Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 136: 108747, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059254

RESUMO

Tenacibaculosis caused by Tenacibaculum dicentrarchi is the second most important bacterial disease that affects the Chilean salmon industry. The impacted fish show severe external gross skin lesions on different areas of the body. The external mucus layer that covers fish skin contains numerous immune substances that act as one of the main defense barriers against microbial colonization and invasions by potential pathogens. The present in vitro study aimed to evaluate and elucidate the role of the external mucus layer in the susceptibility of Atlantic salmon (Salmo salar) to three Chilean T. dicentrarchi strains and the type strain. For this, mucus collected from healthy and diseased (i.e., with T. dicentrarchi) Atlantic salmon were used, and various antibacterial and inflammatory parameters were analysed. The T. dicentrarchi strains were attracted to the mucus of Atlantic salmon regardless of health status. All four strains adhered to the skin mucus and very quickly grew using the mucus nutrients. Once infection was established, different mucosal defense components were activated in the fish, but the levels of bactericidal activity and of other enzymes were insufficient to eliminate T. dicentrarchi. Alternatively, this pathogen may be able to neutralize or evade these mechanisms. Therefore, the survival of T. dicentrarchi in fish skin mucus could be relevant to facilitate the colonization and subsequent invasion of hosts. The given in vitro results suggest that greater attention should be given to fish skin mucus as a primary defense against T. dicentrarchi.


Assuntos
Doenças dos Peixes , Salmo salar , Tenacibaculum , Animais , Pele , Muco , Nível de Saúde
2.
J Fish Dis ; 46(5): 517-526, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36727560

RESUMO

Tenacibaculosis is an emerging disease that severely affects salmonid farming in Chile, producing high mortalities and causing great economic losses. This work describes a novel PCR assay for the specific detection of Tenacibaculum piscium, a species recently described and identified in tenacibaculosis outbreaks in Norway and Chile. The designed primers amplified a 678-bp fragment of the peptidase gene (peptidase M23 family) from T. piscium. This method is specific for T. piscium; no other chromosomal DNA amplification products were obtained for other Tenacibaculum species. In pure cultures, the PCR assay detected up to 500 pg of DNA, or the equivalent of 2.44 ± 0.06 × 104 CFU/ml. For seeded fish samples (i.e., gills, liver, kidney, and mucus), the sensitivity limit was 4.88 ± 0.11 × 106 CFU/g, sufficient to detect T. piscium in acute infections in fish. Notably, this sensitivity level was 100-fold lower for DNA extracted from mucus samples. As compared to other existing methodologies (e.g., gene sequencing), the PCR approach described in this work allowed for the easiest detection of T. piscium in mucus samples obtained from challenged fish, an important outcome considering that the identification of this bacterium is difficult. Our results indicate that the designed specific primers and PCR method provide a rapid and specific diagnosis of T. piscium.


Assuntos
Doenças dos Peixes , Salmonidae , Tenacibaculum , Animais , Tenacibaculum/genética , Doenças dos Peixes/microbiologia , Reação em Cadeia da Polimerase/métodos , Primers do DNA , DNA
3.
Arch Microbiol ; 205(1): 43, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575332

RESUMO

Black-spot shell disease decreases pearl quality and threatens pearl oyster survival. Establishment of a rapid, specific, and sensitive assay to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease is of commercial importance. We developed a rapid, specific, and highly sensitive loop-mediated isothermal amplification (LAMP) assay to detect Tenacibaculum sp. Pbs-1 in Akoya pearl oysters Pinctada fucata. A set of five specific primers (two inner, two outer, and a loop) were designed based on the 16S-23S internal spacer region of strain Pbs-1. The optimum reaction temperature was 63 °C, and concentrations of the inner and loop primers were 1.4 and 1.0 µM, respectively. The LAMP product can be detected using agarose gel electrophoresis, and the color change in the reaction tube can be detected visually (by the naked eye) following the addition of malachite green. Our assay proved to be specific for strain Pbs-1, with no cross-reactivity with five other species of Tenacibaculum. The detection limit of the LAMP assay at 35 min is 50 pg, and at 60 min it is 5 fg. We evaluated the LAMP assay using diseased and healthy pearl oysters. The results demonstrate the suitability and simplicity of this test for rapid field diagnosis of strain Pbs-1.


Assuntos
Pinctada , Tenacibaculum , Animais , Pinctada/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Primers do DNA , Sensibilidade e Especificidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-35943445

RESUMO

Two Gram-stain-negative, aerobic and yellow-pigmented bacterial strains, designated K20-16T and MSW2, were isolated from a marine red alga (Chondrus species) and seawater, respectively. Both strains were oxidase-positive, weakly catalase-positive and non-flagellated rods with gliding motility. Menaquinone-6 was detected as the sole isoprenoid quinone in both strains. Iso-C15:0, iso-C15:0 3-OH, iso-C15:1 G, C15:1 ω6c and summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c) were identified in both strains as major fatty acids. Phosphatidylethanolamine was not identified in strain K20-16T, but it was identified in strain MSW2. The genomic DNA G+C contents of strains K20-16T and MSW2 were 30.5 and 30.7 %, respectively. Strains K20-16T and MSW2 shared 99.7% 16S rRNA gene sequence similarity, 97.7% average nucleotide identity (ANI), and 80.5% digital DNA-DNA hybridization (DDH) value, indicating that they are the same species. Phylogenetic analyses based on 16S rRNA gene and 92 concatenated core protein sequences revealed that strains K20-16T and MSW2 formed a phylogenic lineage within the genus Tenacibaculum and were most closely related to Tenacibaculum todarodis LPB0136T with 98.3 and 98.0% 16S rRNA gene sequence similarities, respectively. ANI and digital DDH values between strains K20-16T and MSW2 and other type strains were less than 91.4 and 43.1 %, respectively. Based on the phenotypic, chemotaxonomic and molecular features, strains K20-16T and MSW2 represent a novel species of the genus Tenacibaculum, for which the name Tenacibaculum aquimarinum sp. nov. is proposed. The type strain is K20-16T (=KACC 22 342T=JCM 35 023T).


Assuntos
Tenacibaculum , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
5.
Environ Microbiol ; 24(10): 4505-4518, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35706128

RESUMO

Bacteria within the phylum Bacteroidota (Bacteroidetes) are known to cause devastating and widespread disease outbreaks in marine eukaryotic hosts. However, with few pathogens described in detail, their prevalence and virulence strategies remain largely unknown. Here, we systematically reviewed the literature to evaluate the current understanding of Bacteroidota that cause disease in marine hosts. Isolates affiliated with the genera Tenacibaculum and Aquimarina (Flavobacteriaceae) were the most widely reported and characterized pathogens. Although cultured isolates were predominantly Flavobacteriia, culture-independent studies also found classes Bacteroidia, Cytophagia and Sphingobacteriia associated with disease. We found that pathogenic marine Bacteroidota largely conformed to an opportunistic lifestyle but could also act as secondary pathogens or were involved in polymicrobial diseases. Many diseases were also associated with an environmental stressor, especially those affecting coral, macroalgae and fish. Key virulence traits included the production of adhesins and host tissue-degrading enzymes. Overall, the nature of disease involving Bacteroidota pathogens appears to be an outcome of complex host-pathogen-environment interactions; however, our understanding of virulence remains limited by the lack of functional characterization studies. This is concerning as Bacteroidota have the potential to emerge as a serious threat to marine ecosystems and aquaculture industries, driven by global changes in ocean conditions.


Assuntos
Antozoários , Doenças dos Peixes , Flavobacteriaceae , Tenacibaculum , Animais , Ecossistema , Doenças dos Peixes/microbiologia , Oceanos e Mares
6.
Transbound Emerg Dis ; 69(5): e3305-e3315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35674219

RESUMO

Tenacibaculum piscium, a gram-negative bacterium isolated from the skin ulcers of sea-farmed fish, has only been described in Norway. In the present study, we examined 16 Chilean Tenacibaculum isolates recovered from different organs in moribund and dead Atlantic salmon (Salmo salar), Rainbow trout (Oncorhynchus mykiss) and Coho salmon (Oncorhynchus kisutch) cultured at different fish farms between 2014 and 2018. The present study applied biochemical, phenotypic, fatty acid and whole-genome sequence-based analyses to confirm the taxonomic status of the Chilean isolates. The obtained results are the first to confirm the presence of T. piscium in Chile and in Coho salmon, thus extending the recognized geographical and species distribution of this bacterium. Subsequent bath-challenge assays in Atlantic salmon utilizing three T. piscium isolates obtained from different hosts resulted in low cumulative mortality (i.e. 0-35%), even after exposure to an unnaturally high concentration of bacterial cells (i.e. > 107 cells/ml). However, scale loss and frayed fins were observed in dead fish. In silico whole-genome analysis detected various genes associated with iron acquisition, encoding of the type IX secretion system and cargo proteins, resistance to tetracycline and fluoroquinolones and stress responses. These data represent an important milestone towards a better understanding on the genomic repertoire of T. piscium.


Assuntos
Doenças dos Peixes , Oncorhynchus kisutch , Oncorhynchus mykiss , Tenacibaculum , Animais , Chile/epidemiologia , Ácidos Graxos , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Fluoroquinolonas , Genômica , Ferro , Tenacibaculum/genética , Tetraciclinas , Virulência/genética
7.
Transbound Emerg Dis ; 69(5): e2876-e2888, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731505

RESUMO

Tenacibaculum maritimum is a devastating bacterial pathogen affecting a large variety of marine fish species. It is responsible for significant economic losses in aquaculture farms worldwide. Different typing methods have been proposed to analyse bacterial diversity and population structure. Serological heterogeneity has been observed and up to four different serotypes have been described so far. However, the underlying molecular factors remain unknown. By combining conventional serotyping and genome-wide association study, we identified the genomic loci likely involved in the O-antigen biosynthesis. This finding allowed the development of a robust multiplex PCR-based serotyping scheme able to detect subgroups within each serotype and therefore performs better than conventional serotyping. This scheme was successfully applied to a large number of isolates from worldwide origin and retrieved from a large variety of fish species. No obvious correlations were observed between the mPCR-based serotype and the host species or the geographic origin of the isolates. Strikingly, the distribution of mPCR-based serotypes does not follow the core genome phylogeny. Nevertheless, this simple and cost-effective mPCR-based serotyping method could be useful for different applications such as population structure analysis, disease surveillance, vaccine formulation and efficacy follow-up.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Tenacibaculum , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Estudo de Associação Genômica Ampla/veterinária , Genômica , Família Multigênica , Reação em Cadeia da Polimerase Multiplex/veterinária , Antígenos O/genética , Sorotipagem/métodos , Sorotipagem/veterinária , Tenacibaculum/genética
8.
J Nat Prod ; 85(4): 1039-1051, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35416664

RESUMO

The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 µg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 µg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 µg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.


Assuntos
Alcaloides , Anti-Infecciosos , Tenacibaculum , Alcaloides/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Ecossistema , Escherichia coli , Flavobacterium , Testes de Sensibilidade Microbiana , Fenetilaminas
9.
J Fish Dis ; 45(6): 795-799, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35262919

RESUMO

Tenacibaculosis caused by Tenacibaculum dicentrarchi is the third most important bacterial fish infection affecting the Chilean salmon industry. Losses to this disease are most frequently controlled by treatments with florfenicol and oxytetracycline. However, recent tenacibaculosis outbreaks were controlled through the extra-label, oral administration of tiamulin, resulting in high treatment efficiency. In this study, we present an analysis of susceptibility patterns of 32 T. dicentrarchi isolates and the type strain CECT 7612T to tiamulin by determining the minimum inhibitory concentrations (MICs) according to the procedures recommended by the Clinical and Laboratory Standard Institute, but fixing incubation temperature to the more appropriate for the growth of T. dicentrarchi (18 ºC). The MICs of the T. dicentrarchi isolates were unimodally distributed (0.06-1.0 µg/ml range), while the CECT 7612T strain presented an MIC of 0.5 µg/ml. Calculations using Normalized Resistance Interpretation provided epidemiological cut-off values of ≤1.0 µg/ml, with the 33 T. dicentrarchi classified as wild type. In Chile, tiamulin is authorized for use in other livestock species, but application in salmonids is extra-label. Our presented in vitro results suggest that tiamulin is a viable alternative to florfenicol, specifically as tiamulin requires comparatively lower concentrations to inhibit T. dicentrarchi. Considering that tiamulin is also exclusively for veterinary use, is classified as "least important" by the World Health Organization and has not resulted in the development of bacterial resistance, pharmaceutical companies should be requested to register tiamulin and provide alternative antimicrobial treatments for the salmonid industry.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Salmonidae , Tenacibaculum , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diterpenos , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Testes de Sensibilidade Microbiana
10.
Appl Environ Microbiol ; 88(6): e0241821, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080904

RESUMO

Fish-pathogenic bacteria of the Tenacibaculum genus are a serious emerging concern in modern aquaculture, causing tenacibaculosis in a broad selection of cultured finfish. Data describing their virulence mechanisms are scarce and few means, antibiotic treatment aside, are available to control their proliferation in aquaculture systems. We genome sequenced a collection of 19 putative Tenacibaculum isolates from outbreaks at two aquaculture facilities and tested their susceptibility to treatment with tropodithietic acid (TDA)-producing Roseobacter group probiotics. We found that local outbreaks of Tenacibaculum can involve heterogeneous assemblages of species and strains with the capacity to produce multiple different virulence factors related to host invasion and infection. The probiotic Phaeobacter piscinae S26 proved efficient in killing pathogenic Tenacibaculum species such as T. maritimum, T. soleae, and some T. discolor strains. However, the T. mesophilum and T. gallaicum species exhibit natural tolerance toward TDA and are hence not likely to be easily killed by TDA-producing probiotics. Tolerance toward TDA in Tenacibaculum is likely involving multiple inherent physiological features pertaining to electron and proton transport, iron sequestration, and potentially also drug efflux mechanisms, since genetic determinants encoding such features were significantly associated with TDA tolerance. Collectively, our results support the use of TDA producers to prevent tenacibaculosis; however, their efficacy is likely limited to some Tenacibaculum species. IMPORTANCE A productive and sustainable aquaculture sector is needed to meet the UN sustainable development goals and supply the growing world population with high-protein food sources. A sustainable way to prevent disease outbreaks in the industry is the application of probiotic bacteria that can antagonize fish pathogens in the aquaculture systems. TDA-producing Roseobacter group probiotics have proven efficient in killing important vibrio pathogens and protecting fish larvae against infection, and yet their efficacy against different fish pathogenic species of the Tenacibaculum genus has not been explored. Therefore, we tested the efficacy of such potential probiotics against a collection of different Tenacibaculum isolates and found the probiotic to efficiently kill a subset of relevant strains and species, supporting their use as sustainable disease control measure in aquaculture.


Assuntos
Doenças dos Peixes , Probióticos , Roseobacter , Tenacibaculum , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Peixes/microbiologia , Tenacibaculum/genética
11.
Sci Total Environ ; 815: 152909, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998779

RESUMO

The microbiologically influenced corrosion of 304 stainless steel in the presence of a marine biofilm-forming bacterium Tenacibaculum mesophilum D-6 was systematically investigated by means of electrochemical techniques and surface analyses to reveal the effect of the selective attachment and adsorption of the biofilms on the passivity breakdown of the stainless steel. It was found that the T. mesophilum D-6 was electroactive and could oxidize low valent cations and metal, facilitating the local dissolution of the passive film and the substrate in the film defects, nearly doubling the surface roughness. The biofilms of T. mesophilum D-6 with mucopolysaccharide secreta and chloride ions tended to preferentially adsorb at the defects of the passive film on the steel, yielding non-homogeneous microbial aggregates and local Cl- enrichment there. The adsorption of the bacteria and chloride ions reduced the thickness of passive film by 23.9%, and generate more active sites for pitting corrosion on the passive film and more semiconducting carrier acceptors in the film. The maximum current density of the 304 SS in the presence of T. mesophilum D-6 was over one order of magnitude higher than that in the sterile medium, and the largest pit was deepened 3 times.


Assuntos
Aço Inoxidável , Tenacibaculum , Biofilmes , Corrosão , Propriedades de Superfície
12.
J Fish Dis ; 45(4): 523-534, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35001372

RESUMO

Skin conditions associated with Tenacibaculum spp. constitute a significant threat to the health and welfare of sea-farmed Atlantic salmon (Salmo salar L.) in Norway. Fifteen presumptive tenacibaculosis outbreaks distributed along the Norwegian coast during the late winter and spring of 2018 were investigated. Bacteriological culture confirmed the presence of Tenacibaculum spp. Seventy-six isolates cultured from individual fish were selected and subjected to whole-genome sequencing and MALDI-TOF MS analysis. Average nucleotide identity and MALDI-TOF analyses confirmed the presence of T. finnmarkense and T. dicentrarchi, with further division of T. finnmarkense into genomovars (gv.) finnmarkense and ulcerans. Core genome multilocus sequence typing (cgMLST) and single-nucleotide polymorphism (SNP) analyses identified the presence of a genetically conserved cluster of gv. finnmarkense isolates against a background of relatively genetically diverse gv. finnmarkense and gv. ulcerans isolates in 13 of the 15 studied cases. This clustering strongly suggests a link between T. finnmarkense gv. finnmarkense and development of clinical tenacibaculosis in sea-farmed Norwegian salmon in the late winter and spring. Analysis of 25 Tenacibaculum isolates collected during the spring of 2019 from similar cases identified a similar distribution of genotypes. Low water temperatures were common to all cases, and most incidences involved relatively small fish shortly after sea transfer, suggesting that these fish are particularly predisposed to Tenacibaculum infection.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Salmo salar , Tenacibaculum , Animais , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/veterinária , Água do Mar , Tenacibaculum/genética , Água
13.
Sci Rep ; 12(1): 783, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039517

RESUMO

The sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.


Assuntos
Copépodes/genética , Copépodes/microbiologia , Ectoparasitoses/genética , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Genômica/métodos , Interações Hospedeiro-Parasita , Microbiota/genética , Salmão/parasitologia , Animais , Chile , Copépodes/patogenicidade , Genoma/genética , Tenacibaculum/patogenicidade
14.
Front Cell Infect Microbiol ; 12: 1068000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683696

RESUMO

Tenacibaculosis occurs due to the marine bacterial pathogen Tenacibaculum maritimum. This ulcerative disease causes high mortalities for various marine fish species worldwide. Several external clinical signs can arise, including mouth erosion, epidermal ulcers, fin necrosis, and tail rot. Research in the last 15 years has advanced knowledge on the traits and pathogenesis mechanisms of T. maritimum. Consequently, significant progress has been made in defining the complex host-pathogen relationship. Nevertheless, tenacibaculosis pathogenesis is not yet fully understood. Continued research is urgently needed, as demonstrated by recent reports on the re-emerging nature of tenacibaculosis in salmon farms globally. Current sanitary conditions compromise the development of effective alternatives to antibiotics, in addition to hindering potential preventive measures against tenacibaculosis. The present review compiles knowledge of T. maritimum reported after the 2006 review by Avendaño-Herrera and colleagues. Essential aspects are emphasized, including antigenic and genomic characterizations and molecular diagnostic procedures. Further summarized are the epidemiological foundations of the T. maritimum population structure and elucidations as to the virulence mechanisms of pathogenic isolates, as found using biological, microbiological, and genomic techniques. This comprehensive source of reference will undoubtable serve in tenacibaculosis prevention and control within the marine fish farming industry. Lastly, knowledge gaps and valuable research areas are indicated as potential guidance for future studies.


Assuntos
Doenças dos Peixes , Tenacibaculum , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Tenacibaculum/genética , Peixes , Fenótipo
15.
PLoS One ; 16(10): e0259215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710187

RESUMO

Tenacibaculosis is a bacterial ulcerative disease affecting marine fish and represents a major threat to aquaculture worldwide. Its aetiological agents, bacteria belonging to the genus Tenacibaculum, have been present in Norway since at least the late 1980's and lead to regular ulcerative outbreaks and high mortalities in production of farmed salmonids. Studies have shown the presence of several Tenacibaculum species in Norway and a lack of clonality in outbreak-related strains, thus preventing the development of an effective vaccine. Hence, a thorough examination of the bacterial diversity in farmed fish presenting ulcers and the geographical distribution of the pathogens should provide important insights needed to strengthen preventive actions. In this study, we investigated the diversity of Tenacibaculum strains isolated in 28 outbreaks that occurred in Norwegian fish farms in the period 2017-2020. We found that 95% of the 66 strains isolated and characterized, using an existing MultiLocus Sequence Typing system, have not previously been identified, confirming the high diversity of this genus of bacteria in Norway. Several of these Tenacibaculum species seem to be present within restricted areas (e.g., Tenacibaculum dicentrarchi in western Norway), but phylogenetic analysis reveals that several of the strains responsible of ulcerative outbreaks were isolated from different localities (e.g., ST- 172 isolated from northern to southern parts of Norway) and/or from different hosts. Understanding their reservoirs and transmission pathways could help to address major challenges in connection with prophylactic measures and development of vaccines.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Filogenia , Polimorfismo Genético , Tenacibaculum/genética , Animais , Tenacibaculum/classificação , Tenacibaculum/patogenicidade
16.
J Fish Dis ; 44(11): 1843-1860, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34369594

RESUMO

Tenacibaculum dicentrarchi is an emerging pathogen for salmonid cultures and red conger eel (Genypterus chilensis) in Chile, causing high economic losses not only in Chile but also to the global salmon industry. Infected fish show severe gross skin lesions that are sometimes accompanied by bone exposure. Despite pathogenicity demonstrated by Koch's postulates, no knowledge is currently available regarding the virulence machinery of T. dicentrarchi strains. Comparisons between the genome sequences of the eight T. dicentrarchi strains obtained from G. chilensis and Atlantic salmon (Salmo salar) provide insights on the existence of genomic diversity within this bacterium. The T. dicentrarchi type strain 3509T was used as a reference genome. Depending on the T. dicentrarchi strain, the discovered diversity included genes associated with iron acquisition mechanisms, copper homeostasis encoding, resistance to tetracycline and fluoroquinolones, pathogenic genomic islands and phages. Interestingly, genes encoding the T9SS membrane protein PorP/SprF were retrieved in all of the analysed T. dicentrarchi strains, regardless of the host fish (i.e. red conger eel or Atlantic salmon). However, the T6SS core component protein VgrG was identified in only one Atlantic salmon strain. Three types of peptidase genes and proteins associated with quorum sensing were detected in all of the T. dicentrarchi strains. In turn, all eight strains presented a total of 17 proteins associated with biofilm formation, which was previously confirmed through physiological studies. This comparative analysis will help elucidate and describe the genes and pathways that are likely involved in the virulence process of T. dicentrarchi. All or part of these predicted genes could aid the pathogen during the infective process in fish, making further physiological research necessary for clarification.


Assuntos
Doenças dos Peixes/microbiologia , Genoma Bacteriano , Tenacibaculum/genética , Virulência , Animais , Aquicultura , Chile , Enguias/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Salmo salar/microbiologia
17.
J Fish Dis ; 44(10): 1481-1490, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34061372

RESUMO

The present study reports on the first isolation of Tenacibaculum maritimum in rainbow trout (Oncorhynchus mykiss) farmed in Chile. In March 2020, two cages raising rainbow trout (~250 g) in the Los Lagos Region suffered a disease outbreak. In total, 17,554 fish died (3.5%-4.8% accumulated mortality). Microbiological analysis of the diseased fish obtained two representative isolates (i.e. Tm-035 and Tm-036). These were obtained from the external gross skin lesions-typical of tenacibaculosis-of two fish. Phenotyping, PCR tests and sequencing of the 16S rRNA and housekeeping genes confirmed the isolates as T. maritimum. The pathogenic potential of Tm-035 was further assessed by bath challenging Atlantic salmon (Salmo salar), which killed 70 ± 15% of fish within 11 days. Dead fish presented the same external clinical signs as did the farmed rainbow trout specimens. This research further broadens the known host distribution of this pathogen. Furthermore, the virulence experiments demonstrated that T. maritimum does not have a specific host. Additional studies are needed to evaluate the risk of T. maritimum for the O. mykiss farming industry.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Oncorhynchus mykiss , Tenacibaculum/isolamento & purificação , Animais , Chile , Infecções por Flavobacteriaceae/microbiologia
18.
Fish Shellfish Immunol ; 114: 330-339, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015481

RESUMO

The external mucus layer that covers fish skin contains numerous immune substances scarcely studied that act as the first line of defence against a broad spectrum of pathogens. This study aimed to characterize and describe for the first time several humoral immune defence parameters in the skin mucus of the European eel (Anguilla anguilla) after intraperitoneal injection with Vibrio anguillarum or Tenacibaculum soleae. This study evaluated several immune-related enzymes and bactericidal activity against fish pathogenic bacteria in the skin mucus of European eels at 24, 48, and 72 h post-challenge. The results demonstrated that European eel skin mucus showed significant increments in peroxidase and lysozyme activity at 48 and 72 h after V. anguillarum challenge, compared to other experimental groups. In the case of antiprotease activity, an increase was observed at 24 h in the skin mucus of fish challenged with V. anguillarum compared to unchallenged fish, while this activity was undetected at 48 and 72 h. In contrast, protease activity had decreased at 48 and 72 h in the skin mucus of fish challenged with V. anguillarum compared to the unchallenged group. Regarding bactericidal activity, a high growth capacity of T. soleae was observed in the skin mucus of all experimental groups. Interestingly, the skin mucus from fish challenged with V. anguillarum exhibited increased bactericidal activity against this bacterium at 48 h, compared to unchallenged fish. Finally, severe histopathological alterations were observed in the gills and liver at the end of the trial (72 h), whereas the skin showed only an overspread presence of goblet cells in the challenged fish compared to unchallenged fish. The present results may give new insights into the mucosal immune system of this primitive species with potential applications in aquaculture.


Assuntos
Anguilla , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Imunidade nas Mucosas/fisiologia , Tenacibaculum , Vibrio , Animais , Infecções por Flavobacteriaceae/tratamento farmacológico , Infecções por Flavobacteriaceae/microbiologia , Pele/imunologia , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/veterinária
20.
J Appl Microbiol ; 131(4): 1848-1857, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33905598

RESUMO

AIMS: We performed in silico analysis of CRISPRcas loci from Tenacibaculum maritimum, evaluated spoligotyping as a subtyping method and genotyped uncharacterized Turkish isolates from European sea bass by multilocus sequence typing (MLST). METHODS AND RESULTS: Spoligotyping was performed with primers designed to allow amplification and sequencing of whole CRISPR-arrays from 23 T. maritimum isolates. Twenty-three completed/draft genomes were also downloaded from the NCBI database and analysed. MLST of Turkish isolates was achieved with a well-established 7-gene scheme. Tenacibaculum maritimum genomes carry a structurally complete but partially defective class II CRISPRcas locus due to known amino acid substitutions in encoded Cas9 proteins. Our spacer identification suggests that the host range of bacteriophage P2559Y and Vibrio phage nt-1 include T. maritimum and that the most recurrent infection recorded by isolates has been with Tenacibaculum phage PTm5. Thirty-eight isolates with this CRISPRcas locus belonged to 25 spoligotypes and to 24 sequence types by MLST, respectively. According to MLST, T. maritimum isolates from Turkey are most related to previously defined sequence types ST3, ST40 and ST41 isolates from Spain, Malta and France. CONCLUSIONS: The evaluated spoligotyping offers discriminatory power comparable to MLST. SIGNIFICANCE AND IMPACT OF THE STUDY: Spoligotyping has potential as a quick, easy and cheap tool for subtyping of T. maritimum isolates.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Tenacibaculum , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Tipagem de Sequências Multilocus , Tenacibaculum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...