Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.017
Filtrar
1.
Mikrochim Acta ; 189(6): 214, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513500

RESUMO

A competitive electrochemiluminescence immunoassay was established based on the isoluminol-H2O2 (ABEI-H2O2) system catalyzed by cobalt hydroxide (Co(OH)2) to detect florfenicol residues in food. First , ultra-thin two-dimensional Co(OH)2 nanosheets were used as the catalyst of ABEI-H2O2 system, and excellent catalytic effects were acquired by catalytic decomposition of hydrogen peroxide with cobalt ions. Then, bimetal PdAg (Pd/Ag) alloy nanoparticles were used as a bridge to connect ABEI and antibody due to their good biocompatibility; Pd/Ag alloy nanoparticles also had a catalytic effect to further amplify the ECL signal in the system due to the synergistic catalytic effect of the bimetal. A competitive immunoassay strategy was used to detect florfenicol, where the florfenicol in the sample will compete with the antibody for the limited binding sites on the coating antigen. The ECL immunosensor for florfenicol detection shows high sensitivity, with a linear range from 10-4  to 102 ng mL-1, and a detection limit of 3.1 × 10-5 ng mL-1, where the scan potential was varied from 0 to 0.6 V vs Ag/AgCl . This work was the first to use Co(OH)2 nanosheets and bimetal PdAg catalytic signal amplification methods to design the sensor, which provides a novel, convenient and reliable strategy for ultra-sensitive detection of florfenicol, and other biological small molecules. A novel ECL immunosensor based on ABEI-H2O22.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ligas , Técnicas Biossensoriais/métodos , Cobalto/química , Peróxido de Hidrogênio/química , Hidróxidos , Imunoensaio/métodos , Limite de Detecção , Medições Luminescentes/métodos , Luminol/análogos & derivados , Nanopartículas Metálicas/química , Tianfenicol/análogos & derivados
2.
Anal Chim Acta ; 1208: 339849, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35525594

RESUMO

It is important to establish a sensitive and rapid screening detection method for Florfenicol (FF) residue in eggs. A magnetic relaxation switch (MRS) and colorimetric aptasensor were developed for the detection of FF based on aptamer-modified Au@Fe3O4 nanoparticles (NPs). Apt-Au@Fe3O4 NPs were played as a "switch" between dispersion and aggregation, with a concomitant change in the R2 (T2 relaxivity, 1/T2W) and the UV-vis absorption spectra. To improve the sensitivity and stability of the method, the aptamers modification, salt inducing aggregation, and reaction conditions were optimized. The molar ratio of aptamers to Au, the incubation time of aptamers modification, the molar ratio of NaCl to Au, the dilute ratio of Apt-Au@Fe3O4, and reaction time were optimized to be 2:1, 3 h, 15:1, 1:300 and 15 min, respectively. The working range and LOD of MRS analysis are 0.1-10 nM and 1.10 nM for Florfenicol amine (FFA), 4-40 nM and 5.65 nM for FF. Noticeably, the colorimetric analysis can also qualitatively analyze the FF and FFA. The working ranges and LOD were 5-40 µM (5 µM) and 10-40 µM (10 µM), respectively. Hence, the results indicated that this aptasensor could be a potential tool for the rapid detection of FF residue in food.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Tianfenicol , Aptâmeros de Nucleotídeos/química , Colorimetria , Ouro/química , Limite de Detecção , Fenômenos Magnéticos , Tianfenicol/análogos & derivados , Tianfenicol/análise
3.
Ecotoxicol Environ Saf ; 237: 113529, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487170

RESUMO

Florfenicol (FFC) is a common antibiotic for animals. The nonstandard and excessive use of FFC can cause veterinary drug residues in animals, pollute soil and marine environment, and even threaten human health. Therefore, it is necessary to study the toxicity and side effects of FFC on animals. Our previous studies have proved that FFC can cause liver injury in chicks, but there are few in-depth studies on the mechanism of FFC causing liver injury at the level of signaling pathway in chicks. Therefore, transcriptome and proteome sequencing were performed and combined analysis was performed. Sequencing results showed that 1989 genes and 917 proteins were significantly changed in chick livers after FFC exposure. These genes and proteins are related to redox, glutathione transferase activity and lipid metabolism. There are 9 significantly different genes and 7 significantly different proteins in glutathione signaling pathway. Oxidative stress may occur in the liver of chicks through the change of activation state of glutathione signaling pathway. And there are 13 significantly different genes and 18 significantly different proteins in PPAR signaling pathway. The changes of PPAR signaling pathway may induce lipid metabolism disorder in liver. The verification results of qPCR and PRM were consistent with the sequencing results. We also detected GSH-Px, GSH, GST, TG, TC and ANDP levels in liver. These changes of biochemical indicators directly confirmed oxidative stress and lipid metabolism disorders were occurred in the livers of chicks treated by FFC. In conclusion, FFC could induce liver injury in chicks by regulating the expression levels of significantly different genes and proteins in glutathione signaling pathway and PPAR signaling pathway.


Assuntos
Fígado , Receptores Ativados por Proliferador de Peroxissomo , Animais , Galinhas/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Tianfenicol/análogos & derivados
4.
Analyst ; 147(7): 1321-1328, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35258055

RESUMO

The emergence and progress of metal-organic frameworks (MOFs) with high stability, large surface area, and abundant unsaturated active sites, once again promote the development of nanozymes, making nanozymes more advantageous to replace natural enzymes and will increase the applications of chemiluminescence immunoassay. In this study, a flow injection chemiluminescence immunoassay based on Ni/Co metal-organic framework (Ni/Co-MOF) nanozymes was developed, which can quickly and highly sensitively detect florfenicol (FF) in animal-derived food residues. Ni/Co-MOF0.75 nanospheres can not only form stable immune probes with antibodies but also act as nanozymes to efficiently catalyze H2O2 for amplifying the chemiluminescence signal of the luminol-H2O2 system. In addition, due to good biocompatibility and large specific surface area, carboxyl-modified resin beads are used as a suitable material for loading more coating antigens. Based on the principle of competitive immunity, FF standard solution will compete with coating antigen loaded on the carboxyl resin beads for the limited binding sites on the FF antibody. Under the best experimental conditions, the detection range of FF is 0.0001-1000 ng mL-1, and the detection limit (LOD) is 0.033 pg mL-1 (S/N = 3). Furthermore, this method has been successfully applied to the analysis of actual samples with satisfactory results, which will provide a certain reference for the detection of small molecules in food and environmental analysis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Animais , Cobalto , Peróxido de Hidrogênio , Imunoensaio/métodos , Limite de Detecção , Luminescência , Níquel , Tianfenicol/análogos & derivados
5.
J Food Prot ; 85(5): 740-746, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258564

RESUMO

ABSTRACT: The use of florfenicol in farm animals may select enterococci that carry resistance genes that confer resistance to linezolid, a critically important oxazolidinone antibiotic used in human medicine. This cross-sectional study aimed to assess the occurrence of oxazolidinone resistance genes in florfenicol-resistant enterococci from fattening pigs in Switzerland and to characterize a subset of the isolates using whole genome sequencing. A total of 31 florfenicol-resistant enterococcal isolates were obtained from 27 (5%) of 565 cecal samples of fattening pigs from seven (11%) of 62 farms. Screening by PCR revealed the presence of cfr-poxtA in 1 of 31, optrA in 15 of 31, and poxtA in 15 of 31 enterococcal isolates. One randomly selected isolate per PCR-positive Enterococcus species and positive farm was selected for further analysis (n = 10). In nine of the 10 isolates, the presence of oxazolidinone resistance genes did not result in phenotypic resistance. Whole genome sequencing analysis showed the presence of E. faecalis (n = 1), E. faecium (n = 1), and E. hirae (n = 1), harboring optrA18, optrA7, and a new optrA allele, respectively. E. durans (n = 1), E. faecium (n = 4), and E. hirae (n = 1) carried the wild-type poxtA, and E. faecalis (n = 1) coharbored cfr(D) and poxtA2. Except for optrA7, all oxazolidinone resistance genes were found on plasmids. Multilocus sequence typing analysis identified E. faecalis ST19 and ST376, E. faecium ST80 belonging to hospital-adapted clade A1, and E. faecium ST21, ST55, ST269, and ST416 belonging to clade A2, which represents human commensals and animal strains. The occurrence of cfr(D), optrA, and poxtA in various porcine Enterococcus spp. demonstrates the spread of oxazolidinone resistance genes among enterococci from fattening pigs in Switzerland. The presence in one sample of poxtA-carrying E. faecium ST80 emphasizes the potential risk to human health through dissemination of strains carrying oxazolidinone resistance genes into the food chain.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Oxazolidinonas , Animais , Antibacterianos/farmacologia , Estudos Transversais , Farmacorresistência Bacteriana/genética , Enterococcus , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Testes de Sensibilidade Microbiana , Suínos , Tianfenicol/análogos & derivados
6.
Food Chem ; 379: 132070, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114519

RESUMO

Florfenicol is a broad spectrum antibacterial, licensed globally for treatment of animal and aquaculture diseases. In the EU, Canada and US it is not permitted for use in animals producing milk or eggs. There are no published methods for analysis of total florfenicol content in milk/milk products as these lack a hydrolysis step, failing to meet the marker residue definition. A method for determining total florfenicol content in milk that meets this definition is reported for the first time. Use of a UHPLC-MS/MS multiple reaction monitoring-cubed method improved the selective detection and quantitation of lower levels of florfenicol amine in milk compared to MRM only. Single laboratory validation data and withdrawal profile in bovine milk are presented. A withdrawal period of over 50 days is indicated in case of off-label use. Requirement for hydrolysis is demonstrated.


Assuntos
Resíduos de Drogas , Tianfenicol , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Resíduos de Drogas/análise , Limite de Detecção , Leite/química , Espectrometria de Massas em Tandem , Tianfenicol/análogos & derivados , Tianfenicol/análise
7.
Ecotoxicol Environ Saf ; 233: 113339, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219255

RESUMO

Florfenicol (FFC) is a commonly used antibiotic in animal husbandry, which is easy to cause organs damage in a variety of animals. It has been proved to have nephrotoxicity and affect the yield and quality of meat products. Salvia miltiorrhiza polysaccharides (SMPs) have been proved to have the pharmacological effects of regulating immunity and protecting the liver of animals, and its alleviative effect on renal injury is unclear. In order to investigate the alleviating effect of SMPs on drug nephrotoxicity and determine its potential molecular mechanism, we took chicks as the research object, FFC as the induced drug, and established the model by adding SMPs in drinking water. The chicks were randomly divided into control group, FFC model group (0.15 g/L FFC), FFC + low, medium and high dose of SMPs groups (0.15 g/L FFC + 1.25, 2.5, 5 g/L SMPs) and SMPs group (5 g/L SMPs). The results showed that, SMPs increased the average weight gain and renal index of chicks, alleviated the pathological changes of renal structure induced by FFC, decreased the contents of uric acid, blood urea nitrogen and creatinine in serum and malondialdehyde in renal tissue, increased the levels of glutathione, superoxide dismutase and catalase in renal tissue, up-regulated the relative expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1 (NQO-1) mRNA and protein, and down-regulated the relative expression levels of p53, Caspase-3 and Caspase-6 mRNA and protein and the apoptosis rate of renal histiocytes. It is concluded that SMPs could significantly alleviate the renal injury induced by FFC, and its mechanism may be related to improving renal antioxidant capacity and inhibiting abnormal apoptosis of renal histiocytes.


Assuntos
Salvia miltiorrhiza , Animais , Apoptose , Rim , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Salvia miltiorrhiza/química , Tianfenicol/análogos & derivados
8.
Fish Shellfish Immunol ; 123: 298-313, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189324

RESUMO

Antibiotics are used to treat bacterial infections in fish aquaculture, and these drugs can interact with immune cells/the immune system and potentially leave fish vulnerable to viral, fungal, parasitic, or other bacterial infections. However, the effects of antibiotics on fish immunity have largely been overlooked by the aquaculture industry. We tested, at 12 and 20 °C, whether tetracycline and florfenicol (the most commonly used antibiotics in commercial aquaculture), affected the Atlantic salmon's capacity to respond to bacterial or viral stimulation. Atlantic salmon were acclimated to 12 or 20 °C and fed with tetracycline or florfenicol (100 and 10 mg kg of body weight-1 day-1, respectively) medicated feed for 15 or 10 days, respectively. Thereafter, we evaluated their immune function prior to, and after, an intraperitoneal injection of Forte Micro (containing inactivated cultures of Aeromonas salmonicida, Vibrio anguillarum, Vibrio ordalii and Vibrio salmonicida) or the viral mimic polyriboinosinic polyribocytidylic acid (pIC). We measured the transcript expression levels of 8 anti-bacterial and 8 anti-viral putative biomarker genes, and the innate (leukocyte respiratory burst, plasma lysozyme activity and hemolytic activity of the alternative complement pathway) and cellular (relative number of erythrocytes, lymphocytes and thrombocytes, and granulocytes such as monocytes and neutrophils) responses to these challenges. Overall, we only found a few minor effects of either tetracycline or florfenicol on immune gene expression or function at either temperature. Although several studies have reported that antibiotics may negatively affect fish immune responses, our results show that industry-relevant dietary tetracycline and florfenicol treatments do not substantially impact the salmon's innate immune responses. Currently, this is the most comprehensive study on the effects of antibiotics administrated according to industry protocols on immune function in Atlantic salmon.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Antibacterianos/farmacologia , Imunidade Inata , Tetraciclina , Tianfenicol/análogos & derivados
9.
World J Microbiol Biotechnol ; 38(3): 37, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018528

RESUMO

Thiamphenicol (TAP) is an amphenicol antibiotic, which has a broad-spectrum inhibitory effect on both gram-positive and gram-negative bacteria. Since it is widely used in animals and aquaculture, its residues in environment may bring potential risk for human health and ecosystems. While TAP can be removed through conventional physical or chemical methods, its bioremediation using microorganisms is less studied. Here, we report the removal of TAP by a bacterial strain, Aeromonas hydrophila HS01, which can remove more than 90.0% of TAP in a living cell-dependent manner. Our results indicated that its removal efficiency can be greatly affected by the growth condition. Proteomics studies revealed a number of differentially expressed proteins of HS01 in the presence of TAP, which may play critical roles in the transportation and degradation of TAP. All these results indicate bacterial strain A. hydrophila HS01 is a new microbial resource for efficiently removing TAP, and may shed new insights in developing bioremediation approaches for TAP pollution.


Assuntos
Aeromonas hydrophila/metabolismo , Antibacterianos/metabolismo , Tianfenicol/metabolismo , Animais , Antibacterianos/farmacologia , Aquicultura , Biodegradação Ambiental , Ecossistema , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Proteômica/métodos , Tianfenicol/farmacologia
10.
J Vet Intern Med ; 36(2): 820-828, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994480

RESUMO

BACKGROUND: Respiratory infections are the main indication for antimicrobial use in calves. Optimal treatment duration currently is unknown, but shorter duration would likely decrease selection for antimicrobial resistance. HYPOTHESIS/OBJECTIVES: Determine differences in cure rate and healing time between animals treated with florfenicol and oxytetracycline in a natural outbreak of respiratory disease using reaeration observed on thoracic ultrasound examination as healing criterion. ANIMALS: Commercial farm housing 130, 3 to 9 month old Belgian blue beef calves. METHODS: Randomized clinical trial during an outbreak of respiratory disease. Metaphylactic treatment was initiated, randomly treating animals with either florfenicol or oxytetracycline. Ultrasonographic follow-up was done the first day and every other day for a 14-day period. At the individual animal level, treatment was discontinued when reaeration of the lungs occurred. Differences in cure rate and healing time were determined. RESULTS: Of the 130 animals studied, 67.7% developed a lung consolidation ≥0.5 cm. The mean ultrasonographic healing time was 2.5 days in the florfenicol group compared to 3.1 days in the oxytetracycline group (P = .04). After single treatment, 80.6% and 60.3% had no consolidations in the florfenicol and oxytetracycline groups, respectively (P = .01). A Mycoplasma bovis strain was genetically and phenotypically determined to be susceptible to both antimicrobials. CONCLUSIONS AND CLINICAL IMPORTANCE: Ultrasonographic lung reaeration shows potential as a cure criterion to rationalize antimicrobial use for outbreaks of pneumonia. In our study, florfenicol resulted in a faster cure and higher reduction in antimicrobial usage than did oxytetracycline.


Assuntos
Doenças dos Bovinos , Oxitetraciclina , Pneumonia , Animais , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Surtos de Doenças/veterinária , Pulmão/diagnóstico por imagem , Oxitetraciclina/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/veterinária , Tianfenicol/análogos & derivados
11.
J Appl Microbiol ; 132(3): 1802-1812, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34689393

RESUMO

AIMS: Aeromonas hydrophila is an opportunistic bacterium, with a high capacity for biofilm production, which can cause severe damage in aquaculture. The objective of this study was to identify the chemical compounds of the essential oils of Lippia sidoides (EOLS) and Cymbopogon citratus (EOCC), and to evaluate the biocidal, antibiofilm and synergistic action with the antimicrobial florfenicol of these essential oils (EOs) against A. hydrophila. METHODS AND RESULTS: The antibacterial activity of EOLS and EOCC was verified by the minimum bactericidal concentration and by the action of these EOs against both forming and consolidated biofilms. The synergistic activity of EOs with florfenicol was performed using the checkerboard technique. The main component of EOLS and EOCC was carvacrol (44.50%) and α-citral (73.56%), respectively. Both EOs showed weak inhibitory activity (≥3125.00 µg ml-1 ). Two bacterial isolates were able to produce biofilm, and EOLS and EOCC acted upon the bacterial isolates to prevent biofilm formation. A bactericidal effect was verified for EOLS in the previously consolidated biofilm for both isolates and for EOCC in only one of the isolates. In general, EOLS had a synergistic effect with florfenicol, while EOCF had an additive effect. CONCLUSIONS: Both EOs were able to interfere with biofilm formation and did not have an antagonistic effect in combination with florfenicol. The best results were found for EOLS, which showed a synergistic effect with florfenicol and the ability to interfere in the formation of consolidated biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the potential of EOLS and EOCC to interfere in biofilm and act in synergy with florfenicol to reduce the occurrence of A. hydrophila. Development of these compounds may contribute to the development of herbal medicines in aquaculture.


Assuntos
Cymbopogon , Lippia , Óleos Voláteis , Aeromonas hydrophila , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Lippia/química , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tianfenicol/análogos & derivados
12.
Vet Med Sci ; 8(1): 211-218, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34498431

RESUMO

The study aimed to examine the effect of simultaneous application of florfenicol and lasalocid on the performance and vital organ function of chickens. For this, 300 chicks were divided into four groups. Group one to three received florfenicol, lasalocid and lasalocid plus florfenicol, respectively. Group four as the control group received a basic diet without lasalocid or florfenicol. Lasalocid was used from 7 to 35 days old, continuously. Florfenicol was used at 21 days old for 5 days. The growth indices were measured at the end of each week. The chickens were euthanized at the ages of 28 and 35 days old after collecting blood samples with and without anticoagulants. The liver, heart, muscle, kidney and sciatic nerve were collected in formalin 10% for histopathological examination. The blood and serum samples were used to determine clinical pathologic and hematologic indices. The ratio of internal organs to body weight and ratio of the right ventricle to the total ventricles (RV/TV) of the heart was measured. Results showed, the use of lasalocid decreased feed conversion rate and triglyceride, and increased total protein. Simultaneous administration of lasalocid and florfenicol affected histopathology of the liver and heart and significantly increased creatine phosphokinase, uric acid and the ratio of RV/TV of heart. The eosinophil percentage in the chickens who received florfenicol plus lasalocid was significantly higher than chickens who received florfenicol alone (p < 0.05). In conclusion, it seems that simultaneous administration of the florfenicol and lasalocid induces side-effects especially on cardiac function and it is not recommended.


Assuntos
Galinhas , Lasalocida , Ração Animal/análise , Animais , Rim , Lasalocida/farmacologia , Fígado , Miocárdio , Nervo Isquiático , Tianfenicol/análogos & derivados
13.
Vet Med Sci ; 8(2): 619-625, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766459

RESUMO

BACKGROUND: Berberine (BBR) is always used in combination with florfenicol for treating avian in China. OBJECTIVE: This study aims to investigate the effects of BBR on the pharmacokinetics of florfenicol in broilers. METHODS: Male broilers were randomly divided into the control group and the BBR group (BG). Note that 50 mg/kg BBR or sterile water was orally administrated to broilers. On the 8th day, florfenicol [30 mg/kg body weight (BW)] was orally administered to broilers in both groups. The plasma concentrations of florfenicol were determined by ultra-high-performance liquid chromatography (UHPLC). The levels of cytochrome P450 (CYP) 3A37, multidrug resistance 1 (MDR1), and chicken xenobiotic-sensing orphan nuclear receptor (CXR) mRNA expression in the liver and jejunum were determined by the real-time PCR. RESULTS: The results showed that the Cmax , t1/2z , MRT(0-∞) , and AUC(0-∞) of florfenicol in BG were significantly increased (by 55.71%, 28.32%, 35.19%, and 55.62%, respectively), while the Tmax and CLz/F of florfenicol were significantly decreased (by 52.13% and 35.82%, respectively). In BG, the levels of CYP3A37, MDR1, and CXR mRNA expression in the liver were significantly decreased to 0.72-fold, 0.67-fold, and 0.59-fold, respectively, and the corresponding mRNA expression in the jejunum were significantly decreased to 0.66-fold, 0.55-fold, and 0.64-fold levels, respectively, relative to their levels in the control group. CONCLUSIONS: BBR altered the pharmacokinetics of florfenicol, probably related to its inhibition of CYP3A37, MDR1, and CXR mRNA expression in the jejunum and liver.


Assuntos
Berberina , Galinhas , Animais , Hidrocarboneto de Aril Hidroxilases , Galinhas/metabolismo , Família 3 do Citocromo P450 , Resistência a Múltiplos Medicamentos , Masculino , Receptores Nucleares Órfãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tianfenicol/análogos & derivados , Xenobióticos
14.
Poult Sci ; 101(1): 101536, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34784513

RESUMO

Florfenicol is a broad-spectrum antibacterial drug used in the treatment of farm animals, including poultry. This drug is poorly soluble in water, therefore, administration in drinking water may lead to high variability of concentrations in treated individuals. The use of injection preparations, however, requires individual administration and may have a negative effect on the quality of the carcass. In addition, the renal portal system in birds may reduce the bioavailability of the drug administered in the caudofemoral region of the body. The aim of this study was to compare the pharmacokinetics of florfenicol in turkeys after a single intravenous, intramuscular, and subcutaneous administration at a dose of 15 mg/kg body weight. Additionally, to evaluate the effect of renal portal system on drug kinetics, the intramuscular administration was divided into pectoral and caudofemoral administration. The study showed that the area under the concentration-time curve (AUC) was similar regardless of the route of administration. The mean values for clearance and volume of distribution were 0.33 L/kg/h and 0.92 L/kg, respectively. The mean residence time (MRT) was 2.87 h for an intravenous bolus, while for the extravascular administrations it was approx. 5.5 h. The elimination half-life was approx. 4 h regardless of the route of administration. The maximum plasma concentration did not differ statistically between intramuscular (approx. 6.8 mg/L) and subcutaneous (8.2 mg/L) administrations, while the time to appear for this concentration was the longest for caudofemoral administration (1.5 h). The bioavailability was 88.64% for subcutaneous administration, 77.95% for pectoral administration and 85.30% for caudofemoral administration. Overall, all 3 routes of extravascular administration allowed for efficient drug absorption. There was no evidence of an influence of the renal portal system on the kinetic parameters of the drug administered to the lower extremities of the body.


Assuntos
Preparações Farmacêuticas , Tianfenicol , Animais , Galinhas , Tianfenicol/análogos & derivados , Perus
15.
Environ Res ; 204(Pt B): 112068, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34547250

RESUMO

Chilean aquaculture mainly produces salmonids and molluscs. Salmonid production has been questioned by its excessive use of antimicrobials. This study aimed to investigate the bacterial microbiota composition of Mytilus spp. cultivated near salmonid farms and to determine the minimum inhibitory concentration (MIC) to florfenicol and oxytetracycline of its culturable bacteria. Seven Mytilus farming sites classified according to their proximity to salmon farms as close (CSF) or distant (DSF) were sampled in two years. We analyzed Mytilus microbiota composition through culture-independent methods, and isolated culturable bacteria, and identified those isolates with MIC values ≥ 64 µg mL-1 to florfenicol or oxytetracycline. Results revealed that the alpha diversity was affected by sampling year but not by Mytilus farming site location or its interaction. Nevertheless, in 2018, we observed a significant negative correlation between the alpha diversity of Mytilus microbiota in each farm sites and the tonnes of florfenicol reported for each phytosanitary management area. We detected significant differences in beta diversity and relative abundance of specific bacterial taxa in Mytilus microbiota depending on the proximity to salmon farms and years. A higher proportion of isolates with MIC values ≥ 64 µg mL-1 to both antibiotics was detected in 2019 compared to 2018, but not significant differences were detected according to Mytilus farming site location. However, in 2019, isolates from CSF sites showed higher MIC values for both antibiotics than those from DSF. Bacterial genera corresponding to isolates with MIC values ≥ 64 µg mL-1 represented a low proportion of Mytilus microbiota identified with the culture-independent approach, reflecting the need to implement new methodologies in the study of antimicrobial resistance. These results suggest that the proximity to salmonid farms and sampling year influence the Mytilus microbiota and MIC values of their bacterial isolates; however, other environmental variables should be considered in further studies.


Assuntos
Microbiota , Mytilus , Oxitetraciclina , Animais , Antibacterianos/farmacologia , Aquicultura , Testes de Sensibilidade Microbiana , Salmão , Tianfenicol/análogos & derivados
16.
Environ Sci Pollut Res Int ; 29(3): 3372-3385, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34389946

RESUMO

In order to explore the transcriptomics and proteomics targets and pathways of Salvia miltiorrhiza polysaccharides (SMPs) alleviating florfenicol (FFC)-induced liver injury in broilers, 60 1-day-old broilers were randomly divided into 3 groups: control group ( GP1) was fed tap water, FFC model (GP2) was given tap water containing FFC 0.15 g/L, and SMPs treatment group (GP3) was given tap water containing FFC 0.15 g/L and SMPs 5 g/L. Starting from 1 day of age, the drug was administered continuously for 5 days. On the 6th day, blood was collected from the heart and the liver was taken. Then 3 chickens were randomly taken from each group, and their liver tissues were aseptically removed and placed in an enzyme-free tube. Using high-throughput mRNA sequencing and TMT-labeled quantitative proteomics technology, the transcriptome and proteome of the three groups of broiler liver were analyzed, respectively. The results of the study showed that the liver tissue morphology of the chicks in the GP1 and GP3 groups was complete and there were no obvious necrotic cells in the liver cells. The liver tissue cells in the GP2 group showed obvious damage, the intercellular space increased, and the liver cells showed extensive vacuolation and steatosis. Compared with the GP1 group, the daily gain of chicks in the GP2 group was significantly reduced (P < 0.0 5 or P < 0.01). Compared with the GP2 group, the GP3 group significantly increased the daily gain of chicks (P <0.0 5 or P <0.01). Compared with the GP1 group, the serum levels of ALT, AST, liver LPO, ROS, and IL-6 in the GP2 group were significantly increased (P < 0.0 5 or P < 0.01), and the contents of T-AOC, GSH-PX, IL-4, and IL-10 in the liver were significantly decreased (P < 0.0 5 or P < 0.01). After SMPs treatment, the serum levels of ALT, AST, liver LPO, ROS, and IL-6 were significantly reduced (P < 0.0 5 or P < 0.01), and the contents of T-AOC, GSH-PX, IL-4, and IL-10 in the liver were significantly increased (P < 0.0 5 or P < 0.01). There were 380 mRNA and 178 protein differentially expressed between GP2 group and GP3 group. Part of DEGs was randomly selected for QPCR verification, and the expression results of randomly selected FABP1, SLC16A1, GPT2, AACS, and other genes were verified by QPCR to be consistent with the sequencing results, which demonstrated the accuracy of transcriptation-associated proteomics sequencing. The results showed that SMPs could alleviate the oxidative stress and inflammatory damage caused by FFC in the liver of chicken and restore the normal function of the liver. SMPs may alleviate the liver damage caused by FFC by regulating the drug metabolism-cytochrome P450, PPAR signaling pathway, MAPK signaling pathway, glutathione metabolism, and other pathways.


Assuntos
Galinhas , Salvia miltiorrhiza , Animais , Fígado , Polissacarídeos , Tianfenicol/análogos & derivados
17.
J Hazard Mater ; 426: 128101, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952497

RESUMO

Biological treatment is an efficient and economical process to remove thiamphenicol (TAP) residues from the environment. The discovery of TAP-degrading bacteria and the decryption of its biodegradation mechanism will be beneficial to enhance the biological removal of TAP. In this study, Sphingomonas sp. CL5.1 was found to be capable of catabolizing TAP as the sole carbon, nitrogen, and energy source. This strain could degrade 93.9% of 25 mg/L TAP in 36 h, and remove about 11.9% of the total organic carbon of TAP. A novel metabolism pathway of TAP was constructed, and the enzymes involved in TAP metabolism in strain CL5.1 were predicted via proteomic and metabolic analysis. TAP was proposed to be transformed to O-TAP via oxidation of C3-OH and DD-TAP via dehydration of C3-OH and dehydrogenation of C1-OH. A novel glucose-methanol-choline (GMC) family oxidoreductase CapO was predicted to be involved in the oxidation of C3-OH. O-TAP was supposed to be further cleaved into DCA, glycine, and PMB. Glycine might be a pivotal direct nitrogen source for strain CL5.1, and it could be involved in nitrogen metabolism through the glycine cleavage system or directly participate in the biosynthetic processes.


Assuntos
Sphingomonas , Tianfenicol , Bactérias , Biodegradação Ambiental , Proteômica
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120324, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481254

RESUMO

A hybrid fluorescent sensing probe was developed and used to quantitatively analyse thiamphenicol. The probe was constructed by entrapping mesoporous carbon and CdTe*CdS*ZnS quantum dots in molecularly imprinted polymer. The probe was characterized, and the construction and detection conditions were optimized. In the optimized conditions, the recognition sites of the nanoprobe were ultrasensitive and highly selective toward thiamphenicol. The quantitative analysis of thiamphenicol was based on the fluorescence quenching of the hybrid nanoprobe by thiamphenicol. Fluorescence emission was quenched linearly from 0.10 to 100 µg L-1 with a coefficient of determination (R2) of 0.9979. The limit of detection was 0.04 µg L-1. The accuracy of an optosensor based on the hybrid probe was evaluated by analyzing spiked milk samples. The results obtained were compared with the results of high-performance liquid chromatography (HPLC) analysis. The quantitative analysis of the spiked samples with the optosensor agreed well with HPLC analysis. Recoveries were in the range of 93.5 to 100.1 % with good precision (RSD < 5%). The accuracy, speed and convenience of the developed optosensor make it a powerful tool for the detection of thiamphenicol in milk.


Assuntos
Compostos de Cádmio , Impressão Molecular , Pontos Quânticos , Tianfenicol , Animais , Carbono , Limite de Detecção , Leite , Polímeros , Telúrio
19.
Chemosphere ; 288(Pt 1): 132433, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34624340

RESUMO

Antibiotics in the environment provoke serious consequences on living beings and can be effectively remediated by prominent advanced oxidation process. In this study, electrochemical advanced oxidation treatment in a lab-scale reactor for the degradation of florfenicol (FLO) was studied with the aid of boron-doped diamond anode (BDD). The results exhibited that the FLO degradation follows pseudo-first-order kinetics. As the current intensity rose from 60 mA to 250 mA, the FLO removal efficiency increased and the corresponding reaction rate constant increased from 0.0213 to 0.0343 min-1, which was likely due to the more efficient participation of free hydroxyl radical (•OH) generated at the BDD anode. Faster degradation and higher mineralization of electrolyzed FLO solution were achieved at higher current intensity as well as in higher SO42- concentration medium, as a consequence of catalytic participation of oxidants (free •OH as well as sulfate radical (SO4•-) and persulfate (S2O82-)). The increase in FLO concentration from 30 to 50 mg L-1 resulted in a reaction rate constant decrease (from 0.0235 to 0.0178 min-1). Eight transformation by-products (m/z = 372.99, 359.8, 338.0, 324.04, 199.00, 185.02, 168.99 and 78.989) and three inorganic ions (NO3-, Cl- and F-) were analyzed by UPLC‒Q‒TOF‒MS/MS and Ion‒chromatography, respectively. The Vibrio fischeri bioluminescence inhibition revealed an increase of toxicity during the electrochemical oxidation that could be attributed mostly to the generated organic chlorinated by-products (m/z = 372.99, 359.8) and inorganic species (ClO2- and ClO3-).


Assuntos
Diamante , Poluentes Químicos da Água , Boro , Eletrodos , Cinética , Oxirredução , Espectrometria de Massas em Tandem , Tianfenicol/análogos & derivados , Água , Poluentes Químicos da Água/toxicidade
20.
Mar Pollut Bull ; 177: 113480, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305371

RESUMO

The water-sediment partitioning of flumequine and florfenicol, two antibiotics used in salmon aquaculture is a critical driver of their fate and environmental impact. Batch experiments, were carried out using pure water or seawater, with or without sediment, and at summer and winter temperatures of Chilean fjords. Log Kd (partition between water and sediment) of florfenicol in seawater varied from 0.62 ± 0.69 to 0.67 ± 0.13, and Log KOC (partition between water and organic fraction of sediment) from 2.15± 0.29 to 2.19 ± 0.13. Difference between KOC and the octanol-water partition constant (KOW) showed that for florfenicol, adsorption onto the surface of particles was more significant than the absorption driven by hydrophobicity whilst hydrophobic absorption was a major driver of flumequine sorption. Flumequine Log Kd (0.92 ± 0.25 to 1.36 ± 0.10) and Log KOC (from 2.44 ± 0.25 to 2.89 ± 0.10) demonstrated its greater affinity than florfenicol to particles and potential accumulation into marine sediments.


Assuntos
Salmão , Água , Animais , Antibacterianos , Aquicultura , Chile , Fluoroquinolonas , Sedimentos Geológicos/química , Tianfenicol/análogos & derivados , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...