Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.235
Filtrar
1.
Sci Total Environ ; 803: 149966, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481161

RESUMO

Wastewater treatment plants (WWTPs) are known sources of contaminants of emerging concern (CECs) spreading into the environment, as well as, of unpleasant odors. CECs represent a potential hazard for human health and the environment being pharmaceutical or biologically active compounds and they are acquiring relevance in European directives. Similarly, the public concern about odour emissions from WWTPs is also increasing due to the decreasing distance between WWTP and residential areas. This study focuses on the effectiveness of the recently developed MULESL technology (MUch LEss SLudge; WO2019097463) in removing CECs and limiting odour emissions from WWTPs. MULESL technology has been developed for its ability to reduce up to 80% the sludge production from WWTPs. However, it is ought to evaluate if the benefits coming from sludge production reduction do not invalidate CECs removal or negatively affect odour emissions. Thus, the performances of a MULESL and a conventional WWTP (flow rate of 375 m3/d and 3600 m3/d, respectively) were compared while treating the same municipal sewage. Whereas both plants succeeded in removing the traditional gross parameters characterizing wastewaters (e.g. chemical oxygen demand, nitrogen), the MULESL was much more effective than the conventional one in terms of CECs removal for about 60% of the identified compounds showing, however, the same or lower effectiveness for about 30% and 10% of them, respectively. This result was attributed to the high sludge retention time and biomass concentration in the MULESL (enabling enrichment of slow growing microorganisms and forcing biomass to use unusual substrates, respectively), and to the biomass feature to grow in the form of biofilm and granules (favoring micropollutants absorption on biomass). Furthermore, odour impact analysis has shown that the MULESL was characterized by a much lower impact, i.e. 45% lower than that of primary and secondary treatments of the conventional WWTP.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Odorantes , Esgotos , Tecnologia , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 803: 150085, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525771

RESUMO

As cost-effective and high-efficient oxidants, the hypochlorite chemicals have been widely utilized for bleaching and disinfection. However, its potential applications in wastewater treatment and sludge disposal were less concerned. This paper mainly summarized the state-of-the-art applications of hypochlorite technology in wastewater and sludge treatment based on the main influencing factors and potential mechanisms of hypochlorite treatment. The results indicated that the hypochlorite approaches were not only effective in pollutants removal and membrane fouling mitigation for wastewater treatment, but also contributed to sludge dewatering and resource recovery for sludge disposal. The ClO- and large generated free active radicals (i.e., reactive chlorine species and reactive oxygen species), which possessed strong oxidative ability, were the primary contributors to the pollutants decomposition, and colloids/microbes flocs disintegration during the hypochlorite treatment process. The performance of hypochlorite treatment was highly associated with various factors (i.e., pH, temperature, hypochlorite types and dosage). In combination with the reasonable activators (i.e., Fe2+ and ultraviolet), auxiliary agents, and innovative processes (i.e., hydrothermal and electro-oxidation), the operational performance of hypochlorite technology could be further enhanced. Finally, the feasibility and benefits of hypochlorite application for wastewater and sludge treatment were analyzed, and the existing challenges and future research efforts that need to be made have also prospected. The review can hopefully provide a theoretical basis and technical guidance to extend the application of hypochlorite technology for wastewater treatment and sludge disposal on large scale.


Assuntos
Esgotos , Purificação da Água , Ácido Hipocloroso , Tecnologia , Eliminação de Resíduos Líquidos , Águas Residuárias
3.
Food Chem ; 370: 131047, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626928

RESUMO

Rapidly and non-destructively predicting the oil content of single maize kernel is crucial for food industry. However, obtaining a large number of oil content reference values of maize kernels is time-consuming and expensive, and the limited data set also leads to low generalization ability of the model. Here, hyperspectral imaging technology and deep convolutional generative adversarial network (DCGAN) were combined to predict the oil content of single maize kernel. DCGAN was used to simultaneously expand their spectral data and oil content data. After many iterations, fake data that was very similar to the experimental data was generated. Partial least squares regression (PLSR) and support vector regression (SVR) models were established respectively, and their performance was compared before and after data augmentation. The results showed that this method not only improved the performance of two regression models, but also solved the problem of requiring a large amount of training data.


Assuntos
Imageamento Hiperespectral , Zea mays , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Tecnologia
4.
Chemosphere ; 286(Pt 2): 131721, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352550

RESUMO

The discharge of chromium (Cr) contaminated wastewater is creating a serious threat to aquatic environment due to the rapid pace in agricultural and industrial activities. Particularly, the long-term exposure of Cr(VI) polluted wastewater to the environment is causing serious harm to human health. Therefore, the treatment of Cr(VI) contaminated wastewater is demanding widespread attention. Regarding this, the bioremediation is being considered as a reliable and feasible option to handle Cr(VI) contaminated wastewater because of having low technical investment and operating costs. However, certain factors such as loss of microorganisms, toxicity to microorganisms and uneven microbial growth cycle in the presence of high concentrations of Cr(VI) are hindering its commercial applications. Regarding this, microbial immobilization technology (MIT) is getting great research interest because it could overcome the shortcomings of bioremediation technology's poor tolerance against Cr. Therefore, this review is the first attempt to emphases recent research developments in the remediation of Cr(VI) contamination via MIT. Starting from the selection of immobilized carrier, the present review is designed to critically discuss the various microbial immobilizing methods i.e., adsorption, embedding, covalent binding and medium interception. Further, the mechanism of Cr(VI) removal by immobilized microorganism has also been explored, precisely. In addition, three kinds of microorganism immobilization devices have been critically examined. Finally, knowledge gaps/key challenges and future perspectives are also discussed that would be helpful for the experts in improving MIT for the remediation of Cr(VI) contamination.


Assuntos
Cromo , Águas Residuárias , Biodegradação Ambiental , Cromo/análise , Humanos , Tecnologia
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120460, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34637985

RESUMO

The feasibility analysis of fluorescence hyperspectral imaging technology was studied for the detection of lead content in lettuce leaves. Further, Monte Carlo optimized wavelet transform stacked auto-encoders (WT-MC-SAE) was proposed for dimensionality reduction and depth feature extraction of fluorescence spectral data. The fluorescence hyperspectral images of 2800 lettuce leaf samples were selected and the whole lettuce leaf was used as the region of interest (ROI) to extract the fluorescence spectrum. Five different pre-processing algorithms were used to pre-process the original ROI spectral data including standard normalized variable (SNV), first derivative (1st Der), second derivative (2ndDer), third derivative (3rd Der) and fourth derivative (4th Der). Moreover, wavelet transform stacked auto-encoders (WT-SAE) and WT-MC-SAE were used for data dimensionality reduction, and support vector machine regression (SVR) was used for modeling analysis. Among them, 4th Der tends to be the most useful fluorescence spectral data for Pb content detection at 0.067 âˆ¼ 1.400 mg/kg in lettuce leaves, with Rc2 of 0.9802, RMSEC of 0.02321 mg/kg, Rp2 of 0.9467, RMSEP of 0.04017 mg/kg and RPD of 3.273, and model scale (the number of nodes in the input layer, hidden layer and output layer) was 407-314-286-121-76 under the fifth level of wavelet decomposition. Further studies showed that WT-MC-SAE realizes the depth feature extraction of the fluorescence spectrum, and it is of great significance to use fluorescence hyperspectral imaging to realize the quantitative detection of lead in lettuce leaves.


Assuntos
Aprendizado Profundo , Metais Pesados , Algoritmos , Chumbo , Análise dos Mínimos Quadrados , Alface , Folhas de Planta , Tecnologia
6.
Ann Anat ; 239: 151834, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34547412

RESUMO

BACKGROUND: Harvesting vascularized bone grafts with computer-assisted surgery represents the gold standard for mandibular reconstruction. However, current augmented reality (AR) approaches are limited to invasive marker fixation. This trial compared a markerless AR-guided real-time navigation with virtually planned and 3D printed cutting guides for harvesting iliac crest grafts. MATERIAL AND METHODS: Two commonly used iliac crest transplant configurations were virtually planned on 10 cadaver hips. Transplant harvest was performed with AR guidance and cutting guide technology. The harvested transplants were digitalized using cone beam CT. Deviations of angulation, distance and volume between the executed and planned osteotomies were measured. RESULTS: Both AR and cutting guides accurately rendered the virtually planned transplant volume. However, the cumulative osteotomy plane angulation differed significantly (p = 0.018) between AR (14.99 ± 11.69°) and the cutting guides (8.49 ± 5.42°). The cumulative osteotomy plane distance showed that AR-guided navigation had lower accuracy (2.65 ± 3.32 mm) than the cutting guides (1.47 ± 1.36 mm), although without significant difference. CONCLUSION: This study demonstrated the clinical usability of markerless AR-guided navigation for harvesting iliac crest grafts. Further improvement of accuracy rates might bring clinical implementation closer to reality.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Cadáver , Humanos , Ílio/cirurgia , Tecnologia
7.
Chemosphere ; 287(Pt 4): 132436, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610375

RESUMO

Green composite processing technology of wood fibers is an inevitable choice for global sustainable development. In this research, waste poplar powder with different particle sizes was used to prepare glue-free biocomposites with good mechanical and waterproof properties by hot-molding. The biocomposites made of larger size wood powder had better tensile strength (40.3 MPa) and the biocomposites made of smaller size wood powder had the greater bending strength (50.5 MPa). The thickness swelling rate of the biocomposites was only 4.26% after soaking in water for 24 h. The cross-section morphology of the biocomposites showed that the cell wall collapses enhanced the interfacial bonding. Chemical analysis showed that lignin repolymerized with cellulose and hemicellulose for the vitrification transition. In addition, the biocomposites with excellent mechanical properties had no formaldehyde release, which can replace the traditional density boards made of adhesives and applied as furniture materials and in line with the concept of cleaner production.


Assuntos
Celulose , Madeira , Lignina , Tecnologia , Resistência à Tração
8.
Appl Ergon ; 99: 103634, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34753098

RESUMO

There have been recent calls for Human Factors and Ergonomics (HFE) to expand its reach and focus to address larger scale societal and global issues. An area of growing awareness is the issue of the gender data gap, whereby women are under-represented in research data, leading to inequitable outcomes when research findings are used to design real world technologies, products, environments, processes, and policies. The aim of this paper is to showcase how structured HFE methods can be used to address the gender data gap. We applied the Sociotechnical Systems Design Toolkit which involved using causal loop diagrams and abstraction hierarchy modelling from Cognitive Work Analysis to understand the system in which the issue occurs and key pain points, followed by the application of the Design with Intent Toolkit to generate design ideas. A total of 43 ideas were developed that could be implemented by universities to address the research data gap. The application demonstrates the utility of HFE methods in tackling complex issues and offers an opportunity for the HFE community to reflect upon the importance of gender sensitive research practices and gender equity more broadly.


Assuntos
Ergonomia , Tecnologia , Humanos
9.
Chemosphere ; 287(Pt 1): 132014, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523445

RESUMO

Biohydrogen and biosyngas are among the sustainable bioenergy products from biomass resources through gasification. Microwave-assisted gasification (MAG) is still a novel technology, but it is definitely a promising conversion technology to achieve a sustainable bioeconomy. Although this technology shows a massive potential to be fully implemented in the near future, the selectivity and efficiency of biohydrogen and syngas production still need enhancements and further research to secure a cost-effective and energy-efficient industrialization. This article comprehensively reviews the regular, microwave-induced plasma, and catalytic MAG systems in relation to their biohydrogen and biosyngas production, carbon conversion efficiency, and tar removal while discussing the significance of optimal operating conditions and considerations in the gasification system design. Several perspectives such as benefits, challenges, numerical simulations, and scalable opportunities are also explored to provide factual insights for further research and industrial application.


Assuntos
Carbono , Micro-Ondas , Biomassa , Catálise , Tecnologia
10.
Bioresour Technol ; 343: 126017, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628243

RESUMO

The search of sustainable and environmentally friendly alternatives to obtain compounds for different industrial sectors has grown exponentially. Following the principles of biorefinery and circular bioeconomy, processes in which the use of natural resources such as macroalgae biomass is prioritized are required. This review focuses on a description of the relevance, application and engineering platforms of hydrothermal systems and the operational conditions depending on the target as an innovative technology and bio-based solution for macroalgae fractionation in order to recover profitable products for industries and investors. In this sense, hydrothermal treatments represent a promising alternative for obtaining different high value-added compounds from this biomass; since, the different variations in terms of operating conditions, gives great versatility to this technology compared to other types of processing, allowing it to be adapted depending on the objective, whether it is working under sub/super critical conditions, thus expanding its field of application.


Assuntos
Alga Marinha , Biocombustíveis , Biomassa , Fracionamento Químico , Engenharia , Tecnologia
11.
Chemosphere ; 286(Pt 1): 131583, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293558

RESUMO

Chemical degradation is one of the crucial methods for the remediation of hydrophobic organic compounds (HOCs) in soil/sediment. The sequestration effect of black carbon (BC) can affect the adsorption state of HOCs, thereby affecting their chemical degradability. Our study focused on the chemical degradability of 2-Chlorobiphenyl (PCB1) sequestrated on the typical BC (fly ash (FC), soot (SC), low-temperature biochar (BC400) and high-temperature biochar (BC900)) by iron-nickel bimetallic nanomaterials (nZVI/Ni) based on TENAX desorption technology. The results showed that PCB1 adsorbed in various states were simultaneously dechlorinated by nZVI/Ni. Specifically, rapid-desorption-state PCB1 tended to degrade more easily than resistant-desorption-state PCB1. Moreover, the degradation mechanism varied according to the type of BC. In the case of FC and SC, the degradation rate was lower than the desorption rate for the PCB1 in rapid and slow desorption states, and the degradation rate of PCB1 in the resistant desorption state was negligible. The PCB1 on FC and SC was first desorbed from BC and then degraded. However, in terms of BC400 and BC900, the degradation rate was higher than the desorption rate, and the degradation rate of the resistant-desorption-state PCB1 was 1.4 × 10-2 h-1 and 4.1 × 10-2 h-1, respectively. The graphitized structure of BC900 can directly transfer electrons, so more than 90% of the resistant-desorption-state PCB1 could be degraded. In addition, BC may affect the longevity of nZVI/Ni, thereby affecting its degradability. Therefore, the chemical degradability of BC-adsorbed HOCs should be comprehensively evaluated based on the adsorption state and the properties of BC.


Assuntos
Poluentes do Solo , Fuligem , Adsorção , Carvão Vegetal , Solo , Poluentes do Solo/análise , Tecnologia
12.
Environ Pollut ; 292(Pt B): 118405, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710518

RESUMO

Cadmium (Cd) is a toxic metal that can accumulate in soils and negatively impact crop as well as human health. Amendments like biochar have potential to address these challenges by reducing Cd bioavailability in soil, though reliance on post-harvest wet chemical methods to quantify Cd uptake have slowed efforts to identify the most effective amendments. Hyperspectral imaging (HSI) is a novel technology that could overcome this limitation by quantifying symptoms of Cd stress while plants are still growing. The goals of this study were to: 1) determine whether HSI can detect Cd stress in two distinct leafy green crops, 2) quantify whether a locally sourced biochar derived from hardwoods can reduce Cd stress and uptake in these crops, and 3) identify vegetative indices (VIs) that best quantify changes in plant stress responses. Experiments were conducted in a tightly controlled automated phenotyping facility that allowed all environmental factors to be kept constant except Cd concentration (0, 5 10 and 15 mg kg-1). Symptoms of Cd stress were stronger in basil (Ocimum basilicum) than kale (Brassica oleracea), and were easier to detect using HSI. Several VIs detected Cd stress in basil, but only the anthocyanin reflectance index (ARI) detected all levels of Cd stress in both crop species. The biochar amendment did reduce Cd uptake, especially at low Cd concentrations in kale which took up more Cd than basil. Again, the ARI index was the most effective in quantifying changes in plant stress mediated by the biochar. These results indicate that the biochar evaluated in this study has potential to reduce Cd bioavailability in soil, and HSI could be further developed to identify rates that can best achieve this benefit. The technology also may be helping in elucidating mechanisms mediating how biochar can influence plant growth and stress responses.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Humanos , Imageamento Hiperespectral , Solo , Poluentes do Solo/análise , Tecnologia
13.
Environ Pollut ; 292(Pt A): 118367, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655696

RESUMO

Scientific literature is full of works studying the removal of different pollutants from water through different Advanced Oxidation Processes (AOPs). Many of them only suggest it is reused for agricultural purposes or for small crops in pots. This study is based on the reuse of reclaimed agricultural wastewater contaminated with four insecticides (chlorantraniliprole, imidacloprid, pirimicarb and thiamethoxam) for growing lettuce in field conditions. First, solar photocatalysis with TiO2/Na2S2O8 was used on a pilot plant in a sunny area (Murcia, SE of Spain) as an environmentally friendly technology to remove insecticide residues and their main reaction intermediates from contaminated water. The necessary fluence (H, kJ m-2) to accomplish 90% removal (H90) ranged from 0.12 to 1212 kJ m-2 for pirimicarb and chlorantraniliprole, respectively. Only six (derived from imidacloprid, pirimicarb and thiametoxam) of 18 transformation intermediate products studied were detected in reclaimed water during the photoperiod (2000 kJ m-2 of accumulated UVA radiation) although all of them were totally photodegraded after a fluence of 1250 kJ m-2. Secondly, reclaimed agro-wastewater was used to irrigate two lettuce crops grown under greenhouse conditions and under agricultural field conditions. In no cases, insecticide residues nor their TIPs were noticed above their respective LOQs (limits of quantification) in soil and lettuce samples (between 0.03 and 0.04 µg kg-1 for pirimicarb and 2.49 and 2.23 µg kg-1 for thiamethoxam, respectively) when they were irrigated with reclaimed water, while residues of the four insecticides and some of their intermediates were found in soil and lettuce by the end of cultivation when they were irrigated with non-reclaimed contaminated water. According to the results, this technology can be applied in a sustainable way, mainly in areas with water scarcity and high solar radiation, contributing to water utilisation in drought areas and the use of renewable energy.


Assuntos
Inseticidas , Resíduos de Praguicidas , Irrigação Agrícola , Alface , Tecnologia , Águas Residuárias
14.
Chemosphere ; 287(Pt 2): 132186, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34509759

RESUMO

At present, water pollution and demand for clean energy are most pressing global issues. On a daily basis, huge quantity of organic wastes gets released into the water ecosystems, causing health related problems. The need-of-the-hour is to utilize proficient and cheaper techniques for complete removal of harmful organic contaminants from water. In this regard, microbial fuel cell (MFC) has emerged as a promising technique, which can produce useful electrical energy from organic wastes and decontaminate polluted water. Herein, we have systematically reviewed recently published results, observations and progress made on the applications of MFCs in degradation of organic contaminants, including organic synthetic dyes, agro pollutants, health care contaminants and other organics (such as phenols and their derivatives, polyhydrocarbons and caffeine). MFC-based hybrid technologies, including MFC-constructed wetland, MFC-photocatalysis, MFC-catalysis, MFC-Fenton process, etc., developed to obtain high removal efficiency and bioelectricity production simultaneously have been discussed. Further, this review assessed the influence of factors, such as nature of electrode catalysts, organic pollutants, electrolyte, microbes and operational conditions, on the performance of pristine and hybrid MFC reactors in terms of pollutant removal efficiency and power generation simultaneously. Moreover, the limitations and future research directions of MFCs for wastewater treatment have been discussed. Finally, a conclusive summary of the findings has been outlined.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Ecossistema , Eletricidade , Eletrodos , Tecnologia , Águas Residuárias
15.
Chemosphere ; 287(Pt 3): 132248, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34543899

RESUMO

The conflict between climate change and growing global energy demand is an immense sustainability challenge that requires noteworthy scientific and technological developments. Recently the importance of microbial fuel cell (MFC) on this issue has seen profound investigation due to its inherent ability of simultaneous wastewater treatment, and power production. However, the challenges of economy-related manufacturing and operation costs should be lowered to achieve positive field-scale demonstration. Also, a variety of different field deployments will lead to improvisation. Hence, this review article discusses the possibility of integration of MFC technology with various technologies of recent times leading to advanced sustainable MFC technology. Technological innovation in the field of nanotechnology, genetic engineering, additive manufacturing, artificial intelligence, adaptive control, and few other hybrid systems integrated with MFCs is discussed. This comprehensive and state-of-the-art study elaborates hybrid MFCs integrated with various technology and its working principles, modified electrode material, complex and easy to manufacture reactor designs, and the effects of various operating parameters on system performances. Although integrated systems are promising, much future research work is needed to overcome the challenges and commercialize hybrid MFC technology.


Assuntos
Fontes de Energia Bioelétrica , Inteligência Artificial , Eletricidade , Eletrodos , Tecnologia , Águas Residuárias
16.
Sci Total Environ ; 805: 150418, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818816

RESUMO

Carcinogenic N, N-Dimethylnitrosamine (NDMA) has been reported to generate significantly during ozonation of fuel additive unsymmetrical dimethylhydrazine (UDMH), the combined ozone/Peroxy-Monosulfate (O3/PMS) technology was tried for reducing its formation in this study. The influence of PMS dosages, ozone concentrations, pH, Br- and humic acid (HA) on NDMA formation from UDMH were investigated. In addition, the reduction mechanisms were explored by intermediates identification and Gaussian calculation. The results demonstrated that O3/PMS technology was effective on NDMA reduction, reaching an efficiency of 81% with 80 µM PMS. Higher NDMA reduction rates were achieved by O3/PMS with increasing pH within the scope of research (from 5 to 9), achieving a maximum of 69.9% at pH 9. The presence of bromide ion facilitated NDMA generation during ozonation, but the reduction efficiency by O3/PMS slightly improved from 66.3% to 70.6%. The presence of HA reduced NDMA formation in O3/PMS system. The contribution of SO4•- on NDMA reduction accounted for ~64%, which was higher than that of •OH (41.4%); however, its promotion role on conversing UDMH to NDMA was lower than O3. Therefore, the technology could reduce NDMA formation effectively. In addition, the results of Gaussian calculation manifested that the N atom in -NH2 group of UDMH was easily attacked not only by •OH but also by O3, so it is the key path that determines final NDMA formation. This study would provide reference for reducing NDMA formation during ozonation of UDMH-containing water matrixes.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Dimetilidrazinas , Dimetilnitrosamina , Oxirredução , Tecnologia , Poluentes Químicos da Água/análise
17.
Appl Ergon ; 98: 103552, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418762

RESUMO

The practical reality and feasibility of Human-Autonomy Teaming (HAT) are analyzed from an experts' point of view, considering current possibilities of various fields. We aim to find out whether the topics discussed scientifically are also practically relevant, to identify requirements for successful HAT, and to derive further research needs. Intensive guideline-based interviews with 28 experts from different industries are conducted and compared to the results of our literature review. The topics discussed scientifically are also practically relevant. Today's technology is far from being able to meet the practical requirements for successful HAT, as postulated in the literature. Contrary to the Human-Automation Interaction, the concept of HAT is hardly applied in the field. Identified key aspects for successful HAT are converted into a model. Future research needs with practical impact exist especially in the area of heterarchy, system knowledge, anticipation of mental states, and consideration of human needs and emotions.


Assuntos
Tecnologia , Automação , Humanos
18.
J Pharm Biomed Anal ; 207: 114394, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34607167

RESUMO

Process chromatography is commonly used for purification of therapeutic proteins. Most chromatography skids that are used in such operations utilize single ultraviolet (UV) absorbance for monitoring and quantification of protein content. While the signal from such UV measurement is linear with respect to protein concentration at low values of protein concentrations, as the concentration increases across an eluting product peak, it goes manifold over the linear range, resulting in saturation of the UV signal and as a result incomplete quantification of the protein concentration. This can hamper our ability to decide on where to pool the process chromatography peak. It is evident that a simple, fast, and cost-effective methodology for on-line estimation of protein concentration is the need of the hour. In this paper, a multi-wavelength UV-based approach has been proposed for dilution-free on-line concentration estimation in the range of 0.8-100 g/L. Stable absorbance regions are picked up in the proposed approach from the multi-wavelength UV spectra, thereby offering a solution to the problem of saturation and non-linearity of the UV signal that is otherwise observed at higher concentrations. Further, using chemometrics tools such as principal component analysis (PCA) and partial least squares (PLS), the model has been validated for rapid quantification of protein concentration from the spectra. The predictions from the model were comparable to values measured using an existing UV-based offline method with an R2 of>98%. The proposed process analytical technology (PAT) tool was successfully tested online and exhibited<8% variability and could effectively be used from capture to formulation to enable dilution-free online concentration measurement of IgG. The proposed tool is a simple, low-cost alternative to other methods and could enable integrated/continuous operations throughout the downstream train.


Assuntos
Cromatografia , Tecnologia , Análise dos Mínimos Quadrados , Análise de Componente Principal , Proteínas
19.
Food Chem ; 366: 130566, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303208

RESUMO

This study investigated the effect of LED illumination on the inactivation of Rhizopus stolonifer and Botrytis cinerea on strawberries and physicochemical properties of the strawberries. Twelve days of illumination resulted in an antifungal effect of 3.4 and 1.9 log CFU/g on R. stolonifer and B. cinerea respectively. The illumination caused no significant effect (P ≥ 0.05) on the mass, color and texture of strawberries. Furthermore, total phenolic content, trolox equivalent antioxidant capacity and anthocyanin content of the illuminated strawberries significantly increased (P < 0.05). Vitamin C content of illuminated strawberries was only significantly different (P < 0.05) from the control starting from Day 9. These results show that 405 nm LED illumination can potentially complement temperature and humidity control in preventing mold spoilage and preserving physicochemical quality of strawberries during refrigerated storage.


Assuntos
Fragaria , Botrytis , Frutas , Rhizopus , Tecnologia
20.
Food Chem ; 367: 130647, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343806

RESUMO

To increase the reuse of food residues, multifrequency countercurrent ultrasonic treatment was used to enhance the extraction yield of defatted mulberry seed protein (DMSP), and sweet-flavored peptides from DMSP hydrolysates (DMSPHs) were obtained for the first time. Here, the DMSP yield was increased by 16.2% (p < 0.05) while the power density was halved compared with single-frequency ultrasonic treatment. According to Fick's second law, a molecular diffusion dynamics model was developed to be suitable for predicting the pretreatment conditions (R2 = 0.9785). After that, the sweet-flavored peptides were purified and the main amino acid sequences were identified, i.e., FEGGSIE, KDFPEAHSQAT, and GSQPAEGAK. Moreover, the antioxidant activities of DMSPHs prepared with tri-frequency treatment was higher than 60%. The DMSPHs retarded the growth of HepG2 cells in vitro, increased the necrotic quadrant (Q1-UL), and extended the S phase. Therefore, the sweet-flavored peptides prepared from DMSPHs using the multifrequency-ultrasonic treatment have significant biological activities.


Assuntos
Morus , Antioxidantes , Peptídeos , Sementes , Tecnologia , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...