspase cascade induced by Rg1. CONCLUSIONS: Rg1 alleviated delayed neuronal death by promoting anti-apoptosis effect by HBXIP/Survivin complex.
Assuntos
Isquemia Encefálica , Ginsenosídeos , Traumatismo por Reperfusão , Ratos , Animais , Regulação para Cima , Survivina , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Ginsenosídeos/farmacologia , Isquemia Encefálica/tratamento farmacológico , ReperfusãoRESUMO
Objective Survivin is a member of inhibitors of apoptosis proteins family. There are not data about the association between mortality of septic patients and blood survivin concentrations. Therefore, the objective of this study was to determine whether exist that association. Design Observational and prospective study. Setting Three Spanish Intensive Care Units. Patient Patients with sepsis or septic shock according to Sepsis-3 Consensus criteria. Interventions Serum survivin concentrations were determined at moment of sepsis diagnosis. Main variable of interest Mortality at 30 days. Results A total of 204 patients were included in the study, of which 75 (36.8%) died in the first 30 days. Lower age (p<0.001), serum lactic acid levels (p=0.001), rate of septic shock (p=0.001) and SOFA (p<0.001), and higher serum survivin levels (p=0.001) exhibited surviving (n=129) than non-surviving patients (n=75). We found in multiple logistic regression analysis an association between serum survivin concentrations and mortality independently of SOFA, lactic acid, age, INR, activated partial thromboplastin time (aPTT) and empiric antimicrobial treatment adequate (OR=0.968; 95% CI=0.9460.990; p=0.005), and also independently of APACHE-II, lactic acid, platelet, INR, aPTT and empiric antimicrobial treatment adequate (OR=0.966; 95% CI=0.9430.989; p=0.004). Conclusions There is an association between septic patient mortality and low blood survivin concentrations (AU)
Objetivo Survivina es un miembro de la familia de proteínas inhibidoras de apoptosis. No existen datos sobre la asociación entre la mortalidad de los pacientes sépticos y las concentraciones de survivina en sangre. Por tanto, el objetivo de este estudio fue determinar si existe esa asociación. Diseño Estudio observacional y prospectivo. Ámbito Tres Unidades de Cuidados Intensivos españolas. Pacientes Pacientes con sepsis o shock séptico según criterios del Consenso Sepsis-3. Intervenciones Se determinaron las concentraciones séricas de survivina en el momento del diagnóstico de la sepsis. Variable de interés principal Mortalidad a los 30 días. Resultados Un total de 204 pacientes se incluyeron en el estudio, 75 (36,8%) de los cuales fallecieron en los primeros 30 días. Menor edad (p<0,001), niveles séricos de ácido láctico (p=0,001), tasa de shock séptico (p=0,001) y SOFA (p<0,001), y mayores niveles de survivina en suero (p=0,001) exhibieron los pacientes supervivientes (n=129) en comparación con los fallecidos (n=75). El análisis de regresión logística múltiple mostró una asociación entre las concentraciones séricas de survivina y la mortalidad independientemente del SOFA, ácido láctico, edad, INR, tiempo de tromboplastina parcial activada (aPTT) y tratamiento antimicrobiano empírico adecuado (OR=0,968; IC 95%=0,946-0,990; p=0,005), y también independientemente del APACHE-II, ácido láctico, plaquetas, INR, aPTT y tratamiento antimicrobiano empírico adecuado (OR=0,966; IC 95%=0,943-0,989; p=0,004). Conclusiones Existe una asociación entre la mortalidad de los pacientes sépticos y las concentraciones bajas de survivina en sangre (AU)
Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Survivina/sangue , Sepse/sangue , Sepse/mortalidade , Estudos Prospectivos , Biomarcadores/sangue , Curva ROCRESUMO
BACKGROUNDS AND AIMS: Prostate cancer is the most common malignant cancer among men and is the second deadliest cancer in men after lung cancer. Understanding the molecular mechanisms involved in development and progression of prostate cancer is essential to improve both diagnostic and therapeutic strategies in this regard. In addition, using novel gene therapy-based methods for treatment of cancers has gotten increasing attention during the recent years. Accordingly, this study was aimed to evaluate the inhibitory effect of MAGE-A11 gene, as an important oncogene involved in the pathophysiology of prostate cancer invitro model. The study was also aimed to evaluate the downstream genes related to MAGE-A11. MATERIALS AND METHODS: First, MAGE-A11 gene was knocked out in PC-3 cell line using "Clustered regularly interspaced short palindromic repeats" (CRISPR)/ "CRISPR-associated genes 9" (CRISPR/Cas9) method. Next, the expression levels of MAGE-A11, survivin and Ribonucleotide Reductase Small Subunit M2 (RRM2) genes were determined by quantitative polymerase chain reaction (qPCR) technique. The levels of proliferation and apoptosis were also analyzed in PC-3 cells using CCK-8 and Annexin V-PE/7-AAD assays. RESULTS: The results showed that the disruption of MAGE-A11 by CRISPR/Cas9 method significantly decreased proliferation (P< 0.0001) and enhanced apoptosis (P< 0.05) in PC-3 cells compared to control group. Moreover, the disruption of MAGE-A11 significantly down regulated the expression levels of survivin and RRM2 genes (P< 0.05). CONCLUSION: Our results demonstrated that knocking out MAGE-11 gene by CRISPR/CAS9 technique could efficiently inhibit cell proliferation and induce apoptosis in PC3 cells. Survivin and RRM2 genes might also participated in these processes.
Assuntos
Antígenos de Neoplasias , Sistemas CRISPR-Cas , Neoplasias da Próstata , Humanos , Masculino , Apoptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Survivina/genética , Antígenos de Neoplasias/genéticaRESUMO
OBJECTIVE: To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL. METHODS: The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1. RESULTS: Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05). CONCLUSION: EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.
Assuntos
Gencitabina , Linfoma Difuso de Grandes Células B , Humanos , Everolimo/farmacologia , Survivina/farmacologia , Ciclina D1/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Linhagem Celular Tumoral , Proliferação de Células , Serina-Treonina Quinases TOR , Apoptose , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo CelularRESUMO
Fungal extracts possess potential anticancer activity against many malignant neoplastic diseases. In this research, we focused on the evaluation of Heterobasidion annosum (HA) extract in colorectal cancer in an in vivo model. The mice with implanted DLD-1 human cancer cells were given HA extract, the referential drug-5-fluorouracil (5FU), or were treated with its combination. Thereafter, tumor volume was measured and apoptotic proteins such as caspase-8, caspase-3, p53, Bcl-2, and survivin were analyzed in mice serum with an ELISA assay. The Ki-67 protein was assessed in tumor cells by immunohistochemical examination. The biggest volumes of tumors were confirmed in the DLD-1 group, while the lowest were observed in the population treated with 5FU and/or HA extract. The assessment of apoptosis showed increased concentrations of caspase 8 and p53 protein after the combined administration of 5FU and HA extract. The levels of survivin and Bcl-2 were decreased in all tested groups compared to the DLD-1 group. Moreover, we observed a positive reaction for Ki-67 protein in all tested groups. Our findings confirm the apoptotic effect of extract given alone or with 5FU. The obtained results are innovative and provide a basis for further research concerning the antitumor activity of the HA extract, especially in the range of its interaction with an anticancer chemotherapeutic agent.
Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Antígeno Ki-67 , Proteínas Proto-Oncogênicas c-bcl-2 , Survivina , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Survivin, as a member of the inhibitor of apoptosis proteins (IAPs) family, acts as a suppressor of apoptosis and plays a central role in cell division. Survivin has been considered as an important cancer drug target because it is highly expressed in many types of human cancers, while it is effectively absent from terminally differentiated normal tissues. Moreover, survivin is involved in tumor cell resistance to chemotherapy and radiation. Preclinically, downregulation of survivin expression or function reduced tumor growth induced apoptosis and sensitized tumor cells to radiation and chemotherapy in different human tumor models. This review highlights the role of survivin in promoting cellular proliferation and inhibiting apoptosis and summarizes the recent advances in and challenges of developing small-molecule survivin inhibitors.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Survivina , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular TumoralRESUMO
The main strategy of cancer cells for survival is uncontrolled cell division and escape from apoptosis. The use of anticancer agents inducing the production of reactive oxygen species (ROS) and controlling cell division might be a therapeutic approach to eradicate cancer cells. Herein, we examined the therapeutic effects of Auraptene on CT26 cells as well as on a mouse model of colorectal cancer (CRC). The spheroid assay was also conducted to analyze the anti-proliferative activity of Auraptene. We also assessed the in vitro analysis of ROS generation. The impact of Auraptene on oxidant/antioxidant markers, as well as the mRNA expression of Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin genes, was evaluated by qPCR in tumor samples. As a result, Auraptene significantly reduced the size of CT26 spheroids at a dose of 200 µM. After 12 h, ROS levels were significantly elevated in CT26 cells. The administration of Auraptene induced apoptosis and the cell cycle arrest by modulating Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin mRNA levels. Furthermore, our results demonstrated that Auraptene suppressed CAT, GSH (reduced Glutathione), and FRAP while increasing MDA in tissue homogenates which in turn could raise oxidative stress and stimulate apoptosis. Therefore, Auraptene may act as a powerful adjuvant therapy in CRC since it triggers apoptosis and cell cycle.
Assuntos
Neoplasias Colorretais , Ciclina D1 , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Survivina/metabolismo , Survivina/farmacologia , Ciclina D1/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
OBJECTIVE: The aim of this study is to determine biomarkers, which may be used in order to understand the pathophysiology, the diagnosis, progression surveillance/monitoring, and treatment efficacy of high graded glial tumors. BACKGROUND: Radiological imaging in the diagnosis and relapse surveillance of glial tumors is sometimes insufficient. There is need for additional methods of diagnosis and surveillance in order to rule out contradictory circumstances. METHOD: Using enzyme like immune sorbent assay method, E-Cadherin, Tenascin C, Tetraspanin 8, Survivin and VEGF121 levels were investigated in serum and tumor tissues of 28 patients diagnosed with pathological glioblastoma, and in the serum of 26 healthy individuals. Correlation between tumor tissue values and Ki67 percentage, and P53 mutation, and difference between unhealthy and healthy serum levels were sought. RESULTS: It was found out that E-Cadherin and VEGF 121 levels in the unhealthy serum were high in comparison to the control group (p 0.05). CONCLUSION: EC and VEGF121 are biomarkers, which have the potential to be used in the diagnosis, recurrence and treatment follow-up in high graded glial tumors (Tab. 2, Fig. 1, Ref. 37). Text in PDF www.elis.sk Keywords: E-Cadherin, VEGF, Survivin, Tenascin-C, Tetraspanin, glioblastoma.
Assuntos
Glioblastoma , Tenascina , Humanos , Biomarcadores Tumorais/genética , Caderinas , Glioblastoma/patologia , Recidiva Local de Neoplasia , Survivina , Fator A de Crescimento do Endotélio VascularRESUMO
Protein diversity due to alternative mRNA splicing or post-translational modifications (PTMs) plays a vital role in various cellular functions. The mitotic kinases polo-like kinase 1 (PLK1) and Aurora B (AURKB) phosphorylate survivin, an inhibitor of apoptosis (IAP) family member, thereby regulating cell proliferation. PLK1, AURKB, and survivin are overexpressed in triple-negative breast cancer (TNBC), an aggressive breast cancer subtype. TNBC is associated with high proliferative capacity, high rates of distant metastasis, and treatment resistance. The proliferation-promoting protein survivin and its activating kinases, PLK1 and AURKB, are overexpressed in TNBC. In this study, we investigated the role of survivin phosphorylation in racial disparities in TNBC cell proliferation. Analysis of TCGA TNBC data revealed higher expression levels of PLK1 (P = 0.026) and AURKB (P = 0.045) in African Americans (AAs; n = 41) than in European Americans (EAs; n = 86). In contrast, no significant racial differences in survivin mRNA or protein levels were observed. AA TNBC cells exhibited higher p-survivin levels than EA TNBC cells. Survivin silencing using small interfering RNAs significantly attenuated cell proliferation and cell cycle progression in AA TNBC cells, but not in EA TNBC cells. In addition, PLK1 and AURKB inhibition with volasertib and barasertib significantly inhibited the growth of AA TNBC xenografts, but not of EA TNBC tumors. These data suggest that inhibition of PLK1 and AURKB suppresses cell proliferation and tumor growth, specifically in AA TNBC. These findings suggest that targeting survivin phosphorylation may be a viable therapeutic option for AA patients with TNBC.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Survivina/genética , Linhagem Celular Tumoral , RNA Mensageiro , Proliferação de Células , Aurora Quinase B/genéticaRESUMO
Simultaneous imaging and especially visualizing the association of survivin mRNA and telomerase in living cells are of great value for the diagnosis and prognosis of cancer because their co-expression facilitates the development of cancer and identifies patients at high risk of tumor-related death. The challenge is to develop methods that enable visualizing the association of multiplex targets and avoid the distorted signals due to the different delivery efficiency of probes. Herein, we engineered a DNA triangular prism nanomachine (DTPN) for simultaneous multicolor imaging of survivin mRNA and telomerase and visualizing their association in living cells. Two recognizing probes targeted survivin mRNA and telomerase, and the reporter probe was assembled on the DTP in equal amounts, ensuring the same delivery efficiency of the probes to the living cells. The results showed that this DTPN could quantify intracellular survivin mRNA expression and telomerase activity. Moreover, it also enabled us to visualize the effect of the down-regulation of one target on the expression of another target under different drug stimulations. The results implied that our DTPN provided a promising platform for cancer diagnosis, prognosis, drug screening, and related biological research.
Assuntos
Telomerase , Humanos , Survivina/genética , Survivina/metabolismo , RNA Mensageiro/genética , Telomerase/genética , Telomerase/metabolismo , DNA/genética , Regulação para BaixoRESUMO
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and its clinical treatment remains challenging. The development of new treatment regimens is important for effective HCC treatment. Phosphoinositide 3-kinase (PI3K) is a lipid kinase that plays an important role in cell growth and metabolism and is overexpressed in nearly 50% of patients with HCC. Studies have shown that PI-3065, a small-molecule inhibitor of phosphatidylinositol 3-kinase delta, significantly inhibits solid breast cancer. However, its antitumor effects against HCC and the underlying mechanisms remain unclear. In the present study, we found that PI-3065 dose- and time-dependently reduced HCC cell viability and induced apoptosis while posing no obvious apoptotic toxicity in normal liver cells. Further mechanistic analysis showed that PI-3065 induced apoptosis mainly by inhibiting survivin protein expression, decreasing mitochondrial membrane potential, and promoting cytochrome C release. Simultaneously, PI-3065 markedly suppressed the colony formation, migration, and epithelial-mesenchymal transition abilities of HCC cells. Furthermore, transplantation of nude mice with HCC tumors showed that PI-3065 inhibits HCC tumor growth in vivo by targeting survivin. In summary, PI-3065 specifically inhibited survivin expression and exerted anti-HCC activity in vivo and in vitro, suggesting that it may serve as an effective antitumor drug for HCC treatment, which warrants further study.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Survivina , Carcinoma Hepatocelular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Camundongos Nus , Apoptose , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: Despite intensive treatment with surgery, radiation therapy, temozolomide (TMZ) chemotherapy, and tumor-treating fields, mortality of newly diagnosed glioblastoma (nGBM) remains very high. SurVaxM is a peptide vaccine conjugate that has been shown to activate the immune system against its target molecule survivin, which is highly expressed by glioblastoma cells. We conducted a phase IIa, open-label, multicenter trial evaluating the safety, immunologic effects, and survival of patients with nGBM receiving SurVaxM plus adjuvant TMZ following surgery and chemoradiation (ClinicalTrials.gov identifier: NCT02455557). METHODS: Sixty-four patients with resected nGBM were enrolled including 38 men and 26 women, in the age range of 20-82 years. Following craniotomy and fractionated radiation therapy with concurrent TMZ, patients received four doses of SurVaxM (500 µg once every 2 weeks) in Montanide ISA-51 plus sargramostim (granulocyte macrophage colony-stimulating factor) subcutaneously. Patients subsequently received adjuvant TMZ and maintenance SurVaxM concurrently until progression. Progression-free survival (PFS) and overall survival (OS) were reported. Immunologic responses to SurVaxM were assessed. RESULTS: SurVaxM plus TMZ was well tolerated with no serious adverse events attributable to SurVaxM. Of the 63 patients who were evaluable for outcome, 60 (95.2%) remained progression-free 6 months after diagnosis (prespecified primary end point). Median PFS was 11.4 months and median OS was 25.9 months measured from first dose of SurVaxM. SurVaxM produced survivin-specific CD8+ T cells and antibody/immunoglobulin G titers. Apparent clinical benefit of SurVaxM was observed in both methylated and unmethylated patients. CONCLUSION: SurVaxM appeared to be safe and well tolerated. The combination represents a promising therapy for nGBM. For patients with nGBM treated in this manner, PFS may be an acceptable surrogate for OS. A large randomized clinical trial of SurVaxM for nGBM is in progress.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Survivina/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Vacinas de Subunidades/uso terapêuticoRESUMO
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteínas Proto-Oncogênicas p21(ras) , Survivina , Humanos , Linhagem Celular Tumoral , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Survivina/genética , Survivina/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismoRESUMO
Acute myeloid leukemia (AML) is the most common subtype of leukemia, accounting for 62% of all leukemia fatalities. As a polyphenol glycoside, hesperidin triggers the apoptotic pathway, which might positively affect combating cancer cells. In this study, we investigated the pro-apoptotic effects of hesperidin in KG1a cells. The MTT assay was used to determine the IC50 of hesperidin in KG1a cell lines. For the apoptotic cell morphology study, we used Hoechst 33 258 staining. Activation of the caspase-3 enzyme was evaluated by the caspase-3 assay and spectrophotometry. Cell cycle distribution was analyzed by propidium iodide staining and flow cytometry. Moreover, p21, survivin, Bax, and Bcl2 gene expression was investigated by real-time PCR. Hesperidin decreased the viability of KG1a leukemic cell4s, but not that of HFF2, a non-cancer cell line. Apoptotic cell morphological alterations and increase in caspase-3 activity were observed after hesperidin treatment. Our results revealed that the expression of anti-apoptotic genes survivin and Bcl2 significantly decreased with hesperidin treatment, and pro-apoptotic gene Bax and cell cycle regulator p21 increased compared to the control group. These findings revealed that hesperidin may be an effective factor in initiating the intrinsic pathway of apoptosis and may be good candidate for the treatment of AML.
Assuntos
Hesperidina , Leucemia Mieloide Aguda , Humanos , Survivina , Hesperidina/farmacologia , Caspase 3/metabolismo , Proteína X Associada a bcl-2/farmacologia , Linhagem Celular Tumoral , Apoptose , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proliferação de CélulasRESUMO
Malignant rhabdoid tumor (MRT) is a highly aggressive pediatric malignancy with no effective therapy. Therefore, it is necessary to identify a target for the development of novel molecule-targeting therapeutic agents. In this study, we report the importance of the runt-related transcription factor 1 (RUNX1) and RUNX1-Baculoviral IAP (inhibitor of apoptosis) Repeat-Containing 5 (BIRC5/survivin) axis in the proliferation of MRT cells, as it can be used as an ideal target for anti-tumor strategies. The mechanism of this reaction can be explained by the interaction of RUNX1 with the RUNX1-binding DNA sequence located in the survivin promoter and its positive regulation. Specific knockdown of RUNX1 led to decreased expression of survivin, which subsequently suppressed the proliferation of MRT cells in vitro and in vivo. We also found that our novel RUNX inhibitor, Chb-M, which switches off RUNX1 using alkylating agent-conjugated pyrrole-imidazole polyamides designed to specifically bind to consensus RUNX-binding sequences (5'-TGTGGT-3'), inhibited survivin expression in vivo. Taken together, we identified a novel interaction between RUNX1 and survivin in MRT. Therefore the negative regulation of RUNX1 activity may be a novel strategy for MRT treatment.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Tumor Rabdoide , Survivina , Humanos , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genéticaRESUMO
Survivin is overexpressed in most cancer cells but is rarely expressed in normal adult tissues. It is associated with poor prognosis and resistance to radiation therapy and chemotherapy. In this study, we designed and synthesized borealin-derived small peptides (Bor peptides) to function as survivin-targeting agents for the diagnosis and treatment of cancers. These peptides exhibited binding affinities for recombinant human survivin (Kd = 49.6-193 nM), with Bor65-75 showing the highest affinity (Kd = 49.6 nM). Fluorescence images of fluorescein isothiocyanate-labeled Bor65-75 showed its co-localization with survivin expression in the human pancreatic cancer cell line, MIA PaCa-2. In the WST-1 assay, cell penetrable nona-d-arginine-conjugated Bor65-75 (r9-Bor65-75) inhibited the growth of MIA PaCa-2 cells and MDA-MB-231 cells (89 and 88% inhibition at 10 µM, respectively), whereas it had almost no effect on the human mammary epithelial cell line, MCF-10A, that inherently does not have high survivin expression. Flow cytometry with annexin V and propidium iodide staining revealed that r9-Bor65-75 induced apoptosis in MIA PaCa-2 cells in a dose-dependent manner. An increase in cleaved poly ADP-ribose polymerase protein expression was observed in MIA PaCa-2 cells exposed to r9-Bor65-75 by western blotting, suggesting that r9-Bor65-75 inhibits cell proliferation by inducing apoptosis. In vivo, r9-Bor65-75 significantly suppressed tumor growth in MIA PaCa-2 xenograft mice, without any marked weight loss. Hence, Bor peptides are promising candidates for the development of cancer imaging and anticancer agents targeting survivin.
Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Survivina , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Proteínas de Ciclo Celular , Neoplasias Pancreáticas/patologia , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Overexpression of survivin is frequently observed in human malignancies and is associated with poor prognosis. The present study found that survivin is highly expressed in nasopharyngeal carcinoma (NPC) tumor tissues. Depleting survivin with shRNA inhibited cell viability, colony formation, and in vivo tumorigenesis of NPC cells. With a natural product screening, we identified Butein as a potential anti-tumor compound for NPC by reducing survivin protein level. Butein shortened the half-life of survivin and enhanced ubiquitination-mediated degradation. The mechanism study showed that Butein promoted the interaction between survivin and E3 ligase Fbxl7, and the knockdown of Fbxl7 compromised Butein-induced survivin ubiquitination. Butein suppressed the Akt-Wee1-CDK1 signaling and decreased survivin Thr34 phosphorylation, facilitating E3 ligase Fbxl7-mediated survivin ubiquitination and degradation. Moreover, Butein exhibited a strong in vivo anti-tumor activity, as the tumor volume of Butein-treated xenografts was reduced significantly. Butein alone or combined with cisplatin (CDDP) overcame chemoresistance in NPC xenograft tumors. Overall, our data indicate that Butein is a promising anti-tumor agent for NPC treatment.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Nasofaríngeas , Humanos , Survivina , Ubiquitinação , Ubiquitina-Proteína Ligases , Carcinoma Nasofaríngeo/tratamento farmacológico , Cisplatino/farmacologia , Cisplatino/uso terapêuticoRESUMO
BACKGROUND: Urothelial carcinomas (UC) can be either in the upper or in the lower urinary tract or both. Urothelial bladder cancer (UBC) is more common than upper tract urothelial carcinoma (UTUC). This research was designed to study the difference between UBC and UTUC using the molecular pathways including (MAPK/ERK) pathway, cell cycle regulating genes, and oncogenic genes. METHODS: To study the discrepancy between UBC and UTUC, a prospective trial was carried out for 31 radical cystectomy and 19 nephrouretrectomy fresh-frozen specimens of UBC and UTUC patients, respectively. The expression level of mRNA of eight genes namely EGFR, ELK1, c-fos, survivin, TP53, RB1, FGFR3, and hTERT was assessed in normal adjacent tissues, UTUC, and UBC by RT-PCR. RESULTS: Comparison between UTUC and UBC regarding the expression level of mRNA of the EGFR, ELK1, c-fos, survivin, TP53, and FGFR3 had significant difference (p-value < 0.001), while the expression level of RB1 and hTERT level had no significance. Sensitivity/specificity of EGFR, Elk1, c-fos, survivin, TP53, and FGFR3 was 0.78/0.90, 0.84/0.90, 0.84/0.80, 0.84/0.96, 0.94/0.93, and 0.89/0.93, respectively, to differentiate between UTUC and UBC. CONCLUSIONS: Despite the fact that UTUC and UBC share the same origin, there is a clear evidence that there is a molecular difference between them. This molecular difference could be the reason that UTUC is more aggressive than UBC.