Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.306
Filtrar
1.
J Phys Chem B ; 127(35): 7571-7580, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37641933

RESUMO

Describing protein dynamical networks through amino acid contacts is a powerful way to analyze complex biomolecular systems. However, due to the size of the systems, identifying the relevant features of protein-weighted graphs can be a difficult task. To address this issue, we present the connected component analysis (CCA) approach that allows for fast, robust, and unbiased analysis of dynamical perturbation contact networks (DPCNs). We first illustrate the CCA method as applied to a prototypical allosteric enzyme, the imidazoleglycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima bacteria. This approach was shown to outperform the clustering methods applied to DPCNs, which could not capture the propagation of the allosteric signal within the protein graph. On the other hand, CCA reduced the DPCN size, providing connected components that nicely describe the allosteric propagation of the signal from the effector to the active sites of the protein. By applying the CCA to the IGPS enzyme in different conditions, i.e., at high temperature and from another organism (yeast IGPS), and to a different enzyme, i.e., a protein kinase, we demonstrated how CCA of DPCNs is an effective and transferable tool that facilitates the analysis of protein-weighted networks.


Assuntos
Aminoácidos , Fosfatos , Análise por Conglomerados , Saccharomyces cerevisiae , Thermotoga maritima
2.
Protein J ; 42(5): 502-518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37464145

RESUMO

The mechanism by which glycoside hydrolases control the reaction specificity through hydrolysis or transglycosylation is a key element embedded in their chemical structures. The determinants of reaction specificity seem to be complex. We looked for structural differences in domain B between the 4-α-glucanotransferase from Thermotoga maritima (TmGTase) and the α-amylase from Thermotoga petrophila (TpAmylase) and found a longer loop in the former that extends towards the active site carrying a W residue at its tip. Based on these differences we constructed the variants W131G and the partial deletion of the loop at residues 120-124/128-131, which showed a 11.6 and 11.4-fold increased hydrolysis/transglycosylation (H/T) ratio relative to WT protein, respectively. These variants had a reduction in the maximum velocity of the transglycosylation reaction, while their affinity for maltose as the acceptor was not substantially affected. Molecular dynamics simulations allow us to rationalize the increase in H/T ratio in terms of the flexibility near the active site and the conformations of the catalytic acid residues and their associated pKas.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Thermotoga maritima , Hidrólise , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , alfa-Amilases , Especificidade por Substrato
3.
Methods Mol Biol ; 2671: 157-169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37308645

RESUMO

Encapsulins are a class of protein nanocages that are found in bacteria, which are easy to produce and engineer in E. coli expression systems. The encapsulin from Thermotoga maritima (Tm) is well studied, its structure is available, and without modification it is barely taken up by cells, making it promising candidates for targeted drug delivery. In recent years, encapsulins are engineered and studied for potential use as drug delivery carriers, imaging agents, and as nanoreactors. Consequently, it is important to be able to modify the surface of these encapsulins, for example, by inserting a peptide sequence for targeting or other functions. Ideally, this is combined with high production yields and straightforward purification methods. In this chapter, we describe a method to genetically modify the surface of Tm and Brevibacterium linens (Bl) encapsulins, as model systems, to purify them and characterize the obtain nanocages.


Assuntos
Portadores de Fármacos , Escherichia coli , Sequência de Aminoácidos , Sistemas de Liberação de Medicamentos , Modelos Biológicos , Thermotoga maritima
4.
J Biol Chem ; 299(7): 104888, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276959

RESUMO

Initiation of chromosomal replication requires dynamic nucleoprotein complexes. In most eubacteria, the origin oriC contains multiple DnaA box sequences to which the ubiquitous DnaA initiators bind. In Escherichia coli oriC, DnaA boxes sustain construction of higher-order complexes via DnaA-DnaA interactions, promoting the unwinding of the DNA unwinding element (DUE) within oriC and concomitantly binding the single-stranded (ss) DUE to install replication machinery. Despite the significant sequence homologies among DnaA proteins, oriC sequences are highly diverse. The present study investigated the design of oriC (tma-oriC) from Thermotoga maritima, an evolutionarily ancient eubacterium. The minimal tma-oriC sequence includes a DUE and a flanking region containing five DnaA boxes recognized by the cognate DnaA (tmaDnaA). This DUE was comprised of two distinct functional modules, an unwinding module and a tmaDnaA-binding module. Three direct repeats of the trinucleotide TAG within DUE were essential for both unwinding and ssDUE binding by tmaDnaA complexes constructed on the DnaA boxes. Its surrounding AT-rich sequences stimulated only duplex unwinding. Moreover, head-to-tail oligomers of ATP-bound tmaDnaA were constructed within tma-oriC, irrespective of the directions of the DnaA boxes. This binding mode was considered to be induced by flexible swiveling of DnaA domains III and IV, which were responsible for DnaA-DnaA interactions and DnaA box binding, respectively. Phasing of specific tmaDnaA boxes in tma-oriC was also responsible for unwinding. These findings indicate that a ssDUE recruitment mechanism was responsible for unwinding and would enhance understanding of the fundamental molecular nature of the origin sequences present in evolutionarily divergent bacteria.


Assuntos
Proteínas de Ligação a DNA , Origem de Replicação , Thermotoga maritima , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
5.
J Biol Chem ; 299(6): 104746, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094698

RESUMO

Enzymes from thermophilic organisms are interesting biocatalysts for a wide variety of applications in organic synthesis, biotechnology, and molecular biology. Next to an increased stability at elevated temperatures, they were described to show a wider substrate spectrum than their mesophilic counterparts. To identify thermostable biocatalysts for the synthesis of nucleotide analogs, we performed a database search on the carbohydrate and nucleotide metabolism of Thermotoga maritima. After expression and purification of 13 enzyme candidates involved in nucleotide synthesis, these enzymes were screened for their substrate scope. We found that the synthesis of 2'-deoxynucleoside 5'-monophosphates (dNMPs) and uridine 5'-monophosphate from nucleosides was catalyzed by the already known wide-spectrum thymidine kinase and the ribokinase. In contrast, no NMP-forming activity was detected for adenosine-specific kinase, uridine kinase, or nucleotidase. The NMP kinases (NMPKs) and the pyruvate-phosphate-dikinase of T. maritima exhibited a rather specific substrate spectrum for the phosphorylation of NMPs, while pyruvate kinase, acetate kinase, and three of the NMPKs showed a broad substrate scope with (2'-deoxy)nucleoside 5'-diphosphates as substrates. Based on these promising results, TmNMPKs were applied in enzymatic cascade reactions for nucleoside 5'-triphosphate synthesis using four modified pyrimidine nucleosides and four purine NMPs as substrates, and we determined that base- and sugar-modified substrates were accepted. In summary, besides the already reported TmTK, NMPKs of T. maritima were identified to be interesting enzyme candidates for the enzymatic production of modified nucleotides.


Assuntos
Núcleosídeo-Fosfato Quinase , Thermotoga maritima , Nucleotídeos/química , Fosforilação , Nucleosídeos de Pirimidina/química , Especificidade por Substrato , Thermotoga maritima/enzimologia , Thermotoga maritima/genética , Uridina Monofosfato/metabolismo , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo
6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555681

RESUMO

The basis of MreB research is the study of the MreB protein from the Thermotoga maritima species, since it was the first one whose crystal structure was described. Since MreB proteins from different bacterial species show different polymerisation properties in terms of nucleotide and salt dependence, we conducted our research in this direction. For this, we performed measurements based on tryptophan emission, which were supplemented with temperature-dependent and chemical denaturation experiments. The role of nucleotide binding was studied through the fluorescent analogue TNP-ATP. These experiments show that Thermotoga maritima MreB is stabilised in the presence of low salt buffer and ATP. In the course of our work, we developed a new expression and purification procedure that allows us to obtain a large amount of pure, functional protein.


Assuntos
Actinas , Thermotoga maritima , Actinas/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/metabolismo , Solubilidade , Nucleotídeos/metabolismo
7.
Biochemistry ; 61(23): 2672-2686, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36321948

RESUMO

Bacterial chemoreceptors regulate the cytosolic multidomain histidine kinase CheA through largely unknown mechanisms. Residue substitutions in the peptide linkers that connect the P4 kinase domain to the P3 dimerization and P5 regulatory domain affect CheA basal activity and activation. To understand the role that these linkers play in CheA activity, the P3-to-P4 linker (L3) and P4-to-P5 linker (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allowed for a well-folded kinase domain that retained wild-type (WT)-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registered ∼50-fold lower compared to WT. Neither a WT nor LV1 dimer containing a single P4 domain could autophosphorylate the P1 substrate domain. Autophosphorylation activity was rescued in variants with extended L3 and L4 linkers that favor helical structure and heptad spacing. Autophosphorylation depended on linker spacing and flexibility and not on sequence. Pulse-dipolar electron-spin resonance (ESR) measurements with spin-labeled adenosine 5'-triphosphate (ATP) analogues indicated that CheA autophosphorylation activity inversely correlated with the proximity of the P4 domains within the dimers of the variants. Despite their separation in primary sequence and space, the L3 and L4 linkers also influence the mobility of the P1 substrate domains. In all, interactions of the P4 domains, as modulated by the L3 and L4 linkers, affect domain dynamics and autophosphorylation of CheA, thereby providing potential mechanisms for receptors to regulate the kinase.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas de Bactérias/química , Modelos Moleculares , Thermotoga maritima/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/química
8.
World J Microbiol Biotechnol ; 38(12): 223, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36109417

RESUMO

The first hyperthermophilic L-arabinose/D-galactose 1-dehydrogenase (TmAraDH) from Thermotoga maritima was heterologously purified from Escherichia coli. It belongs to the Gfo/Idh/MocA protein family, prefers NAD+/NADP+ as a cofactor. The purified TmAraDH exhibited maximum activity toward L-arabinose at 75 °C and pH 8.0, and retained 63.7% of its activity after 24 h at 60 °C, and over 60% of its activity after holding a pH ranging from 7.0 to 9.0 for 1 h. Among all tested substrates, TmAraDH exclusively catalyzed the NAD(P)+-dependent oxidation of L-arabinose, D-galactose and D-fucose. The catalytic efficiency (kcat/Km) towards L-arabinose and D-galactose was 123.85, 179.26 min-1 mM-1 for NAD+, and 56.06, 18.19 min-1 mM-1 for NADP+, respectively. TmAraDH exhibited complete oxidative conversion in 12 h at 70 °C to D-galactonate with 5 mM D-galactose. Modelling provides structural insights into the cofactor and substrate recognition specificity. Our results suggest that TmAraDH have great potential for the conversion of L-arabinose and D-galactose to L-arabonate and D-galactonate.


Assuntos
Arabinose , Galactose Desidrogenases/metabolismo , Thermotoga maritima , Arabinose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Galactose , NAD/metabolismo , NADP/metabolismo , Thermotoga maritima/genética
9.
J Biol Chem ; 298(7): 102131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700827

RESUMO

Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.


Assuntos
Proteínas Ferro-Enxofre , Thermotoga maritima , Coenzimas/metabolismo , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Níquel/metabolismo , Nucleotídeos/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
10.
Microbiol Spectr ; 10(4): e0043622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35762779

RESUMO

Thermotoga maritima is an anaerobic hyperthermophilic bacterium that efficiently produces H2 by fermenting carbohydrates. High concentration of H2 inhibits the growth of T. maritima, and S0 could eliminate the inhibition and stimulate the growth through its reduction. The mechanism of T. maritima sulfur reduction, however, has not been fully understood. Herein, based on its similarity with archaeal NAD(P)H-dependent sulfur reductases (NSR), the ORF THEMA_RS02810 was identified and expressed in Escherichia coli, and the recombinant protein was characterized. The purified flavoprotein possessed NAD(P)H-dependent S0 reductase activity (1.3 U/mg for NADH and 0.8 U/mg for NADPH), polysulfide reductase activity (0.32 U/mg for NADH and 0.35 U/mg for NADPH), and thiosulfate reductase activity (2.3 U/mg for NADH and 2.5 U/mg for NADPH), which increased 3~4-folds by coenzyme A stimulation. Quantitative RT-PCR analysis showed that nsr was upregulated together with the mbx, yeeE, and rnf genes when the strain grew in S0- or thiosulfate-containing medium. The mechanism for sulfur reduction in T. maritima was discussed, which may affect the redox balance and energy metabolism of T. maritima. Genome search revealed that NSR homolog is widely distributed in thermophilic bacteria and archaea, implying its important role in the sulfur cycle of geothermal environments. IMPORTANCE The reduction of S0 and thiosulfate is essential in the sulfur cycle of geothermal environments, in which thermophiles play an important role. Despite previous research on some sulfur reductases of thermophilic archaea, the mechanism of sulfur reduction in thermophilic bacteria is still not clearly understood. Herein, we confirmed the presence of a cytoplasmic NAD(P)H-dependent polysulfide reductase (NSR) from the hyperthermophile T. maritima, with S0, polysulfide, and thiosulfate reduction activities, in contrast to other sulfur reductases. When grown in S0- or thiosulfate-containing medium, its expression was upregulated. And the putative membrane-bound MBX and Rnf may also play a role in the metabolism, which might influence the redox balance and energy metabolism of T. maritima. This is distinct from the mechanism of sulfur reduction in mesophiles such as Wolinella succinogenes. NSR homologs are widely distributed among heterotrophic thermophiles, suggesting that they may be vital in the sulfur cycle in geothermal environments.


Assuntos
NAD , Thermotoga maritima , Archaea/metabolismo , Bactérias/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Enxofre/metabolismo , Sulfurtransferases , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Tiossulfatos/metabolismo
11.
PLoS One ; 17(4): e0267536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452497

RESUMO

The bi-enzyme HisF-HisH heterodimer is part of the pathway that produces histidine and purines in bacteria and lower eukaryotes, but it is absent in mammals. This heterodimer has been largely studied probing the basis of the allosteric effects and the structural stability in proteins. It is also a potential target for antibacterial drugs. In this work, we developed a simple method to evaluate changes in the affinity between HisF and HisH in the heterodimer of the bacteria Thermotoga maritima. HisH contains a single tryptophan residue, which is exposed in the free protein, but buried in the heterodimer interface. Hence, the intrinsic fluorescence maximum of this residue changes to shorter wavelengths upon dimerization. Thus, we used the fluorescence intensity at this shorter wavelength to monitor heterodimer accumulation when HisH was combined with sub-stoichiometric HisF. Under conditions where the HisF-HisH heterodimer is in equilibrium with the free states of these enzymes, when [HisH] > [HisF], we deduced a linear function connecting [HisF-HisH] to [HisF], in which the slope depends on the heterodimer dissociation constant (Kd). Based on this equation, taking fluorescence intensities as proxies of the heterodimer and HisF concentrations, we experimentally determined the Kd at four different temperatures. These Kd values were compared to those evaluated using ITC. Both methods revealed an increase in the HisF and HisH binding affinity as the temperature increases. In spite of differences in their absolute values, the Kd determined using these methods presented an evident linear correlation. To demonstrate the effectiveness of the fluorescence method we determined the effect on the Kd caused by 12 single mutations in HisF. Coherently, this test singled out the only mutation in the binding interface. In brief, the method described here effectively probes qualitative effects on the Kd, can be carried out using common laboratory equipment and is scalable.


Assuntos
Aminoidrolases , Thermotoga maritima , Aminoidrolases/genética , Histidina/metabolismo
12.
FEBS J ; 289(19): 5933-5946, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35377552

RESUMO

The hyperthermophilic bacterium Thermotoga maritima has an atypical peptidoglycan that contains d-lysine alongside the usual d-alanine and d-glutamate. We previously identified a lysine racemase involved in d-lysine biosynthesis, and this enzyme also possesses alanine racemase activity. However, T. maritima has neither alanine racemase nor glutamate racemase enzymes; hence, the precise biosynthetic pathways of d-alanine and d-glutamate remain unclear in T. maritima. In the present study, we identified and characterized a novel d-amino acid aminotransferase (TM0831) in T. maritima. TM0831 exhibited aminotransferase activity towards 23 d-amino acids, but did not display activity towards l-amino acids. It displayed high specific activities towards d-homoserine and d-glutamine as amino donors. The most preferred acceptor was 2-oxoglutarate, followed by glyoxylate. Additionally, TM0831 displayed racemase activity towards four amino acids including aspartate and glutamate. Catalytic efficiency (kcat /Km ) for aminotransferase activity was higher than for racemase activity, and pH profiles were distinct between these two activities. To evaluate the functions of TM0831, we constructed a TTHA1643 (encoding glutamate racemase)-deficient Thermus thermophilus strain (∆TTHA1643) and integrated the TM0831 gene into the genome of ∆TTHA1643. The growth of this TM0831-integrated strain was promoted compared with ∆TTHA1643 and was restored to almost the same level as that of the wild-type strain. These results suggest that TM0831 is involved in d-glutamate production. TM0831 is a novel d-amino acid aminotransferase with racemase activity that is involved in the production of d-amino acids in T. maritima.


Assuntos
Alanina Racemase , Aminoácidos , Alanina/genética , Alanina/metabolismo , Alanina Racemase/metabolismo , Aminoácidos/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Vias Biossintéticas , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glioxilatos , Homosserina/metabolismo , Ácidos Cetoglutáricos , Lisina/genética , Lisina/metabolismo , Peptidoglicano/metabolismo , Thermotoga maritima/genética , Transaminases/genética , Transaminases/metabolismo
13.
Commun Biol ; 5(1): 257, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322207

RESUMO

AAA+ proteases regulate numerous physiological and cellular processes through tightly regulated proteolytic cleavage of protein substrates driven by ATP hydrolysis. FtsH is the only known family of membrane-anchored AAA+ proteases essential for membrane protein quality control. Although a spiral staircase rotation mechanism for substrate translocation across the FtsH pore has been proposed, the detailed conformational changes among various states have not been clear due to absence of FtsH structures in these states. We report here the cryo-EM structure for Thermotoga maritima FtsH (TmFtsH) in a fully ADP-bound symmetric state. Comparisons of the ADP-state structure with its apo-state and a substrate-engaged yeast YME1 structure show conformational changes in the ATPase domains, rather than the protease domains. A reconstruction of the full-length TmFtsH provides structural insights for the dynamic transmembrane and the periplasmic domains. Our structural analyses expand the understanding of conformational switches between different nucleotide states in ATP hydrolysis by FtsH.


Assuntos
Proteases Dependentes de ATP , Thermotoga maritima , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
14.
Int J Biol Macromol ; 203: 535-542, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120932

RESUMO

The inter-subunit interaction at the protein interfaces plays a key role in protein self-assembly, through which enabling protein self-assembly controllable is of great importance for preparing the novel nanoscale protein materials with unexplored properties. Different from normal 24-meric ferritin, archaeal ferritin, Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer, which can assemble into a 24-mer nanocage induced by salts. However, the regulation mechanism of protein self-assembly underlying this phenomenon remains unclear. Here, a combination of the computational energy simulation and key interface reconstruction revealed that a short helix involved interactions at the C4 interface are mainly responsible for the existence of such dimer. Agreeing with this idea, deletion of such short helix of each subunit triggers it to be a stable dimer, which losses the ability to reassemble into 24-meric ferritin in the presence of salts in solution. Further support for this idea comes from the observation that grafting a small helix from human H ferritin onto archaeal subunit resulted in a stable 24-mer protein nanocage even in the absence of salts. Thus, these findings demonstrate that adjusting the interactions at the protein interfaces appears to be a facile, effective approach to control subunit assembly into different protein architectures.


Assuntos
Ferritinas , Thermotoga maritima , Ferritinas/química , Humanos , Polímeros/metabolismo , Thermotoga maritima/metabolismo
15.
Appl Microbiol Biotechnol ; 106(5-6): 2017-2027, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171339

RESUMO

A hyperthermostable xylanase XYN10B from Thermotoga maritima (PDB code 1VBR, GenBank accession number KR078269) was subjected to site-directed and error-prone PCR mutagenesis. From the selected five mutants, the two site-directed mutants (F806H and F806V) showed a 3.3-3.5-fold improved enzyme half-life at 100 °C. The mutant XYNA generated by error-prone PCR showed slightly improved stability at 100 °C and a lower Km. In XYNB and XYNC, the additional mutations over XYNA decreased the thermostability and temperature optimum, while elevating the Km. In XYNC, two large side-chains were introduced into the protein's interior. Micro-differential scanning calorimetry (DSC) showed that the melting temperature (Tm) dropped in XYNB and XYNC from 104.9 °C to 93.7 °C and 78.6 °C, respectively. The detrimental mutations showed that extremely thermostable enzymes can tolerate quite radical mutations in the protein's interior and still retain high thermostability. The analysis of mutations (F806H and F806V) in a hydrophobic area lining the substrate-binding region indicated that active site hydrophobicity is important for high activity at extreme temperatures. Although polar His at 806 provided higher stability, the hydrophobic Phe at 806 provided higher activity than His. This study generates an understanding of how extreme thermostability and high activity are formed in GH10 xylanases. KEY POINTS: • Characterization and molecular dynamics simulations of TmXYN10B and its mutants • Explanation of structural stability of GH10 xylanase.


Assuntos
Endo-1,4-beta-Xilanases , Thermotoga maritima , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Mutação , Temperatura , Thermotoga maritima/genética
16.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163512

RESUMO

The transcriptional repressor Rex plays important roles in regulating the expression of respiratory genes by sensing the reduction-oxidation (redox) state according to the intracellular NAD+/NADH balance. Previously, we reported on crystal structures of apo, NAD+-bound, and NADH-bound forms of Rex from Thermotoga maritima to analyze the structural basis of transcriptional regulation depending on either NAD+ or NADH binding. In this study, the crystal structure of Rex in ternary complex with NAD+ and operator DNA revealed that the N-terminal domain of Rex, including the helix-turn-helix motif, forms extensive contacts with DNA in addition to DNA sequence specificity. Structural comparison of the Rex in apo, NAD+-bound, NADH-bound, and ternary complex forms provides a comprehensive picture of transcriptional regulation in the Rex. These data demonstrate that the conformational change in Rex when binding with the reduced NADH or oxidized NAD+ determines operator DNA binding. The movement of the N-terminal domains toward the operator DNA was blocked upon binding of NADH ligand molecules. The structural results provide insights into the molecular mechanism of Rex binding with operator DNA and cofactor NAD+/NADH, which is conserved among Rex family repressors. Structural analysis of Rex from T. maritima also supports the previous hypothesis about the NAD+/NADH-specific transcriptional regulation mechanism of Rex homologues.


Assuntos
DNA Bacteriano/metabolismo , NAD/metabolismo , Proteínas Repressoras/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Thermotoga maritima/química , Thermotoga maritima/genética
17.
Elife ; 112022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084331

RESUMO

The Mre11-Rad50-Nbs1 protein complex is one of the first responders to DNA double-strand breaks. Studies have shown that the catalytic activities of the evolutionarily conserved Mre11-Rad50 (MR) core complex depend on an ATP-dependent global conformational change that takes the macromolecule from an open, extended structure in the absence of ATP to a closed, globular structure when ATP is bound. We have previously identified an additional 'partially open' conformation using luminescence resonance energy transfer (LRET) experiments. Here, a combination of LRET and the molecular docking program HADDOCK was used to further investigate this partially open state and identify three conformations of MR in solution: closed, partially open, and open, which are in addition to the extended, apo conformation. Mutants disrupting specific Mre11-Rad50 interactions within each conformation were used in nuclease activity assays on a variety of DNA substrates to help put the three states into a functional perspective. LRET data collected on MR bound to DNA demonstrate that the three conformations also exist when nuclease substrates are bound. These models were further supported with small-angle X-ray scattering data, which corroborate the presence of multiple states in solution. Together, the data suggest a mechanism for the nuclease activity of the MR complex along the DNA.


Assuntos
Clivagem do DNA , Reparo do DNA , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Medições Luminescentes , Simulação de Acoplamento Molecular , Conformação Proteica , Pyrococcus furiosus/química , Thermotoga maritima/química
18.
Biochim Biophys Acta Biomembr ; 1864(3): 183825, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871574

RESUMO

The evolutionary conserved YidC is a unique dual-function membrane protein that adopts insertase and chaperone conformations. The N-terminal helix of Escherichia coli YidC functions as an uncleaved signal sequence and is important for membrane insertion and interaction with the Sec translocon. Here, we report the first crystal structure of Thermotoga maritima YidC (TmYidC) including the N-terminal amphipathic helix (N-AH) (PDB ID: 6Y86). Molecular dynamics simulations show that N-AH lies on the periplasmic side of the membrane bilayer forming an angle of about 15° with the membrane surface. Our functional studies suggest a role of N-AH for the species-specific interaction with the Sec translocon. The reconstitution data and the superimposition of TmYidC with known YidC structures suggest an active insertase conformation for YidC. Molecular dynamics (MD) simulations of TmYidC provide evidence that N-AH acts as a membrane recognition helix for the YidC insertase and highlight the flexibility of the C1 region underlining its ability to switch between insertase and chaperone conformations. A structure-based model is proposed to rationalize how YidC performs the insertase and chaperone functions by re-positioning of N-AH and the other structural elements.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Thermotoga maritima/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica
19.
Appl Environ Microbiol ; 88(2): e0176321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731048

RESUMO

Membrane-spanning lipids are present in a wide variety of archaea, but they are rarely in bacteria. Nevertheless, the (hyper)thermophilic members of the order Thermotogales harbor tetraester, tetraether, and mixed ether/ester membrane-spanning lipids mostly composed of core lipids derived from diabolic acids, C30, C32, and C34 dicarboxylic acids with two adjacent mid-chain methyl substituents. Lipid analysis of Thermotoga maritima across growth phases revealed a decrease of the relative abundance of fatty acids together with an increase of diabolic acids with independence of growth temperature. We also identified isomers of C30 and C32 diabolic acids, i.e., dicarboxylic acids with only one methyl group at C-15. Their distribution suggests they are products of the condensation reaction but are preferably produced when the length of the acyl chains is not optimal. Compared with growth at the optimal temperature of 80°C, an increase of glycerol ether-derived lipids was observed at 55°C. Our analysis only detected diabolic acid-containing intact polar lipids with phosphoglycerol (PG) head groups. Considering these findings, we hypothesize a biosynthetic pathway for the synthesis of membrane-spanning lipids based on PG polar lipid formation, suggesting that the protein catalyzing this process is a membrane protein. We also identified, by genomic and protein domain analyses, a gene coding for a putative plasmalogen synthase homologue in T. maritima that is also present in other bacteria producing sn-1-alkyl ether lipids but not plasmalogens, suggesting it is involved in the conversion of the ester-to-ether bond in the diabolic acids bound in membrane-spanning lipids. IMPORTANCE Membrane-spanning lipids are unique compounds found in most archaeal membranes, but they are also present in specific bacterial groups like the Thermotogales. The synthesis and physiological role of membrane-spanning lipids in bacteria represent an evolutionary and biochemical open question that points to the differentiation of the membrane lipid composition. Understanding the formation of membrane-spanning lipids is crucial to solving this question and identifying the enzymatic and biochemical mechanism performing this procedure. In the present work, we found changes at the core lipid level, and we propose that the growth phase drives the biosynthesis of these lipids rather than temperature. Our results identified physiological conditions influencing the membrane-spanning lipid biosynthetic process, which can further clarify the pathway leading to the biosynthesis of these compounds.


Assuntos
Lipídeos de Membrana , Thermotoga maritima , Ácidos Dicarboxílicos , Éter , Éteres , Lipídeos de Membrana/metabolismo , Temperatura , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
20.
J Biomol Struct Dyn ; 40(3): 1387-1399, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016853

RESUMO

EngA, a GTPase involved in the late steps of ribosome maturation, consists of two GTP binding domains (G-domains) [GD1, GD2] and a C-terminal domain. The combination of GTP/GDP in G-domains dictates its binding to the ribosomal subunits by altering its conformation. Studies and comparisons on the available structures of EngA enable us to understand the correlation between nucleotide bound states and its conformation. Using all-atom molecular dynamics (MD) simulations, we have explored the conformational behavior of EngA from Thermotoga maritima (TmDer) upon binding the various combinations of GTP and GDP. Analyses of Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) emphasize the importance of the second G-domain nucleotide bound state. RMSD and Rg exhibit slightly lower values when GTP is embedded in GD2 compared to GDP. These lower values are due to Sw-II of GD2, which has been observed from RMSF plot. Further investigation on the effects of GD2 nucleotide bound state using Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analysis manifests an allosteric connection between GD2 nucleotide bound state and the GD1-KH interface. This is further validated by extracting electrostatic interactions and H-bonds at the GD1-KH interface. In silico mutations at the GD1 interface of KH domain affect the Sw-II mobility of GD2 by showing inverted behavior. This suggests using the second G-domain as an antibacterial target and further simulation studies on different species of EngA are to be explored.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Thermotoga maritima , GTP Fosfo-Hidrolases/química , Guanosina Difosfato , Guanosina Trifosfato , Ribossomos/metabolismo , Thermotoga maritima/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...