Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Microbiol Methods ; 223: 106986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969181

RESUMO

Black-spot shell disease is an unresolved disease that decreases pearl quality and threatens pearl oyster survival. In previous studies, the bacterium Tenacibaculum sp. strain Pbs-1 was isolated from diseased Akoya pearl oysters Pinctada fucata, and a rapid, specific, and sensitive loop-mediated isothermal amplification (LAMP) assay for detecting this pathogen was established. This technology has considerable potential for routine diagnosis of strain Pbs-1 in oyster hatcheries and/or pearl farms; therefore, it is vital to identify substances in environmental samples that might inhibit LAMP and to find additives that can reduce the inhibition. In this study, we investigated the effects of six chemicals or proteins, otherwise known as conventional PCR inhibitors, on LAMP, using the DNA of strain Pbs-1 as template: humic acid, urea, iron (III) chloride hexahydrate, melanin, myoglobin, and Ethylenediamine-N,N,N',N'-tetraacetic acid, disodium salt, dihydrate (EDTA; pH 6.5). Next, to reduce the effects of identified inhibitors, we tested the addition of bovine serum albumin (BSA) or T4 gene 32 protein (gp32) to the LAMP assay. When 50 ng of DNA template was used, 4 ng/µL of humic acid, 0.05% melanin, and 10 mM of EDTA (pH 6.5) inhibited the LAMP reaction, whereas myoglobin, urea, and FeCl3 had no effect. When 50 pg of DNA template was used, 4 ng/µL of humic acid, 0.05% melanin, 4 µg/µL of myoglobin, 10 µg/µL of urea, and 10 mM of EDTA inhibited the LAMP reaction. Thus, it was shown that the gene-amplification inhibitory effect of melanin, humic acid, and urea could be reduced by adding BSA or gp32 to the LAMP reaction mixture. This technique could be applied as part of a protocol to prevent mass mortalities of pearl oysters; moreover, the results enhance our knowledge about substances that inhibit LAMP and methods to reduce the inhibition, which have rarely been reported.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Pinctada , Tenacibaculum , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Pinctada/microbiologia , Pinctada/genética , Tenacibaculum/genética , Tenacibaculum/efeitos dos fármacos , Tenacibaculum/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , DNA Bacteriano/genética , Exoesqueleto/microbiologia , Exoesqueleto/química , Ácido Edético/farmacologia , Substâncias Húmicas , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária
2.
J Fish Dis ; 47(9): e13984, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943549

RESUMO

A strategy for vaccine design involves identifying proteins that could be involved in pathogen-host interactions. The aim of this proteomic study was to determine how iron limitation affects the protein expression of Tenacibaculum dicentrarchi, with a primary focus on virulence factors and proteins associated with iron uptake. The proteomic analysis was carried out using two strains of T. dicentrarchi grown under normal (control) and iron-limited conditions, mimicking the host environment. Our findings revealed differences in the proteins expressed by the type strain CECT 7612T and the Chilean strain TdCh05 of T. dicentrarchi. Nonetheless, both share a common response to iron deprivation, with an increased expression of proteins associated with iron oxidation and reduction metabolism (e.g., SufA, YpmQ, SufD), siderophore transport (e.g., ExbD, TonB-dependent receptor, HbpA), heme compound biosynthesis, and iron transporters under iron limitation. Proteins involved in gliding motility, such as GldL and SprE, were also upregulated in both strains. A negative differential regulation of metabolic proteins, particularly those associated with amino acid biosynthesis, was observed under iron limitation, reflecting the impact of iron availability on bacterial metabolism. Additionally, the TdCh05 strain exhibited unique proteins associated with gliding motility machinery and phage infection control compared to the type strain. These groups of proteins have been identified as virulence factors within the Flavobacteriaceae family, including the genus Tenacibaculum. These results build upon our previous report on iron acquisition mechanisms and could lay the groundwork for future studies aimed at elucidating the role of some of the described proteins in the infectious process of tenacibaculosis, as well as in the development of potential vaccines.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Infecções por Flavobacteriaceae , Ferro , Oxirredução , Proteômica , Tenacibaculum , Regulação para Cima , Ferro/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia , Animais , Doenças dos Peixes/microbiologia , Tenacibaculum/genética , Tenacibaculum/metabolismo , Proteoma , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Bass/microbiologia
3.
J Fish Dis ; 47(9): e13965, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801516

RESUMO

The diversity of Tenacibaculum maritimum in Chile remains poorly understood, particularly in terms of antigenic and genetic diversity. This information is crucial for the future development of a vaccine against tenacibaculosis and would increase understanding of this important fish pathogen. With this aim, the biochemical, antigenic, and genetic characteristics were analysed for 14 T. maritimum isolates, recovered from diseased Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Chile between 1998 and 2022. Biochemical analysis showed a homogeneity among all the Chilean T. maritimum isolates and all four other strains included for comparison purposes. Serological characterization using dot-blot assaying revealed antigenic heterogeneity with the use of unabsorbed antisera. The majority of isolates showed cross-reactions, identifying three main serological patterns. When the PCR-based serotyping scheme was performed, the existence of antigenic heterogeneity was confirmed. Four Atlantic salmon isolates were 4-0; and most isolates, including the rainbow trout isolate, were 3-1 (n = 9). A turbot (Scophthalmus maximus) isolate was 1-0. Using an existing Multilocus Sequence Typing system, two newly identified sequence types (ST193 and ST198) in the database were detected. ST193 encompassed nine isolates obtained from Atlantic salmon and rainbow trout, while ST198 regrouped four isolates, all retrieved from diseased Atlantic salmon in 2022. These findings highlight significant antigenic and genetic diversity among the Chilean isolates. This information is useful for epizootiology and the selection of suitable candidate strain(s) for vaccine development against tenacibaculosis caused by T. maritimum in Chilean salmon farming.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Salmo salar , Tenacibaculum , Animais , Doenças dos Peixes/microbiologia , Tenacibaculum/genética , Tenacibaculum/isolamento & purificação , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia , Chile/epidemiologia , Oncorhynchus mykiss/microbiologia , Variação Genética , Sorotipagem/veterinária , Heterogeneidade Genética , Aquicultura
4.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38409849

RESUMO

AIMS: This study assessed how the etiological agent of mouth rot in farmed Atlantic salmon, Tenacibaculum maritimum, induces toxicity in host salmonid barrier cells, and determined whether environmental changes are relevant for these effects. METHODS AND RESULTS: Tenacibaculum maritimum soluble extracellular products (ECPs) were collected and used to treat Atlantic salmon and rainbow trout intestinal barrier cell lines as a comparative model of bacterial-salmonid cell interactions. Cellular assays that examine cell membrane integrity, marker expression, and metabolic activity revealed that T. maritimum ECPs induced salmonid epithelial cell death through an apoptosis mechanism. Changes in salinity (25, 29, and 33 ppt) and temperature (12°C, 18°C, and 24°C) within the natural ranges observed in Pacific Northwest aquaculture facilities affected bacterial growth and cytotoxicity of T. maritimum ECPs. CONCLUSIONS: Our results suggest epithelial barriers as targets of T. maritimum-mediated toxicity in farmed mouth rot-infected Atlantic salmon. The induction of apoptosis by T. maritimum soluble ECPs may also help to explain the absence of overt inflammation typically reported for these fish.


Assuntos
Oncorhynchus mykiss , Salmo salar , Tenacibaculum , Animais , Células Epiteliais
5.
J Fish Dis ; 47(2): e13888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950508

RESUMO

Tenacibaculum dicentrarchi is the second most important pathogen in Chilean salmon farming. This microorganism causes severe skin lesions on the body surface of farmed fish. The bacterium can also adhere to surfaces and form biofilm, survive in fish skin mucus, and possess different systems for iron acquisition. However, the virulence mechanisms are still not fully elucidated. Outer membrane vesicles (OMV) are nanostructures released by pathogenic Gram-negative bacteria during growth, but none has been described yet for T. dicentrarchi. In this study, we provide the first reported evidence of the fish pathogen T. dicentrarchi producing and releasing OMV from 24 h after incubation, increasing thereafter until 120 h. Analyses were conducted with T. dicentrarchi TdCh05, QCR29, and the type strain CECT 7612T . The OMV sizes, determined via scanning electron microscopy, ranged from 82.25 nm to 396.88 nm as per the strain and incubation time point (i.e., 24 to 120 h). SDS-PAGE revealed that the number of protein bands evidenced a drastically downward trend among the T. dicentrarchi strains. In turn, the OMV shared five proteins (i.e., 22.2, 31.9, 47.7, 56.3, and 107.1 kDa), but no protein pattern was identical. A heterogeneous amount of protein, RNA, and DNA were obtained, depending on the time at which OMV were extracted. Purified OMV were biologically active and induced a cytotoxic effect in macrophage-enriched cell cultures from rainbow trout (Oncorhynchus mykiss) head kidneys. This is the first step towards understanding the role that OMV could play in the pathogenesis of T. dicentrarchi.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Tenacibaculum , Animais , Rim Cefálico , Doenças dos Peixes/microbiologia , Macrófagos , Tenacibaculum/genética
6.
J Fish Dis ; 47(2): e13883, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975241

RESUMO

A cohort of Chinook salmon juveniles was vaccinated, with an autogenous bivalent vaccine against New Zealand RLOs (NZ-RLO1) and Tenacibaculum maritimum. A proportion of the cohort was not vaccinated to act as controls. At smoltification, the fish were challenged with NZ-RLO1, NZ-RLO2, or T. maritimum. We found that challenge with T. maritimum by immersion in (7.5 × 105 cfu/mL of water) did not yield any pathology. Challenge with RLOs produced clinical signs that were more or less severe depending on the challenge route, dose or vaccination status. Survival was significantly higher for vaccinated fish within the groups challenged with NZ-RLO1 by intraperitoneal injection with a relative percent survival (RPS) of 48.84%. Survival was not significantly different between vaccinated and non-vaccinated fish for groups challenged with NZ-RLO2 by intraperitoneal injection or by NZ-RLO1 by immersion. Yet, anecdotally the clinical disease presentation (manifesting as haemorrhagic, ulcerative skin lesions) was more severe for the non-vaccinated fish. This study demonstrates that autogenous vaccine against NZ-RLO is protective against severe disease and death by NZ-RLO1 challenge which warrants implementation and further evaluation under field conditions. Yet, this study also highlights the importance of the route of administration and dose when evaluating pathogenicity and vaccine efficacy.


Assuntos
Doenças dos Peixes , Rickettsia , Tenacibaculum , Humanos , Animais , Nova Zelândia , Eficácia de Vacinas
7.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117208

RESUMO

An orange-coloured bacterium, designated as strain GRR-S3-23T, was isolated from a tidal flat sediment collected from Garorim Bay, Chuncheongbuk-do, Republic of Korea. Cells of GRR-S3-23T were aerobic, Gram-stain-negative, rod-shaped and motile. GRR-S3-23T grew at 18-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.0) and with 2-4 % NaCl (optimum, 2-3 % w/v). Results of 16S rRNA gene sequence analysis indicated that GRR-S3-23T was closely related to Tenacibaculum aiptasiae a4T (97.6 %), followed by Tenacibaculum aestuarii SMK-4T (97.5 %), Tenacibaculum mesophilum MBIC 1140T (97.4 %), Tenacibaculum singaporense TLL-A2T (97.3 %), Tenacibaculum crassostreae JO-1T (97.2 %),and Tenacibaculum sediminilitoris YKTF-3T (97.1 %). The average amino acid identity values between GRR-S3-23T and the related strains were 86.8-72.8 %, the average nucleotide identity values were 83.3-74.1 %, and the digital DNA-DNA hybridization values were 27.0-19.6 %. GRR-S3-23T possessed menaquinone-6 (MK-6) as major respiratory quinone and had summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 20.6 %) and iso-C15 : 1G (10.8 %) as major fatty acids (>10.0 %). The polar lipid profiles of GRR-S3-23T contained phosphatidylethanolamine, one unidentified aminolipid, one unidentified aminophospholipid, three unidentified lipids, one unidentified glycolipid and four unidentified phospholipids. The DNA G+C content of GRR-S3-23T was 33.7%. On the basis of the results of the polyphasic analysis involving phylogenetic, phylogenomic, physiological and chemotaxonomic analyses described in this study, GRR-S3-23T is considered to represent a novel species within the genus Tenacibaculum, for which the name Tenacibaculum tangerinum is proposed. The type strain is GRR-S3-23T (=KCTC 102029T=KACC 23271T=JCM 36353T).


Assuntos
Ácidos Graxos , Tenacibaculum , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
8.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906096

RESUMO

Strain PVT-9aT, a novel Gram-stain-negative, aerobic, non-spore-forming, motile-by-gliding and rod-shaped bacterium, was isolated from a skin lesion of Atlantic salmon (Salmo salar L.) during a tenacibaculosis outbreak that occurred in 2016 at a Chilean fish farm. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain PVT-9aT belonged to the genus Tenacibaculum, being related to the closest type strains Tenacibaculum haliotis KCTC 52419T (98.49 % sequence similarity), Tenacibaculum aestuariivivum JDTF-79T (97.36 %), Tenacibaculum insulae JDTF-31T (97.29 %) and Tenacibaculum ovolyticum IFO 15947T (97.15 %). The genome size of strain PVT-9aT was 2.73 Mb with a DNA G+C content 31.09 mol%. Average nucleotide identity analysis among 30 Tenacibaculum species rendered the most similar strains as follows: T. haliotis KCTC 52419T (87.91 %), T. ovolyticum IFO 15947T (82.47 %), Tenacibaculum dicentrarchi 35/09T (81.08 %), Tenacibaculum finnmarkense gv finnmarkense TNO006T (80.91 %) and T. finnmarkense gv ulcerans TNO010T (80.96 %). Menaquinone MK-6 was the predominant respiratory quinone. The predominant cell fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G and iso-C15 : 0 3-OH. Phenotypic, chemotaxonomic and genomic data supported the assignment of strain PVT-9aT (=DSM 115155T=RGM 3472T) as representing a novel species of Tenacibaculum, for which the name Tenacibaculum bernardetii sp. nov. is proposed.


Assuntos
Salmo salar , Tenacibaculum , Animais , Ácidos Graxos/química , Água do Mar/microbiologia , Chile , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
9.
Front Immunol ; 14: 1254677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731496

RESUMO

Introduction: The marine aquaculture industry has been witnessing a worldwide emergence of tenacibaculosis, a poorly understood bacterial disease caused by Tenacibaculum maritimum that affects commercially important fish. So far, knowledge on the T. maritimum virulence mechanisms is scarce and the pathogen-host interaction operating in tenacibaculosis remain to be disclosed. This study aimed at contributing to a better understanding of this disease, by evaluating the early innate immune response triggered in European sea bass (Dicentrarchus labrax) by a bath-challenge with T. maritimum. Methods: Groups of sea bass were bath-challenged with T. maritimum (challenged fish) or mock-challenged. Undisturbed fish were used as controls (time 0). Samples of blood, liver and mucosal organs (skin, gills and posterior-intestine) were collected at 0 h (control) and at 6, 24, 48 and 72 h post-challenge (n=12). Mucosal organs were used for analyzing the expression of immune-related genes by RT-qPCR, as well as blood samples for assessing haematological and innate humoral parameters and liver for oxidative stress assessment. Results: An increased expression of il-1ß, il8, mmp9 and hamp1 was detected in all mucosal organs of infected fish when compared with control and mock-challenged fish, suggesting a pro-inflammatory response against T. maritimum transversal to all organs. The faster induction of these pro-inflammatory genes was observed in the gills. Regarding the systemic response, challenged fish presented neutrophilia, monocytosis, signs of anemia, and a decrease of bactericidal and lysozyme activities in plasma. Almost no variations were observed regarding hepatic oxidative stress. Discussion/Conclusions: The present study suggests that T. maritimum induces a local innate immune response upon bath infection not only in the skin of European sea bass, but also in the gills and posterior-intestine, likely triggered by the T. maritimum's capacity to adhere, colonize and damage these organs that can function as entry ways to bacteria, leading ultimately to the seen host's systemic response.


Assuntos
Bass , Tenacibaculum , Animais , Imunidade Inata , Fígado
10.
Dis Aquat Organ ; 155: 79-85, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589492

RESUMO

The morphology of farm-reared fish often differs from that of their wild counterparts, impacting their market value. Two caudal fin tip shapes, acutely angled and blunted, are recognized in farmed populations of red sea bream Pagrus major. The angled form is preferred by consumers over the blunt since it resembles that of wild fish. Discovering the cause of the blunted tip is crucial to maximizing the commercial value of farmed red sea bream. We hypothesized that the blunt fin tip is the result of opportunistic bacteria and conducted partial 16S rRNA metagenomic barcoding and generated a clone library of the 16S rRNA gene to compare bacterial communities of the 2 fin forms. Metagenomic barcoding revealed an abundance of 5 bacterial genera, Sulfitobacter, Vibrio, Tenacibaculum, Psychrobacter, and an unknown genus of Rhodobacteraceae, on the caudal fin surface. Sulfitobacter was significantly more common on the angled caudal fin than the blunted. Vibrio is the dominant genus on the blunted caudal fin. The clone library identified these genera to species level, and Sulfitobacter sp., Vibrio harveyi, Tenacibaculum maritimum, and Psychrobacter marincola were frequently observed in blunt caudal fins. Our results suggest that opportunistic pathogenic bacteria such as V. harveyi and T. maritimum are not the primary cause of caudal fin malformation, and multiple factors such as combinations of injury, stress, and pathogenic infection may be involved. The reason for the significantly greater occurrence of Sulfitobacter sp. in the angled caudal fin is unknown, and further investigation is needed.


Assuntos
Perciformes , Dourada , Tenacibaculum , Animais , RNA Ribossômico 16S/genética , Fazendas
11.
Front Cell Infect Microbiol ; 13: 1197290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360528

RESUMO

Tenacibaculum maritimum, the etiological agent of tenacibaculosis in marine fish, constitutively secretes extracellular products (ECPs) in which protein content has not been yet comprehensively studied. In this work, the prevalence of extracellular proteolytic and lipolytic activities related to virulence was analyzed in 64 T. maritimum strains belonging to the O1-O4 serotypes. The results showed the existence of a great intra-specific heterogeneity in the enzymatic capacity, particularly within serotype O4. Thus, the secretome of a strain belonging to this serotype was characterized by analyzing the protein content of ECPs and the possible production of outer membrane vesicles (OMVs). Notably, the ECPs of T. maritimum SP9.1 contain a large amount of OMVs that were characterized by electron microscopy and purified. Thus, ECPs were divided into soluble (S-ECPs) and insoluble fractions (OMVs), and their protein content was analyzed by a high-throughput proteomic approach. A total of 641 proteins were identified in ECPs including some virulence-related factors, which were mainly found in one of the fractions, either OMVs or S-ECPs. Outer membrane proteins such as TonB-dependent siderophore transporters and the type IX secretion system (T9SS)-related proteins PorP, PorT, and SprA appeared to be mainly associated with OMVs. By contrast, putative virulence factors such as sialidase SiaA, chondroitinase CslA, sphingomyelinase Sph, ceramidase Cer, and collagenase Col were found only in the S-ECPs. These findings clearly demonstrate that T. maritimum releases, through surface blebbing, OMVs specifically enriched in TonB-dependent transporters and T9SS proteins. Interestingly, in vitro and in vivo assays also showed that OMVs could play a key role in virulence by promoting surface adhesion and biofilm formation and maximizing the cytotoxic effects of the ECPs. The characterization of T. maritimum secretome provides insights into ECP function and can constitute the basis for future studies aimed to elucidate the full role of OMVs in the pathogenesis of fish tenacibaculosis.


Assuntos
Proteômica , Tenacibaculum , Animais , Virulência , Proteômica/métodos , Secretoma , Tenacibaculum/metabolismo , Peixes , Fatores de Virulência/metabolismo
12.
J Fish Dis ; 46(9): 1001-1012, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309564

RESUMO

Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 µM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 µM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.


Assuntos
Doenças dos Peixes , Tenacibaculum , Animais , Ferro/metabolismo , Sideróforos , Hemina/metabolismo , Doenças dos Peixes/microbiologia , Tenacibaculum/genética , Peixes
13.
Mol Genet Genomics ; 298(5): 979-993, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37225902

RESUMO

Tenacibaculosis is an ulcerative skin disorder that affects finfish. It is caused by members of the genus Tenacibaculum, resulting in eccentric behavioural changes, including anorexia, lethargy, and abnormal swimming patterns that often result in mortality. Currently, species suspected of causing fish mortality include T. ovolyticum, T. gallaicum, T. discolor, T. finnmarkense, T. mesophilum, T. soleae, T. dicentrarchi, and T. maritimum. However, pathogenic members and the mechanisms involved in disease causation, progression, and transmission are limited due to the inadequate sequencing efforts in the past decade. In this study, we use a comparative genomics approach to investigate the characteristic features of 26 publicly available genomes of Tenacibaculum and report our observations. We propose the reclassification of "T. litoreum HSC 22" to the singaporense species and assignment of "T. sp. 4G03" to the species discolor (species with quotation marks have not been appropriately named). We also report the co-occurrence of several antimicrobial resistance/virulence genes and genes private to a few members. Finally, we mine several non-B DNA forming regions, operons, tandem repeats, high-confidence putative effector proteins, and sortase that might play a pivotal role in bacterial evolution, transcription, and pathogenesis.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Tenacibaculum , Animais , Tenacibaculum/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/genética , Infecções por Flavobacteriaceae/microbiologia , Genômica , Peixes
14.
Fish Shellfish Immunol ; 136: 108747, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059254

RESUMO

Tenacibaculosis caused by Tenacibaculum dicentrarchi is the second most important bacterial disease that affects the Chilean salmon industry. The impacted fish show severe external gross skin lesions on different areas of the body. The external mucus layer that covers fish skin contains numerous immune substances that act as one of the main defense barriers against microbial colonization and invasions by potential pathogens. The present in vitro study aimed to evaluate and elucidate the role of the external mucus layer in the susceptibility of Atlantic salmon (Salmo salar) to three Chilean T. dicentrarchi strains and the type strain. For this, mucus collected from healthy and diseased (i.e., with T. dicentrarchi) Atlantic salmon were used, and various antibacterial and inflammatory parameters were analysed. The T. dicentrarchi strains were attracted to the mucus of Atlantic salmon regardless of health status. All four strains adhered to the skin mucus and very quickly grew using the mucus nutrients. Once infection was established, different mucosal defense components were activated in the fish, but the levels of bactericidal activity and of other enzymes were insufficient to eliminate T. dicentrarchi. Alternatively, this pathogen may be able to neutralize or evade these mechanisms. Therefore, the survival of T. dicentrarchi in fish skin mucus could be relevant to facilitate the colonization and subsequent invasion of hosts. The given in vitro results suggest that greater attention should be given to fish skin mucus as a primary defense against T. dicentrarchi.


Assuntos
Doenças dos Peixes , Salmo salar , Tenacibaculum , Animais , Pele , Muco , Nível de Saúde
15.
J Fish Dis ; 46(5): 517-526, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36727560

RESUMO

Tenacibaculosis is an emerging disease that severely affects salmonid farming in Chile, producing high mortalities and causing great economic losses. This work describes a novel PCR assay for the specific detection of Tenacibaculum piscium, a species recently described and identified in tenacibaculosis outbreaks in Norway and Chile. The designed primers amplified a 678-bp fragment of the peptidase gene (peptidase M23 family) from T. piscium. This method is specific for T. piscium; no other chromosomal DNA amplification products were obtained for other Tenacibaculum species. In pure cultures, the PCR assay detected up to 500 pg of DNA, or the equivalent of 2.44 ± 0.06 × 104 CFU/ml. For seeded fish samples (i.e., gills, liver, kidney, and mucus), the sensitivity limit was 4.88 ± 0.11 × 106 CFU/g, sufficient to detect T. piscium in acute infections in fish. Notably, this sensitivity level was 100-fold lower for DNA extracted from mucus samples. As compared to other existing methodologies (e.g., gene sequencing), the PCR approach described in this work allowed for the easiest detection of T. piscium in mucus samples obtained from challenged fish, an important outcome considering that the identification of this bacterium is difficult. Our results indicate that the designed specific primers and PCR method provide a rapid and specific diagnosis of T. piscium.


Assuntos
Doenças dos Peixes , Salmonidae , Tenacibaculum , Animais , Tenacibaculum/genética , Doenças dos Peixes/microbiologia , Reação em Cadeia da Polimerase/métodos , Primers do DNA , DNA
16.
Arch Microbiol ; 205(1): 43, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575332

RESUMO

Black-spot shell disease decreases pearl quality and threatens pearl oyster survival. Establishment of a rapid, specific, and sensitive assay to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease is of commercial importance. We developed a rapid, specific, and highly sensitive loop-mediated isothermal amplification (LAMP) assay to detect Tenacibaculum sp. Pbs-1 in Akoya pearl oysters Pinctada fucata. A set of five specific primers (two inner, two outer, and a loop) were designed based on the 16S-23S internal spacer region of strain Pbs-1. The optimum reaction temperature was 63 °C, and concentrations of the inner and loop primers were 1.4 and 1.0 µM, respectively. The LAMP product can be detected using agarose gel electrophoresis, and the color change in the reaction tube can be detected visually (by the naked eye) following the addition of malachite green. Our assay proved to be specific for strain Pbs-1, with no cross-reactivity with five other species of Tenacibaculum. The detection limit of the LAMP assay at 35 min is 50 pg, and at 60 min it is 5 fg. We evaluated the LAMP assay using diseased and healthy pearl oysters. The results demonstrate the suitability and simplicity of this test for rapid field diagnosis of strain Pbs-1.


Assuntos
Pinctada , Tenacibaculum , Animais , Pinctada/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Primers do DNA , Sensibilidade e Especificidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-35943445

RESUMO

Two Gram-stain-negative, aerobic and yellow-pigmented bacterial strains, designated K20-16T and MSW2, were isolated from a marine red alga (Chondrus species) and seawater, respectively. Both strains were oxidase-positive, weakly catalase-positive and non-flagellated rods with gliding motility. Menaquinone-6 was detected as the sole isoprenoid quinone in both strains. Iso-C15:0, iso-C15:0 3-OH, iso-C15:1 G, C15:1 ω6c and summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c) were identified in both strains as major fatty acids. Phosphatidylethanolamine was not identified in strain K20-16T, but it was identified in strain MSW2. The genomic DNA G+C contents of strains K20-16T and MSW2 were 30.5 and 30.7 %, respectively. Strains K20-16T and MSW2 shared 99.7% 16S rRNA gene sequence similarity, 97.7% average nucleotide identity (ANI), and 80.5% digital DNA-DNA hybridization (DDH) value, indicating that they are the same species. Phylogenetic analyses based on 16S rRNA gene and 92 concatenated core protein sequences revealed that strains K20-16T and MSW2 formed a phylogenic lineage within the genus Tenacibaculum and were most closely related to Tenacibaculum todarodis LPB0136T with 98.3 and 98.0% 16S rRNA gene sequence similarities, respectively. ANI and digital DDH values between strains K20-16T and MSW2 and other type strains were less than 91.4 and 43.1 %, respectively. Based on the phenotypic, chemotaxonomic and molecular features, strains K20-16T and MSW2 represent a novel species of the genus Tenacibaculum, for which the name Tenacibaculum aquimarinum sp. nov. is proposed. The type strain is K20-16T (=KACC 22 342T=JCM 35 023T).


Assuntos
Tenacibaculum , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
18.
Transbound Emerg Dis ; 69(5): e2876-e2888, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731505

RESUMO

Tenacibaculum maritimum is a devastating bacterial pathogen affecting a large variety of marine fish species. It is responsible for significant economic losses in aquaculture farms worldwide. Different typing methods have been proposed to analyse bacterial diversity and population structure. Serological heterogeneity has been observed and up to four different serotypes have been described so far. However, the underlying molecular factors remain unknown. By combining conventional serotyping and genome-wide association study, we identified the genomic loci likely involved in the O-antigen biosynthesis. This finding allowed the development of a robust multiplex PCR-based serotyping scheme able to detect subgroups within each serotype and therefore performs better than conventional serotyping. This scheme was successfully applied to a large number of isolates from worldwide origin and retrieved from a large variety of fish species. No obvious correlations were observed between the mPCR-based serotype and the host species or the geographic origin of the isolates. Strikingly, the distribution of mPCR-based serotypes does not follow the core genome phylogeny. Nevertheless, this simple and cost-effective mPCR-based serotyping method could be useful for different applications such as population structure analysis, disease surveillance, vaccine formulation and efficacy follow-up.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Tenacibaculum , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Estudo de Associação Genômica Ampla/veterinária , Genômica , Família Multigênica , Reação em Cadeia da Polimerase Multiplex/veterinária , Antígenos O/genética , Sorotipagem/métodos , Sorotipagem/veterinária , Tenacibaculum/genética
19.
Environ Microbiol ; 24(10): 4505-4518, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35706128

RESUMO

Bacteria within the phylum Bacteroidota (Bacteroidetes) are known to cause devastating and widespread disease outbreaks in marine eukaryotic hosts. However, with few pathogens described in detail, their prevalence and virulence strategies remain largely unknown. Here, we systematically reviewed the literature to evaluate the current understanding of Bacteroidota that cause disease in marine hosts. Isolates affiliated with the genera Tenacibaculum and Aquimarina (Flavobacteriaceae) were the most widely reported and characterized pathogens. Although cultured isolates were predominantly Flavobacteriia, culture-independent studies also found classes Bacteroidia, Cytophagia and Sphingobacteriia associated with disease. We found that pathogenic marine Bacteroidota largely conformed to an opportunistic lifestyle but could also act as secondary pathogens or were involved in polymicrobial diseases. Many diseases were also associated with an environmental stressor, especially those affecting coral, macroalgae and fish. Key virulence traits included the production of adhesins and host tissue-degrading enzymes. Overall, the nature of disease involving Bacteroidota pathogens appears to be an outcome of complex host-pathogen-environment interactions; however, our understanding of virulence remains limited by the lack of functional characterization studies. This is concerning as Bacteroidota have the potential to emerge as a serious threat to marine ecosystems and aquaculture industries, driven by global changes in ocean conditions.


Assuntos
Antozoários , Doenças dos Peixes , Flavobacteriaceae , Tenacibaculum , Animais , Ecossistema , Doenças dos Peixes/microbiologia , Oceanos e Mares
20.
Transbound Emerg Dis ; 69(5): e3305-e3315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35674219

RESUMO

Tenacibaculum piscium, a gram-negative bacterium isolated from the skin ulcers of sea-farmed fish, has only been described in Norway. In the present study, we examined 16 Chilean Tenacibaculum isolates recovered from different organs in moribund and dead Atlantic salmon (Salmo salar), Rainbow trout (Oncorhynchus mykiss) and Coho salmon (Oncorhynchus kisutch) cultured at different fish farms between 2014 and 2018. The present study applied biochemical, phenotypic, fatty acid and whole-genome sequence-based analyses to confirm the taxonomic status of the Chilean isolates. The obtained results are the first to confirm the presence of T. piscium in Chile and in Coho salmon, thus extending the recognized geographical and species distribution of this bacterium. Subsequent bath-challenge assays in Atlantic salmon utilizing three T. piscium isolates obtained from different hosts resulted in low cumulative mortality (i.e. 0-35%), even after exposure to an unnaturally high concentration of bacterial cells (i.e. > 107 cells/ml). However, scale loss and frayed fins were observed in dead fish. In silico whole-genome analysis detected various genes associated with iron acquisition, encoding of the type IX secretion system and cargo proteins, resistance to tetracycline and fluoroquinolones and stress responses. These data represent an important milestone towards a better understanding on the genomic repertoire of T. piscium.


Assuntos
Doenças dos Peixes , Oncorhynchus kisutch , Oncorhynchus mykiss , Tenacibaculum , Animais , Chile/epidemiologia , Ácidos Graxos , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Fluoroquinolonas , Genômica , Ferro , Tenacibaculum/genética , Tetraciclinas , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA