RESUMO
C-terminal tensin-like (CTEN) is a tensin family protein typically localized to the cytoplasmic side of focal adhesions, and primarily contributes to cell adhesion and migration. Elevated expression and nuclear accumulation of CTEN have been reported in several types of cancers and found to be associated with malignant behaviors. However, the function of nuclear CTEN remains elusive. In this study, we report for the first time that nuclear CTEN associates with chromatin DNA and occupies the region proximal to the transcription start site in several genes. The mRNA expression level of CTEN positively correlates with that of one of its putative target genes, cell division cycle protein 27 (CDC27), in a clinical colorectal cancer dataset, suggesting that CTEN may play a role in the regulation of CDC27 gene expression. Furthermore, we demonstrated that CTEN is recruited to the promoter region of the CDC27 gene and that the mRNA expression and promoter activity of CDC27 are both reduced when CTEN is downregulated. In addition, we found that enhanced nuclear accumulation of CTEN in HCT116 cells by overexpression of CTEN fused with nuclear localization signals increases CDC27 transcript levels and promoter activity. The increased nuclear-localized CTEN also significantly promotes cell migration, and the migratory ability is suppressed when CDC27 is knocked down. These results demonstrate that nuclear CTEN regulates CDC27 expression transcriptionally and promotes cell migration through CDC27. Our findings provide new insights into CTEN moonlighting in the nucleus as a DNA-associated protein and transcriptional regulator involved in modulating cancer cell migration. (AU)
Assuntos
Humanos , Proteínas dos Microfilamentos/genética , Neoplasias , Movimento Celular , Adesão Celular/fisiologia , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase , Tensinas , RNA Mensageiro/genéticaRESUMO
RATIONALE: Lung cancer is the most prevalent form of cancer and has a high mortality rate, making it a global public health concern. The N6-methyladenosine (m6A) modification is a highly dynamic and reversible process that is involved in a variety of essential biological processes. Using in vitro, in vivo, and multi-omics bioinformatics, the present study aims to determine the function and regulatory mechanisms of the long non-coding (lnc)RNA zinc ribbon domain-containing 1-antisense 1 (ZNRD1-AS1). METHODS: The RNAs that were bound to the m6A 'reader' were identified using YTH domain-containing 2 (YTHDC2) RNA immunoprecipitation (RIP)-sequencing. Utilizing methylated RIP PCR/quantitative PCR, pull-down, and RNA stability assays, m6A modification and ZNRD1-AS1 regulation were analyzed. Using bioinformatics, the expression levels and clinical significance of ZNRD1-AS1 in lung cancer were evaluated. Using fluorescent in situ hybridization and quantitative PCR assays, the subcellular location of ZNRD1-AS1 was determined. Using cell migration, proliferation, and angiogenesis assays, the biological function of ZNRD1-AS1 in lung cancer was determined. In addition, the tumor suppressor effect of ZNRD1-AS1 in vivo was validated using a xenograft animal model. Through bioinformatics analysis and in vitro assays, the downstream microRNAs (miRs) and competing endogenous RNAs were also predicted and validated. RESULTS: This study provided evidence that m6A modification mediates YTHDC2-mediated downregulation of ZNRD1-AS1 in lung cancer and cigarette smoke-exposed cells. Low levels of ZNRD1-AS1 expression were linked to adverse clinicopathological characteristics, immune infiltration, and prognosis. ZNRD1-AS1 overexpression was shown to suppress lung cancer cell proliferation, migration, and angiogenesis in vitro and in vivo, and to reduce tumor growth in nude mice. ZNRD1-AS1 expression was shown to be controlled by treatment of cells with either the methylation inhibitor 3-Deazaadenosine or the demethylation inhibitor Meclofenamic. Furthermore, the miR-942/tensin 1 (TNS1) axis was demonstrated to be the downstream regulatory signaling pathway of ZNRD1-AS1. CONCLUSIONS: ZNRD1-AS1 serves an important function and has clinical relevance in lung cancer. In addition, the findings suggested that m6A modification could mediate the regulation of the ZNRD1-AS1/miR-942/TNS1 axis via the m6A reader YTHDC2.
Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos Nus , Zinco/metabolismo , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Movimento Celular/genética , Pulmão/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA Helicases/genética , Tensinas/genética , Tensinas/metabolismoRESUMO
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the TNF ligand family involved in various diseases including brain inflammatory pathologies such as multiple sclerosis. It has been demonstrated that TWEAK can induce cerebrovascular permeability in an in vitro model of the blood-brain barrier. The molecular mechanisms playing a role in TWEAK versus TNFα signaling on cerebral microvascular endothelial cells are not well defined. Therefore, we aimed to identify gene expression changes in cultures of human brain microvascular endothelial cells (hCMEC/D3) to address changes initiated by TWEAK exposure. Taken together, our studies highlighted that gene involved in leukocyte extravasation, notably claudin-5, were differentially modulated by TWEAK and TNFα. We identified differential gene expression of hCMEC/D3 cells at three timepoints following TWEAK versus TNFα stimulation and also found distinct modulations of several canonical pathways including the actin cytoskeleton, vascular endothelial growth factor (VEGF), Rho family GTPases, and phosphatase and tensin homolog (PTEN) pathways. To our knowledge, this is the first study to interrogate and compare the effects of TWEAK versus TNFα on gene expression in brain microvascular endothelial cells.
Assuntos
Esclerose Múltipla , Fator de Necrose Tumoral alfa , Humanos , Encéfalo , Claudina-5 , Citocinas , Células Endoteliais , Família , GTP Fosfo-Hidrolases , Ligantes , Esclerose Múltipla/genética , Monoéster Fosfórico Hidrolases , Tensinas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio VascularRESUMO
Cowden syndrome (CS) is a rare autosomal dominant disorder associated with multiple hamartomatous and neoplastic lesions in various organs. Most CS patients have been found to have germline mutations in the PTEN tumor suppressor. In the present study, we investigated the causative gene of CS in a family of PTEN (phosphatase and tensin homolog deleted on chromosome 10) -negative CS patients. Whole exome sequencing analysis revealed AMBRA1 (Autophagy and Beclin 1 Regulator 1) as a novel candidate gene harboring two germline variants: p.Gln30Arg (Q30R) and p.Arg1195Ser (R1195S). AMBRA1 is a key regulator of the autophagy signaling network and a tumor suppressor. To functionally validate the role of AMBRA1 in the clinical manifestations of CS, we generated AMBRA1 depletion and Q30R mutation in hTERT-RPE1 (humanTelomerase Reverse Transcriptase-immortalized Retinal Pigmented Epithelial cells) using the CRISPR-Cas9 gene editing system. We observed that both AMBRA1-depleted and mutant cells showed accumulation in the S phase, leading to hyperproliferation, which is a characteristic of hamartomatous lesions. Specifically, the AMBRA1 Q30R mutation disturbed the G1/S transition of cells, leading to continuous mitotic entry of mutant cells, irrespective of the extracellular condition. From our analysis of primary ciliogenesis in these cells, we speculated that the mitotic entry of AMBRA1 Q30R mutants could be due to non-functional primary cilia that lead to impaired processing of extracellular sensory signals. Additionally, we observed a situs inversus phenotype in ambra1-depleted zebrafish, a developmental abnormality resulting from dysregulated primary ciliogenesis. Taken together, we established that the AMBRA1 Q30R mutation that we observed in CS patients might play an important role in inducing the hyperproliferative potential of cells through regulating primary ciliogenesis.
Assuntos
Síndrome do Hamartoma Múltiplo , Animais , Proteína Beclina-1/genética , Mutação em Linhagem Germinativa , Síndrome do Hamartoma Múltiplo/complicações , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Mutação , PTEN Fosfo-Hidrolase/genética , DNA Polimerase Dirigida por RNA/genética , Tensinas/genética , Peixe-Zebra/genéticaRESUMO
To investigate the clinical significance of Tensin4 (TNS4) in human cancers, particularly lung cancer, we mined the Cancer Genome Atlas database for lung adenocarcinoma (TCGA-LUAD) and the Gene Expression Omnibus database to predict poor prognosis based on the up-regulated expression of TNS4 in LUAD. The correlation between the clinical pathologic features of patients and TNS4 gene expression was analyzed using the Wilcoxon signed-rank test. Cox regression analysis was used to evaluate the association of clinicopathologic characteristics with the overall survival (OS) of cancer patients using TCGA data. The relationship between TNS4 expression and cancer patient survival was evaluated with Kaplan-Meier survival curves and meta-analyses. GO and KEGG were also included in the data mining methods. The expression level of TNS4 in LUAD tissue was higher than that in adjacent normal tissue (P < .001). According to the Kaplan-Meier survival curve, LUAD patients with high TNS4 expression had worse prognosis than those with low TNS4 expression (P < .001 for OS; P = .028 for progression-free survival). A positive correlation between TNS4 expression and poor OS was found with both univariate and multivariate analyses. Increased TNS4 expression in LUAD was closely correlated with a higher disease stage (P = .007), positive lymph nodes (P = .005), and larger tumor size (P = .002). Moreover, meta-analysis including seven independent datasets showed LUAD patients with higher TNS4 had poorer OS (combined hazard ratio = 1.27, 95% confidence interval 1.16-1.39). In the high-TNS4 population, regulation of the actin cytoskeleton, extracellular matrix receptor interactions, and focal adhesion were differentially enriched. Integrin α6ß4 and laminin-5 genes were also associated with TNS4. TNS4 expression may be a potential biomarker for predicting poor survival in LUAD. Moreover, the correlation between TNS4 and integrin α6ß4 may be attributed to the role of TNS4 in LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Tensinas/genética , Tensinas/metabolismoRESUMO
Diabetes mellitus (DM) and obesity are common illnesses characterized by glucose metabolism issues and excessive weight gain. Breastfeeding is the best way to feed a newborn up to 6 months old and it has been shown to reduce the risk of diabetes and obesity later in life due to its nutritional properties. The purpose of this study was to investigate the effects of breastfeeding, formula feeding, and formula-plus breastfeeding (mix-feeding) on the anthropometric indices, metabolic variables, and the expression level of obesity and diabetes-predisposing genes of healthy infants. A total of 150 healthy infants were enrolled in this cross-sectional study. All infants (aged 24 months) were divided into three groups based on the type of feeding, breastfeeding, formula feeding, and mix-feeding. The anthropometric indices, glycemic indexes, lipid profile, and the expression levels of acetyl-coenzyme A carboxylase beta (ACACB), brain-derived neurotrophic factor (BDNF), liver X receptor α (LXR-α), peroxisome proliferator-activated receptor γ (PPAR-γ), and phosphatase and tensin homolog (PTEN) genes were measured in all infants using reverse transcription-polymerase chain reaction (RT-PCR) method. The anthropometric indices including weight, height, head circumference, insulin, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were lower in the breastfeeding infants in comparison to other groups. As well, the expression level of the ACACB gene was significantly downregulated in breastfeeding infants, while the PPAR-γ gene was significantly upregulated, but the expression levels of LXR- α, PTEN and BDNF did not change significantly across groups. Breastfeeding compared to formula feeding had positive effects on anthropometric indices, metabolic variables, and diabetes-predisposing genes.
Assuntos
Diabetes Mellitus , Insulinas , Fator Neurotrófico Derivado do Encéfalo , Aleitamento Materno , HDL-Colesterol , LDL-Colesterol , Coenzima A , Estudos Transversais , Feminino , Glucose , Humanos , Lactente , Recém-Nascido , Receptores X do Fígado/genética , Obesidade , PPAR gama , Monoéster Fosfórico Hidrolases , TensinasRESUMO
The estrogenic receptor beta (ERß) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERß. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERß, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (-3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERß (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.
Assuntos
Neoplasias do Colo , MicroRNAs , Compostos Benzidrílicos , Proliferação de Células , Neoplasias do Colo/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fermentação , Flavanonas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenóis , Transdução de Sinais , Tensinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The tumor suppressor PTEN (Phosphatase and Tensin homolog deleted on Chromosome 10) executes critical biological functions that limit cellular growth and proliferation. PTEN inhibits activation of the proto-oncogenic PI3K pathway and is required during embryogenesis and to suppress tumor formation and cancer progression throughout life. The critical role that PTEN plays in restraining cellular growth has been validated through the generation of a number of animal models whereby PTEN inactivation invariably leads to tumor formation in a cell-autonomous fashion. However, the increasing understanding of the mechanisms through which the immune system contributes to suppressing tumor progression has highlighted how, in a cell non-autonomous fashion, cancer-associated mutations can indirectly enhance oncogenesis by evading immune cell recognition. Here, in light of the essential role of PTEN in the regulation of immune cell development and function, and based on recent findings showing that PTEN loss can promote resistance to immune checkpoint inhibitors in various tumor types, we re-evaluate our understanding of the mechanisms through which PTEN functions as a tumor suppressor and postulate that this task is achieved through a combination of cell autonomous and non-autonomous effects. We highlight some of the critical studies that have delineated the functional role of PTEN in immune cell development and blood malignancies and propose new strategies for the treatment of PTEN loss-driven diseases.
Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Animais , Carcinogênese/genética , Inibidores de Checkpoint Imunológico , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , TensinasRESUMO
Digit determination in limb buds is driven by a posteriorizing Sonic hedgehog (Shh) protein gradient; however, the mechanism regulating this is unclear. Here, we propose a diffusion-and-trapping hypothesis for Shh gradient formation based on data from the preaxial polydactyly phenotype of KIF3B motor hypomorphic mice. In the limb buds of these mice, a distal-to-proximal gradient of fibroblast growth factor (FGF) and phosphatidylinositol 3-kinase (PI3K) signaling and a posterior-to-anterior gradient of Shh were disorganized. This phenotype was reproduced by transplanting FGF8b-soaked beads. At the subcellular level, KIF3B transported the phosphatase and tensin homolog (PTEN)-like phosphatase Talpid3 to terminate PI3K signaling. High and low PI3K signaling strengths differentially sorted endocytosed Shh toward exosome-like particles and cytonemal punctata, respectively. These results indicate that the Shh-containing particles undergo either the diffusional movement in the periphery or cytonemal trapping in the center and form a spatial gradient along the periphery of developing limb buds.
Assuntos
Proteínas Hedgehog , Polidactilia , Animais , Extremidades , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Cinesinas , Botões de Extremidades/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Monoéster Fosfórico Hidrolases/genética , Polidactilia/genética , Polidactilia/metabolismo , Tensinas/genética , Tensinas/metabolismoRESUMO
Endometriosis is a common gynecological disease, and its underlying mechanisms remain elusive. Patients are at a higher risk of recurrence after surgery or drug withdrawal. In this study, to identify a potentially effective and safe therapy for endometriosis, we screened potential target genes of kaempferol on endometriosis using network pharmacology and further validation. Network pharmacology showed kaempferol may suppress migratory and invasive properties by modulating the phosphoinositide 3-kinase (PI3K) pathway and its downstream target matrix metalloproteinase (MMP)9. Furthermore, in vitro experiments showed that kaempferol repressed the migration and invasion of endometrial cells, and this effect may be involved in mediating the PI3K-related genes, phosphatase and tensin homolog (PTEN) and MMP9. Network pharmacology and in vitro experiments showed that kaempferol, repressed the implantation of endometrial cells and formation of ectopic lesions by inhibiting migration and invasion and regulating PTEN and MMP9, which may be associated with the PI3K pathway.
Assuntos
Endometriose , Movimento Celular , Endometriose/tratamento farmacológico , Endometriose/genética , Endometriose/metabolismo , Feminino , Humanos , Quempferóis/farmacologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Farmacologia em Rede , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , TensinasRESUMO
Peripheral nerve injury (PNI) is often resulting from trauma, which leads to severe and permanently disability. Schwann cells are critical for facilitating the regeneration process after PNI. Adipose-derived mesenchymal stem cells (ADSCs) exosomes have been used as a novel treatment for peripheral nerve injury. However, the underlying mechanism remains unclear. In this study, we isolated ADSCs and extracted exosomes, which were verified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot (WB). Cocultured with Dorsal Root Ganglion (DRG) and Schwann cells (SCs) to evaluate the effect of exosomes on the growth of DRG axons by immunofluorescence, and the proliferation and migration of SCs by CCK8 and Transwell assays, respectively. Through exosomal miRNA sequencing and bioinformatic analysis, the related miRNAs and target gene were predicted and identified by dual luciferase assay. Related miRNAs were overexpressed and inhibited, respectively, to clarify their effects; the downstream pathway through the target gene was determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and WB. Results found that ADSC-exosomes could promote the proliferation and migration of SCs and the growth of DRG axons, respectively. Exosomal miRNA-22-3p from ADSCs directly inhibited the expression of Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), activated phosphorylation of the AKT/mTOR axis, and enhanced SCs proliferation and migration. In conclusion, our findings suggest that ADSC-exosomes could promote SCs function through exosomal miRNA-22-3p, which could be used as a therapeutic target for peripheral nerve injury.
Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos dos Nervos Periféricos , Proliferação de Células , Regulação para Baixo , Exossomos/genética , Exossomos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tensinas/genética , Tensinas/metabolismoRESUMO
Inflammatory breast cancer (IBC) is the most pro-metastatic form of breast cancer (BC). We previously demonstrated that protein overexpression of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein was associated with shorter survival in IBC patients. MARCKS has been associated with the PI3K/AKT pathway. MARCKS inhibitors are in development. Our objective was to investigate MARCKS, expressed preferentially in IBC that non-IBC (nIBC), as a novel potential therapeutic target for IBC. The biologic activity of MPS, a MARCKS peptide inhibitor, on cell proliferation, migration, invasion, and mammosphere formation was evaluated in IBC (SUM149 and SUM190) and nIBC (MDA-MB-231 and MCF7) cell lines, as well as its effects on protein expression in the PTEN/AKT and MAPK pathways. The prognostic relevance of MARCKS and phosphatase and tensin homolog (PTEN) protein expression as a surrogate marker of metastasis-free survival (MFS) was evaluated by immunohistochemistry (IHC) in a retrospective series of archival tumor samples derived from 180 IBC patients and 355 nIBC patients. In vitro MPS impaired cell proliferation, migration and invasion, and mammosphere formation in IBC cells. MARCKS inhibition upregulated PTEN and downregulated pAKT and pMAPK expression in IBC cells, but not in nIBC cells. By IHC, MARCKS expression and PTEN expression were negatively correlated in IBC samples and were associated with shorter MFS and longer MFS, respectively, in multivariate analysis. The combination of MARCKS-/PTEN+ protein status was associated with longer MFS in IBC patient only (p = 8.7 × 10-3), and mirrored the molecular profile (MARCKS-downregulated/PTEN-upregulated) of MPS-treated IBC cell lines. In conclusion, our results uncover a functional role of MARCKS implicated in IBC aggressiveness. Associated with the good-prognosis value of the MARCKS-/PTEN+ protein status that mirrors the molecular profile of MPS-treated IBC cell lines, our results suggest that MARCKS could be a potential therapeutic target in patients with MARCKS-positive IBC. Future preclinical studies using a larger panel of IBC cell lines, animal models and analysis of a larger series of clinical samples are warranted in order to validate our results.
Assuntos
Produtos Biológicos , Neoplasias Inflamatórias Mamárias , Substrato Quinase C Rico em Alanina Miristoilada , Produtos Biológicos/uso terapêutico , Humanos , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neoplasias Inflamatórias Mamárias/patologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Estudos Retrospectivos , TensinasRESUMO
BACKGROUND & AIMS: Transient regeneration-associated steatosis (TRAS) is a process of temporary hepatic lipid accumulation and is essential for liver regeneration by providing energy generated from fatty acid ß-oxidation, but the regulatory mechanism underlying TRAS remains unknown. Parkinsonism-associated deglycase (Park7)/Dj1 is an important regulator involved in various liver diseases. In nonalcoholic fatty liver diseased mice, induced by a high-fat diet, Park7 deficiency improves hepatic steatosis, but its role in liver regeneration remains unknown METHODS: Park7 knockout (Park7-/- ), hepatocyte-specific Park7 knockout (Park7â³hep ) and hepatocyte-specific Park7-Pten double knockout mice were subjected to 2/3 partial hepatectomy (PHx) RESULTS: Increased PARK7 expression was observed in the regenerating liver of mice at 36 and 48 h after PHx. Park7-/- and Park7â³hep mice showed delayed liver regeneration and enhanced TRAS after PHx. PPARa, a key regulator of ß-oxidation, and carnitine palmitoyltransferase 1a (CPT1a), a rate-limiting enzyme of ß-oxidation, had substantially decreased expression in the regenerating liver of Park7â³hep mice. Increased phosphatase and tensin homolog (PTEN) expression was observed in the liver of Park7â³hep mice, which might contribute to delayed liver regeneration in these mice because genomic depletion or pharmacological inhibition of PTEN restored the delayed liver regeneration by reversing the downregulation of PPARa and CPT1a and in turn accelerating the utilization of TRAS in the regenerating liver of Park7â³hep mice CONCLUSION: Park7/Dj1 is a novel regulator of PTEN-dependent fatty acid ß-oxidation, and increasing Park7 expression might be a promising strategy to promote liver regeneration.
Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatia Gordurosa não Alcoólica , PTEN Fosfo-Hidrolase , Proteína Desglicase DJ-1 , Animais , Carnitina O-Palmitoiltransferase/genética , Proliferação de Células , Ácidos Graxos/metabolismo , Hepatectomia , Lipídeos , Regeneração Hepática/genética , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Desglicase DJ-1/genética , TensinasRESUMO
Detecting microsatellite instability (MSI) in advanced cancers is crucial for clinical decision-making, as it helps in identifying patients with differential treatment responses and prognoses. BAT26 is a highly sensitive MSI marker that defines the mismatch repair (MMR) status with high sensitivity and specificity. However, isolated BAT26-only instability is rare and has not been previously reported. Of the 6476 cases tested using pentaplex MSI polymerase chain reaction, we identified two BAT26-only instability cases (0.03%) in this study. The case #1 patient was diagnosed with endometrial adenocarcinoma without MMR germline mutations. The endometrial tumor showed BAT26-only instability, partial loss of MLH1/PMS2 protein expression, and a high programmed cell death ligand 1 (PD-L1) combined positive score (CPS = 8). The tumor exhibited a somatic phosphatase and tensin homolog (PTEN) R303P missense mutation and loss of the PTEN protein. On a comprehensive cancer panel sequencing with ≥500 genes, the tumor showed an MSI score of 11.38% and high tumor mutation burden (TMB) (19.5 mt/mb). The case #2 patient was diagnosed with colorectal carcinoma with proficient MMR and PTEN protein loss without PTEN alteration, as well as a high PD-L1 CPS (CPS = 10). A pathogenic KRAS A146T mutation was detected with an MSI score of 3.36% and high TMB (13 mt/mb). In conclusion, BAT26-only instability is very rare and associated with PTEN protein loss, high TMB, and a high PD-L1 score. Our results suggest that patients with BAT26-only instability may show good responses to immunotherapy.
Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Ligantes , Repetições de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Tensinas/metabolismoRESUMO
BACKGROUND: Patients with critical limb ischemia (CLI) are at great risk of major amputation and cardiovascular events. Adipose-derived mesenchymal stem cell (ADSC) therapy is a promising therapeutic strategy for CLI, but the poor engraftment and insufficient angiogenic ability of ADSCs limit their regenerative potential. Herein, we explored the potential of human umbilical vein endothelial cells (HUVECs)-derived small extracellular vesicles (sEVs) for enhancing the therapeutic efficacy of ADSCs in CLI. RESULTS: sEVs derived from hypoxic HUVECs enhanced the resistance of ADSCs to reactive oxygen species (ROS) and further improved the proangiogenic ability of ADSCs in vitro. We found that the hypoxic environment altered the composition of sEVs from HUVECs and that hypoxia increased the level of miR-486-5p in sEVs. Compared to normoxic sEVs (nsEVs), hypoxic sEVs (hsEVs) of HUVECs significantly downregulated the phosphatase and tensin homolog (PTEN) via direct targeting of miR-486-5p, therefore activating the AKT/MTOR/HIF-1α pathway and influencing the survival and pro-angiogenesis ability of ADSCs. In a hindlimb ischemia model, we discovered that hsEVs-primed ADSCs exhibited superior cell engraftment, and resulted in better angiogenesis and tissue repair. CONCLUSION: hsEVs could be used as a therapeutic booster to improve the curative potential of ADSCs in a limb ischemia model. This finding offers new insight for CLI treatment.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Tecido Adiposo/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tensinas/metabolismoRESUMO
BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.
Assuntos
Hipertensão , MicroRNAs , Ratos , Animais , Angiotensina II/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Tensinas/metabolismo , Ratos Endogâmicos SHR , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Ratos Endogâmicos WKY , Apoptose , Miócitos Cardíacos/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismoRESUMO
Endowing bone regeneration materials with both stem cell recruitment and osteoinduction properties is a key factor in promoting osseointegration of titanium (Ti) implants. In this study, Apt19s-grafted oxidized hyaluronic acid (OHA) was deposited onto a protein-mediated biomineralization hydroxyapatite (HAp) coating of Ti. HAp was achieved by the treatment of lysozyme and tris(2-carboxyethyl) phosphonate mixture and then soaked in calcium ion (Ca2+) solution to obtain functional Ti substrate (Ti/HAp/OHA-Apt). In vitro studies confirmed that Ti/HAp/OHA-Apt could effectively maintain the sustained release of Apt19s from Ti for 7 days. The released Apt19s significantly enhanced the migration of bone marrow mesenchymal stem cells (MSCs), which was reflected by the experiment of transwell assay, wound healing, and zymogram detection. Compared with pure Ti, Ti/HAp/OHA-Apt was able to adjust the adsorption of functional proteins at the Ti-based interface to expose their active sites, which significantly increased the expression of adhesion-associated proteins (vinculin and tensin) in MSCs to promote their adhesion on Ti-based interface. In vitro cell experiments of alkaline phosphatase activity staining, mineralization detection, and expression of osteogenesis-related genes showed that Ti/HAp/OHA-Apt significantly enhanced the osteogenic differentiation ability of MSCs, which may be highly related to the porous structure of hydroxyapatite on Ti interface. In vivo test of Micro-CT, H&E staining, and histochemical staining further confirmed that Ti/HAp/OHA-Apt was able to promote MSC recruitment at the peri-implant interface to form new bone. This work provides a new approach to develop functional Ti-based materials for bone defect repair.
Assuntos
Células-Tronco Mesenquimais , Organofosfonatos , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Preparações de Ação Retardada/farmacologia , Dimaprit/análogos & derivados , Durapatita/química , Ácido Hialurônico/farmacologia , Muramidase/metabolismo , Osseointegração , Osteogênese , Propriedades de Superfície , Tensinas/metabolismo , Titânio/química , Vinculina/metabolismoRESUMO
The formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis. Using BioID mass spectrometry and a mitochondrial targeting assay, we establish that tensin3 associates with the mechanosensors such as talin and vinculin. We show that the talin R11 rod domain binds directly to a helical motif within the central intrinsically disordered region (IDR) of tensin3, whilst vinculin binds indirectly to tensin3 via talin. Using CRISPR knock-out cells in combination with defined tensin3 mutations, we show (i) that tensin3 is critical for the formation of α5ß1-integrin FBs and for fibronectin fibrillogenesis, and (ii) the talin/tensin3 interaction drives this process, with vinculin acting to potentiate it.
Assuntos
Fibronectinas , Adesões Focais , Talina , Tensinas , Adesão Celular , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Tensinas/genética , Tensinas/metabolismo , Vinculina/genética , Vinculina/metabolismoRESUMO
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) has neurotoxicity, but its mechanism remains unclear. Evidence recently showed that ferroptosis might be associated with TDCPP-induced neurotoxicity. To explore the role and underlying mechanism of ferroptosis in TDCPP-induced neurotoxicity, the occurrence of ferroptosis was examined in mice and PC12 cells upon TDCPP exposure. The mechanism of TDCPP-induced ferroptosis was clarified in vitro combined with the RNA sequencing assay. The in vivo results showed that orally TDCPP exposure (100 mg/kg, 30 d) inhibited the learning and memory ability of mice, reduced hippocampus neurons, induced malondialdehyde (MDA) accumulation, and decreased glutathione (GSH) and superoxide dismutase (SOD) levels in the hippocampus. Moreover, TDCPP exposure (100 mg/kg, 30 d) altered the ferroptosis and autophagy-related protein abundances in the hippocampus. The in vitro results showed that TDCPP exposure (0, 5, 20, 50, 100, and 200 µM) for 24 h induced dose-dependent cell death in PC12 cells, and the cell death was ameliorated by the co-treatment with ferrostatin-1 (1 µM, 24 h). Similarly, TDCPP exposure (0, 50, 100, and 200 µM) for 24 h increased the levels of MDA and LPO, but decreased the reduced GSH in PC12 cells. Furthermore, TDCPP exposure (0, 50, 100, and 200 µM) for 24 h altered the ferroptosis and autophagy-related protein abundances in PC12 cells. The RNA-sequencing revealed that TDCPP exposure (100 µM, 24 h) induced mitophagy activation in SH-SY5Y cells. Meanwhile, the in vitro experiments confirmed that TDCPP exposure (0, 50, 100, and 200 µM) for 24 h increased abundances of mitophagy-related protein phosphatase and tensin homolog induced kinase 1(PINK1), Parkinson protein 2 E3 ubiquitin-protein ligase (PARKIN), inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), and voltage-dependent anion channel 1 (VDAC1) in PC12 cells. Moreover, TDCPP treatment (100 µM, 24 h) increased the mitochondrial recruitment of PARKIN, decreased the mitochondrial membrane potential (MMP) level, and increased the Fe2+ level in mitochondria. In addition, decreased ATP levels and increased reactive oxygen species (ROS) levels were observed in PC12 cells upon TDCPP exposure (0, 50, 100, and 200 µM) for 24 h. In summary, ferroptosis was associated with TDCPP-induced neurotoxicity, and the mechanism might be related to PINK1/PARKIN-mediated mitophagy initiated by mitochondrial damage.
Assuntos
Ferroptose , Retardadores de Chama , Neuroblastoma , Síndromes Neurotóxicas , Trifosfato de Adenosina , Animais , Proteínas Relacionadas à Autofagia , Glutationa/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Malondialdeído , Camundongos , Mitofagia/fisiologia , Compostos Organofosforados , Fosfatos/metabolismo , Proteínas Quinases/metabolismo , RNA , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tensinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Canal de Ânion 1 Dependente de VoltagemRESUMO
Thymoquinone, as one of the main constituents of black seed, has impressive medicinal properties. In the present study, the interaction of this compound and its five derivatives with phosphatase and tensin homolog (PTEN), which is the second most highly mutated protein in a wide variety of human cancers, has been studied using molecular docking and molecular dynamics simulation studies. Molecular docking results show that thymoquinone derivatives bounded to PTEN and have relatively suitable binding energies. Analysis of molecular dynamics (MD) simulation results suggested that the interactions between thymoquinone analogues and PTEN are stable, and the binding of the ligands limited the flexibility of key residues in the binding site of this protein. Furthermore, data analysis of all the compounds indicates the predominant roles of hydrogen bonds and van der Waals interactions in the ligand binding process to PTEN. Finally, adsorption, distribution, metabolism, and excretion (ADME) analysis predicted that all of these compounds obeyed Lipinski's RO5 and did not show any violation; therefore, all of these compounds can act like a drug. Results of the current study could shed some light on the binding of thymoquinone analogues to PTEN for further experimental studies.