RESUMO
Chordomas are rare slow growing tumors, arising from embryonic remnants of notochord with a close predilection for the axial skeleton. Recurrence is common and no effective standard medical therapy exists. Thymidylate synthase (TS), an intracellular enzyme, is a key rate-limiting enzyme of DNA biosynthesis and repair which is primarily active in proliferating and metabolically active cells. Eighty-four percent of chordoma samples had loss of TS expression which may predict response to anti-folates. Pemetrexed suppresses tumor growth by inhibiting enzymes involved in folate metabolism, resulting in decreased availability of thymidine which is necessary for DNA synthesis. Pemetrexed inhibited growth in a preclinical mouse xenograft model of human chordoma. We report three cases of metastatic chordoma that had been heavily treated previously with a variety of standard therapies with poor response. In two cases, pemetrexed was added and objective responses were observed on imaging with one patient on continuous treatment for > 2 years with continued shrinkage. One case demonstrated tumor growth after treatment with pemetrexed. The two cases which had a favorable response had a loss of TS expression, whereas the one case with progressive disease had TS present. These results demonstrate the activity of pemetrexed in recurrent chordoma and warrant a prospective clinical trial which is ongoing (NCT03955042).
Assuntos
Cordoma , Humanos , Animais , Camundongos , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Cordoma/tratamento farmacológico , Estudos Prospectivos , Guanina/farmacologia , Guanina/uso terapêutico , Glutamatos/uso terapêutico , Glutamatos/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , DNA , Timidilato Sintase/genética , Timidilato Sintase/metabolismoRESUMO
Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.
Assuntos
Antagonistas do Ácido Fólico , Camundongos , Animais , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Antagonistas do Ácido Fólico/química , Inibidores Enzimáticos/farmacologia , Resistência a Medicamentos , Timidilato SintaseRESUMO
INTRODUCTION: Fluoropyrimidines, principally 5-fluorouracil (5-FU), remain a key component of chemotherapy regimens for multiple cancer types, in particular colorectal and other gastrointestinal malignancies. To overcome key limitations and pharmacologic challenges that hinder the clinical utility of 5-FU, NUC-3373, a phosphoramidate transformation of 5-fluorodeoxyuridine, was designed to improve the efficacy and safety profile as well as the administration challenges associated with 5-FU. METHODS: Human colorectal cancer cell lines HCT116 and SW480 were treated with sub-IC50 doses of NUC-3373 or 5-FU. Intracellular activation was measured by LC-MS. Western blot was performed to determine binding of the active anti-cancer metabolite FdUMP to thymidylate synthase (TS) and DNA damage. RESULTS: We demonstrated that NUC-3373 generates more FdUMP than 5-FU, resulting in a more potent inhibition of TS, DNA misincorporation and subsequent cell cycle arrest and DNA damage in vitro. Unlike 5-FU, the thymineless death induced by NUC-3373 was rescued by the concurrent addition of exogenous thymidine. 5-FU cytotoxicity, however, was only reversed by supplementation with uridine, a treatment used to reduce 5-FU-induced toxicities in the clinic. This is in line with our findings that 5-FU generates FUTP which is incorporated into RNA, a mechanism known to underlie the myelosuppression and gastrointestinal inflammation associated with 5-FU. CONCLUSION: Taken together, these results highlight key differences between NUC-3373 and 5-FU that are driven by the anti-cancer metabolites generated. NUC-3373 is a potent inhibitor of TS that also causes DNA-directed damage. These data support the preliminary clinical evidence that suggest NUC-3373 has a favorable safety profile in patients.
Assuntos
Neoplasias Colorretais , Timidilato Sintase , Humanos , Timidilato Sintase/genética , Fluordesoxiuridilato/farmacologia , Fluordesoxiuridilato/uso terapêutico , Fluoruracila/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Antimetabólitos , Neoplasias Colorretais/genética , DNARESUMO
Asgard archaea include the closest known archaeal relatives of eukaryotes. Here, we investigate the evolution and function of Asgard thymidylate synthases and other folate-dependent enzymes required for the biosynthesis of DNA, RNA, amino acids and vitamins, as well as syntrophic amino acid utilization. Phylogenies of Asgard folate-dependent enzymes are consistent with their horizontal transmission from various bacterial groups. We experimentally validate the functionality of thymidylate synthase ThyX of the cultured 'Candidatus Prometheoarchaeum syntrophicum'. The enzyme efficiently uses bacterial-like folates and is inhibited by mycobacterial ThyX inhibitors, even though the majority of experimentally tested archaea are known to use carbon carriers distinct from bacterial folates. Our phylogenetic analyses suggest that the eukaryotic thymidylate synthase, required for de novo DNA synthesis, is not closely related to archaeal enzymes and might have been transferred from bacteria to protoeukaryotes during eukaryogenesis. Altogether, our study suggests that the capacity of eukaryotic cells to duplicate their genetic material is a sum of archaeal (replisome) and bacterial (thymidylate synthase) characteristics. We also propose that recent prevalent lateral gene transfer from bacteria has markedly shaped the metabolism of Asgard archaea.
Assuntos
Archaea , Eucariotos , Archaea/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Filogenia , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Bactérias/genética , Bactérias/metabolismo , Aminoácidos/metabolismo , Ácido Fólico/metabolismo , DNA/metabolismoRESUMO
BACKGROUND: In the TYMS gene promoter, there is a repeat polymorphism (TSER) that affects the expression level of the thymidylate synthetase (TS) enzyme involved in the response to some anticancer drugs. The G>C transversion located in the TSER*3R allele decreases the expression level of the TS enzyme avoiding the upstream stimulatory factor (USF-1) binding site. Despite the biomedical impact of the SNP G>C, only TSER has been reported in most worldwide populations. Thus, we studied both TSER and SNP G>C variants in the Mexican population. SUBJECTS AND METHODS: A population sample (n = 156) was genotyped for the TSER and G>C variants by PCR and PCR-RFLPs, respectively, followed by PAGE and silver staining. RESULTS: For TSER, the most frequent allele was 2 R (52.56%), as well as the genotype 2 R/3R (42.3%). Comparison with Latin American, European, and American (USA) populations suggest a heterogeneous worldwide distribution (FST-value = 0.01564; p-value = 0.0000). When the G>C variant was included (2RG, 3RG, and 3RC), a high frequency of low expression genotypes was observed: 2RG/2RG, 2RG/3RC, and 3RC/3RC (84.6%). CONCLUSION: The high frequency of genotypes associated with low TS enzyme expression justifies obtaining the TYMS gene variant profile in Mexican patient's candidates to pharmaceutical treatments like 5'-Fluoracil, methotrexate, and pemetrex.
Assuntos
Fluoruracila , Polimorfismo Genético , Timidilato Sintase , Humanos , Alelos , Genótipo , Polimorfismo de Fragmento de Restrição , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , MéxicoRESUMO
Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α gene affects TS and DHFR expression in A-549 cells. Additionally, we attempted to identify the endogenous kinases that phosphorylate TS and DHFR in CCRF-CEM and A-549 cells. We used immunodetection, immunofluorescence/confocal analyses, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in-gel kinase assay, and mass spectrometry analysis. Our results demonstrate that silencing of the CK2α gene in lung adenocarcinoma cells significantly increases both TS and DHFR expression and affects their cellular distribution. Additionally, we show for the first time that both TS and DHFR are very likely phosphorylated by endogenous CK2 in two types of cancer cells, i.e., acute lymphoblastic leukaemia and lung adenocarcinoma. Moreover, our studies indicate that DHFR is phosphorylated intracellularly by CK2 to a greater extent in leukaemia cells than in lung adenocarcinoma cells. Interestingly, in-gel kinase assay results indicate that the CK2α' isoform was more active than the CK2α subunit. Our results confirm the previous studies concerning the physiological relevance of CK2-mediated phosphorylation of TS and DHFR.
Assuntos
Adenocarcinoma de Pulmão , Tetra-Hidrofolato Desidrogenase , Humanos , Fosforilação , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/metabolismoRESUMO
BACKGROUND: A rare yet severe neoplasia called malignant pleural mesothelioma (MPM) typically manifests itself in advanced stages. Despite some improvements in the treatment of patients with MPM, this malignancy continues to have a detrimental prognosis . The primary goal of the present study was to assess the associatin between ERCC1, RRM1, and thymidylate synthase (TS) expression and disease outcome in patients with malignant pleural mesothelioma (MPM) treated with either pemetrexed plus cisplatin or gemcitabine plus cisplatin. METHODS: This prospective cohort study was done on ninety-one advanced MPM patients. The patients received either pemetrexed plus platinum (55 of 91) or gemcitabine plus platinum chemotherapy (36 of 91). Tissue biopsy was taken at time of diagnosis. Immunohistochemistry was used to assess the levels of ERCC1, RRM1, and TS transcription in tissue biopsies (paraffin embedded). RESULTS: Based on the findings, 70% of patients with low expression of TS had low expression of ERCC1, and 68% of patients with high expression of TS had high expression of ERCC1, suggesting a significat association between ERCC1 expression and TS expression (p=0.005). However, there was no relation between ERCC1 and RRM1 expression patterns (p= 0.296). In patients underwen platinum-based theraphy (n 91), a significant correlation was detected between low ERCC1 median High-scoring and longer progression time (TTP;9.6 v 5.3 months;P< .001) or overall survival (OS) (OS;18.1 v 9.1 months; P<0.001). A significant correlation was found between low TS protein expression and longer time progression (TTP; 11.8 v 5.4 months; P< .001) or OS (OS; 19.8 v 8.5 months; P <0.001) in patients undergoing pemetrexed plus platinum chemotherapy (n 55). Low RRM1 expression was accompanied by high progression free survival (TTP; 10.6 v 3.8 months) and OS (OS; 20.6 v 8.6 months) in patients receiving gemcitabine plus platinum chemotherapy. Based on the multivariate test results, the independent variables significantly affecting OS were tumor stage (HR: 2.3; 95% CI: 1.1-4.9; p= 0.021) and ERCC1 (HR: 2.7; 95% CI: 1.7-4.3; p < 0.001). CONCLUSION: Decreased TS protein expression can be indicative of greater responsivness to pemtrexed and of longer TTP and OS in individuals with advanced MPM (locally progressed or metastatic) who are receiving pemetrexed-based chemotheraphy. Low ERCC1 expressions in individuals with advanced MPM can predict increased PFS and OS, as well as a better responsivness to platinum-based chemotherapy. In patients with progressed MPM receiving gemcitabine plus cisplatin chemotherapy, lower RRM1 expression was associated with a better prognosis, longer PFS, and longer OS.
Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/tratamento farmacológico , Pemetrexede/uso terapêutico , Cisplatino , Platina/uso terapêutico , Timidilato Sintase/metabolismo , Estudos Prospectivos , Glutamatos/uso terapêutico , Guanina/uso terapêutico , Gencitabina , Desoxicitidina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Endonucleases , Resultado do Tratamento , Neoplasias Pulmonares/patologiaRESUMO
A drug repositioning computational approach was carried to search inhibitors for human thymidylate synthase. An ensemble-based virtual screening of FDA-approved drugs showed the drugs Imatinib, Lumacaftor and Naldemedine to be likely candidates for repurposing. The role of water in the drug-receptor interactions was revealed by the application of an extended AutoDock scoring function that included the water forcefield. The binding affinity scores when hydrated ligands were docked were improved in the drugs considered. Further binding free energy calculations based on the Molecular Mechanics Poisson-Boltzmann Surface Area method revealed that Imatinib, Lumacaftor and Naldemedine scored -130.7 ± 28.1, -210.6 ± 29.9 and -238.0 ± 25.4 kJ/mol, respectively, showing good binding affinity for the candidates considered. Overall, the analysis of the molecular dynamics trajectory of the receptor-drug complexes revealed stable structures for Imatinib, Lumacaftor and Naldemedine, for the entire simulation time.
Assuntos
Reposicionamento de Medicamentos , Timidilato Sintase , Humanos , Reposicionamento de Medicamentos/métodos , Simulação de Acoplamento Molecular , Água/química , Mesilato de Imatinib , Simulação de Dinâmica MolecularRESUMO
Thyroid carcinoma (THCA) has been increasing in incidence greater than other cancers. Long noncoding RNAs (lncRNAs) were reported to play crucial roles in THCA development. Our study aimed to explore the underlying mechanism of lncRNA thymidylate synthetase opposite strand RNA (TYMSOS) in THCA. TYMSOS and myristoylated alanine rich protein kinase C substrate like 1 (MARCKSL1) were upregulated whereas miR-130a-5p was downregulated in THCA cells and tissues. The results of loss-of-function assays showed that TYMSOS knockdown inhibited cell metastasis and epithelial-mesenchymal transition (EMT) in THCA. TYMSOS was primarily distributed in the cytoplasm of THCA cells, as shown by FISH assay. RNA pulldown and luciferase reporter assay further showed that TYMSOS binds with miR-130a-5p. Luciferase reporter assay also revealed that MARCKSL1 is targeted by miR-130a-5p. Rescue assay showed that the suppression of TYMSOS downregulation on THCA cell malignant behaviors was reversed by MARCKSL1 overexpression. Additionally, overexpressing MARCKSL1 offset the inhibition of TYMSOS downregu-lation on the PI3K/Akt signaling pathway. TYMSOS knockdown inhibits the growth of THCA tumors, as in vivo assays showed. Collectively, TYMSOS facilitates THCA progression by sponging miR-130a-5p and upregulating MARCKSL1 to activate the PI3K/Akt signaling pathway, providing new avenues for THCA treatment.
Assuntos
Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Transição Epitelial-Mesenquimal/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Neoplasias Hepáticas/genética , Neoplasias da Glândula Tireoide/genética , Movimento Celular/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismoRESUMO
Natural polyphenols are plant metabolites exhibiting a broad range of biological activities. Among them, anticancer properties seem to be very desirable. This study examined the anticancer and anti-metastatic properties of the polyphenol-rich extract from the evening primrose seeds (EPE). In vitro and in vivo studies performed in colorectal cancer (CRC) cell lines and AOM-DSS-induced colitis-associated colon cancer in mice revealed the EPE anticancer properties. Furthermore, we studied the EPE activity on metastatic abilities and showed that the EPE inhibited invasiveness in the following models (cells isolated from patients with different invasive stages and cells with induced invasion by either Snail overexpression or CAF stimulation). More importantly, we also demonstrated that the EPE decreases the cell invasiveness of 5-fluorouracil (5-FU) resistant CRC cells. The inhibition of metastasis correlated with a decrease in thymidylate synthetase (TYMS), which has recently been associated with metastatic phenotype development. Our results indicate that the EPE might be an effective anticancer agent in suppressing colon cancer metastasis regardless of the invasiveness cause. Based on these findings, we concluded that the used EPE extract rich in polyphenols inhibits cell invasion by TYMS downregulation.
Assuntos
Neoplasias do Colo , Oenothera biennis , Camundongos , Animais , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Oenothera biennis/metabolismo , Polifenóis/farmacologia , Fluoruracila/farmacologia , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologiaRESUMO
In 2002, a new class of thymidylate synthase (TS) involved in the de novo synthesis of dTMP named Flavin-Dependent Thymidylate Synthase (FDTS) encoded by the thyX gene was discovered; FDTS is present only in 30% of prokaryote pathogens and not in human pathogens, which makes it an attractive target for the development of new antibacterial agents, especially against multi-resistant pathogens. We report herein the synthesis and structure-activity relationship of a novel series of hitherto unknown pyrido[1,2-e]purine-2,4(1H,3H)-dione analogues. Several synthetics efforts were done to optimize regioselective N1-alkylation through organopalladium cross-coupling. Modelling of potential hits were performed to generate a model of interaction into the active pocket of FDTS to understand and guide further synthetic modification. All those compounds were evaluated on an in-house in vitro NADPH oxidase assays screening as well as against Mycobacterium tuberculosis ThyX. The highest inhibition was obtained for compound 23a with 84.3% at 200 µM without significant cytotoxicity (CC50 > 100 µM) on PBM cells.
Assuntos
Mycobacterium tuberculosis , Antibacterianos/farmacologia , Dinitrocresóis , Flavinas/metabolismo , Flavinas/farmacologia , Humanos , Mycobacterium tuberculosis/genética , NADPH Oxidases , Purinas/farmacologia , Relação Estrutura-Atividade , Timidina Monofosfato , Timidilato Sintase/metabolismoRESUMO
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic ß-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Assuntos
Diabetes Gestacional , Defeitos do Tubo Neural , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Betaína , Carbono/metabolismo , Colina , Feminino , Ácido Fólico/metabolismo , Homocisteína , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Micronutrientes , Gravidez , Timidilato Sintase , Vitamina B 12RESUMO
Thymidylate synthase is the rate-limiting enzyme required for DNA synthesis and overexpression of this enzyme causes resistance to cancer cells. Long treatments with 5-FU cause resistance to Thymidylate synthase targeting drugs. We have also compiled different mechanisms of drug resistance including autophagy and apoptosis, drug detoxification and ABC transporters, drug efflux, signaling pathways (AKT/PI3K, RAS-MAPK, WNT/ß catenin, mTOR, NFKB, and Notch1 and FOXM1) and different genes associated with resistance in colorectal cancer. We can overcome 5-FU resistance in cancer cells by regulating thymidylate synthase by natural products (Coptidis rhizoma), HDAC inhibitors, mTOR inhibitors, Folate antagonists, and several other drugs which have been used in combination with TS inhibitors. This review is a compilation of different approaches reported for the regulation of thymidylate synthase to overcome resistance in colorectal cancer cells.
Assuntos
Neoplasias Colorretais , Timidilato Sintase , Humanos , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismoRESUMO
Caco-2 screens are routinely used in laboratories to measure the permeability of compounds and can identify substrates of efflux transporters. In this study, we hypothesized that efflux transporter inhibition of a compound can be predicted by an intracellular metabolic signature in Caco-2 cells in the assay used to test intestinal permeability. Using selective inhibitors and transporter knock-out (KO) cells and a targeted Liquid Chromatography tandem Mass Spectrometry (LC-MS) method, we identified 11 metabolites increased in cells with depleted P-glycoprotein (Pgp) activity. Four metabolites were altered with Breast Cancer Resistance (BCRP) inhibition and nine metabolites were identified in the Multidrug Drug Resistance Protein 2 (MRP2) signature. A scoring system was created that could discriminate among the three transporters and validated with additional inhibitors. Pgp and MRP2 substrates did not score as inhibitors. In contrast, BCRP substrates and inhibitors showed a similar intracellular metabolomic signature. Network analysis of signature metabolites led us to investigate changes of enzymes in one-carbon metabolism (folate and methionine cycles). Our data shows that methylenetetrahydrofolate reductase (MTHFR) protein levels increased with Pgp inhibition and Thymidylate synthase (TS) protein levels were reduced with Pgp and MRP2 inhibition. In addition, the methionine cycle is also affected by both Pgp and MRP2 inhibition. In summary, we demonstrated that the routine Caco-2 assay has the potential to identify efflux transporter inhibitors in parallel with substrates in the assays currently used in many DMPK laboratories and that inhibition of efflux transporters has biological consequences.
Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos , Timidilato Sintase , Humanos , Células CACO-2 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Timidilato Sintase/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2) , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas de Membrana Transportadoras , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Permeabilidade , Ácido Fólico , Metionina , Carbono/metabolismoRESUMO
Human thymidylate synthase (hTS) is essential for DNA replication and therefore a therapeutic target for cancer. Effective targeting requires knowledge of the mechanism(s) of regulation of this 72 kDa homodimeric enzyme. Here, we investigate the mechanism of binding cooperativity of the nucleotide substrate. We have employed exquisitely sensitive methyl-based CPMG and CEST NMR experiments enabling us to identify residues undergoing bifurcated linear 3-state exchange, including concerted switching between active and inactive conformations in the apo enzyme. The inactive state is populated to only ~1.3%, indicating that conformational selection contributes negligibly to the cooperativity. Instead, methyl rotation axis order parameters, determined by 2H transverse relaxation rates, suggest that rigidification of the enzyme upon substrate binding is responsible for the entropically-driven cooperativity. Lack of the rigidification in product binding and substrate binding to an N-terminally truncated enzyme, both non-cooperative, support this idea. In addition, the lack of this rigidification in the N-terminal truncation indicates that interactions between the flexible N-terminus and the rest of the protein, which are perturbed by substrate binding, play a significant role in the cooperativity-a novel mechanism of dynamic allostery. Together, these findings yield a rare depth of insight into the substrate binding cooperativity of an essential enzyme.
Assuntos
Nucleotídeos , Timidilato Sintase , Humanos , Conformação Molecular , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Timidilato Sintase/química , Timidilato Sintase/genética , Timidilato Sintase/metabolismoRESUMO
Introduction: ALK rearrangement is the only druggable oncogenic driver detectable by immunohistochemistry (IHC) not requiring further confirmation of positivity in accessing first-line specific inhibitors. ALK-positive patients experience clinical benefit from pemetrexed-based chemotherapy possibly due to lower thymidylate synthase (TS) levels. This study assesses agreement with three different ALK IHC clones in 37 FISH-positive NSCLC. TS expression by real time (RT)-PCR was compared with ALK FISH-negative cases. Materials and methods: 37 ALK FISH-positive NSCLC cases diagnosed between 2010 and 2015 in 7 Italian centres were investigated with ICH using three different anti-ALK antibodies (ALK1, 5A4 and D5F3). Staining for ALK1 and 5A4 was graded as 0+,1+,2+, and 3+, while the scoring for D5F3 was recorded as negative or positive. Proportion agreement analysis was done using Cohen's unweighted kappa (k). TS and ß-actin expression levels were analysed by quantitative RT-PCR. Comparison between TS expression in ALK FISH-positive specimens and a control cohort of ALK FISH-negative ones was performed with the Mann-Whitney and Kruskal-Wallis tests. Results: Considering 2+ and 3+ as positive, the proportion of IHC agreement was 0.1691 (95% CI 0-0.4595) for ALK1/5A4, 0.1691 (95% CI 0-0.4595) for ALK1/D5F3, and 1 for D5F3/5A4. Considering 3+ as positive, it was 0.1543 (95% CI 0-0.4665) for ALK1/ 5A4, 0.0212 (95% CI 0-0.1736) for ALK1/D5F3, and 0.2269 (95% CI 0-0.5462) for 5A4/D5F3. Median TS expression was 6.07 (1.28-14.94) and ALK-positive cases had a significant lower TS expression than ALK-negative tumours (p = 0.002). Conclusions: IHC proved to be a reliable tool for the diagnosis of ALK-rearranged NSCLC. D5F3 and 5A4 clones have the highest percentage of agreement. TS levels are significantly lower in FISH-positive patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Actinas , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Clonais/química , Células Clonais/metabolismo , Células Clonais/patologia , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Pemetrexede , Receptores Proteína Tirosina Quinases/análise , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Estudos Retrospectivos , Timidilato Sintase/genéticaRESUMO
The drug, 5-fluorouracil (5FU) is a standard first-line treatment for colorectal cancer (CRC) patients. However, drug resistance acquisition remains an important challenge for effective clinical outcomes. Here, we established a long-term drug-resistant CRC model and explored the cellular events underlying 5FU resistance. We showed that 5FU-treated cells (HCT-116 5FUR) using a prolonged treatment protocol were significantly more resistant than parental cells. Likewise, cell viability and IC50 values were also observed to increase in HCT-116 5FUR cells when treated with increasing doses of oxaliplatin, indicating a cross-resistance mechanism to other cytotoxic agents. Moreover, HCT-116 5FUR cells exhibited metabolic and molecular changes, as evidenced by increased thymidylate synthase levels and upregulated mRNA levels of ABCB1. HCT-116 5FUR cells were able to overcome S phase arrest and evade apoptosis, as well as activate autophagy, as indicated by increased LC3B levels. Cells treated with low and high doses displayed epithelial-mesenchymal transition (EMT) features, as observed by decreased E-cadherin and claudin-3 levels, increased vimentin protein levels, and increased SLUG, ZEB2 and TWIST1 mRNA levels. Furthermore, HCT-116 5FUR cells displayed enhanced migration and invasion capabilities. Interestingly, we found that the 5FU drug-resistance gene signature is positively associated with the mesenchymal signature in CRC samples, and that ABCB1 and ZEB2 co-expressed at high levels could predict poor outcomes in CRC patients. Overall, the 5FU long-term drug-resistance model established here induced various cellular events, and highlighted the importance of further efforts to identify promising targets involved in more than one cellular event to successfully overcome drug-resistance.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Apoptose , Autofagia , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Claudina-3 , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citotoxinas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Fluoruracila/farmacologia , Humanos , Oxaliplatina/farmacologia , RNA Mensageiro , Timidilato Sintase , VimentinaRESUMO
Clinical studies of cancer patients have shown that overexpression or amplification of thymidylate synthase (TS) correlates with a worse clinical outcome. We previously showed that elevated TS exhibits properties of an oncogene and promotes pancreatic neuroendocrine tumors (PanNETs) with a long latency. To study the causal impact of elevated TS levels in PanNETs, we generated a mouse model with elevated human TS (hTS) and conditional inactivation of the Men1 gene in pancreatic islet cells (hTS/Men1-/-). We demonstrated that increased hTS expression was associated with earlier tumor onset and accelerated PanNET development in comparison with control Men1-/- and Men1+/ΔN3-8 mice. We also observed a decrease in overall survival of hTS/Men1+/- and hTS/Men1-/- mice as compared with control mice. We showed that elevated hTS in Men1-deleted tumor cells enhanced cell proliferation, deregulated cell cycle kinetics, and was associated with a higher frequency of somatic mutations, DNA damage, and genomic instability. In addition, we analyzed the survival of 88 patients with PanNETs and observed that high TS protein expression independently predicted worse clinical outcomes. In summary, elevated hTS directly participates in promoting PanNET tumorigenesis with reduced survival in Men1-mutant background. This work will refocus attention on new strategies to inhibit TS activity for PanNET treatment.
Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Timidilato Sintase/genéticaRESUMO
Herein, we developed a single and a duplex TaqMan quantitative PCR (qPCR) for absolute quantification of copy numbers of integrated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) drug selectable marker for pyrimethamine resistance in Toxoplasma gondii knockouts (KOs). The single TaqMan qPCR amplifies a 174 bp DNA fragment of the inserted mdhfr-ts and of the wild-type (WT) dhfr-ts (wtdhfr-ts) which is present as single copy gene in Toxoplasma and encodes a sensitive enzyme to pyrimethamine. Thus, the copy number of the dhfr-ts fragment in a given DNA quantity from KO parasites with a single site-specific integration should be twice the number of dhfr-ts copies recorded in the same DNA quantity from WT parasites. The duplex TaqMan qPCR allows simultaneous amplification of the 174 bp dhfr-ts fragment and the T. gondii 529-bp repeat element. Accordingly, for a WT DNA sample, the determined number of tachyzoites given by dhfr-ts amplification is equal to the number of tachyzoites determined by amplification of the Toxoplasma 529-bp, resulting thus in a ratio of 1. However, for a KO clone having a single site-specific integration of mdhfr-ts, the calculated ratio is 2. We then applied both approaches to test T. gondii RH mutants in which the major surface antigen (SAG1) was disrupted through insertion of mdhfr-ts using CRISPR-Cas9. Results from both assays were in correlation showing a high accuracy in detecting KOs with multiple integrated mdhfr-ts. Southern blot analyses using BsaBI and DraIII confirmed qPCRs results. Both TaqMan qPCRs are needed for reliable diagnostic of T. gondii KOs following CRISPR-Cas9-mediated mutagenesis, particularly with respect to off-target effects resulting from multiple insertions of mdhfr-ts. The principle of the duplex TaqMan qPCR is applicable for other selectable markers in Toxoplasma. TaqMan qPCR tools may contribute to more frequent use of WT Toxoplasma strains during functional genomics.
Assuntos
Timidilato Sintase , Toxoplasma , Antígenos de Superfície/farmacologia , Sistemas CRISPR-Cas/genética , DNA/farmacologia , Variações do Número de Cópias de DNA , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Pirimetamina/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismoRESUMO
OBJECTIVE: Neoadjuvant chemotherapy with 5-fluorouracil (5FU) is one of the most effective treatment options for gastric cancer patients. However, treatment response varies significantly between patients based on their genetic profile. The purpose of this study was to determine the association between thymidylate synthase (TS) and enolase superfamily member 1 (ENOSF1) polymorphisms, treatment response, and overall survival in patients with gastric cancer. METHODS: The TS and ENOSF1 variants were analyzed in formalin-fixed paraffin-embedded (FFPE) tissue from 100 gastric cancer patients receiving neoadjuvant 5FU-based chemotherapy. Polymerase chain reaction (PCR) amplification and restriction fragment length polymorphism (RFLP) were used to determine TS polymorphisms' genotypes, and the Tetra Arms PCR method was used to identify ENOSF1 polymorphisms. Patients were followed for up to five years, and the association between variants, treatment response, and overall survival (OS) was examined. RESULTS: There was a significant association between the TS 5' UTR polymorphism and response to treatment in patients with gastric cancer who received neoadjuvant 5FU therapy (P=0.032). Patients with the 2R3R genotype responded better to treatment, whereas those with the 3R3R genotype did not respond to treatment. Patients with the 2R2R and 3R3R genotypes had the longest and shortest median survival times, respectively, and the observed differences were significant (p=0.003). There was a statistically significant relationship between rs2612091 and chemotherapy response (P=0.017). Patients with genotype AG did not respond to treatment. CONCLUSION: This study established that the TS 5' UTR and ENOSF1 rs2612091 polymorphisms could be used to predict treatment response and overall survival in patients with gastric cancer who received neoadjuvant chemotherapy based on 5FU.