RESUMO
Histomoniasis, caused by the protozoan, Histomonas meleagridis, is an economically important disease of turkeys, and it also affects several other species of domesticated and wild Galliformes, including chickens. Under natural conditions, the parasite is transmitted through eggs of a nematode, Heterakis gallinarum, that shares its hosts with Hi. meleagridis. The protozoan infects tissues of both male and female He. gallinarum and eventually is carried within the worm egg. Histomonas meleagridis more readily infects and develops in chickens, and the proximity of chicken farms is a major risk factor for outbreaks in turkeys. Chemoprophylaxis had controlled Hi. meleagridis in turkeys very successfully, but histomoniasis has recently reemerged in turkeys because anti-histomonal drugs are no longer permitted by the United States Food and Drug Administration because of the concerns for residual toxins in poultry meat. Horizontal transmission of the protozoan in the absence of worm eggs remains a mystery because the flagellate trophozoite excreted in the feces of turkeys is not viable for any length of time. A proposed resistant stage of the protozoan has not yet been conclusively demonstrated. Here we review the discovery of the protozoan and the current status of the disease and its control.
Assuntos
Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Perus , Animais , Perus/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/história , Infecções Protozoárias em Animais/transmissão , Estados Unidos/epidemiologia , História do Século XX , Trichomonadida/isolamento & purificação , Feminino , Masculino , História do Século XXIRESUMO
BACKGROUND: In recent years, the trichomonosis in raccoon dogs in China had occurred frequently. Pentatrichomonas hominis had been described in raccoon dogs in China in some previous studies. PURPOSE TO REVEAL: whether raccoon dogs can be infected by other trichomonad species besides P. hominis, and clarify the prevalence and species distribution of trichomonad in raccoon dogs. METHODS: Herein, the 389 fecal samples were collected from farm-raised raccoon dogs in Hebei Province, all the samples were detected using the microscopic examination and several fecal samples containing trichomonad-like organisms were processed, cultured, stained, and photographed. Meanwhile, all the samples were screened by the species-specific nested PCR based on the small subunit rRNA (SSU rRNA) gene of P. hominis,Tritrichomonas foetus and Tetratrichomonas buttreyi, respectively, and all positive secondary PCR amplications obtained in this study were sequenced, aligned and analysed. RESULTS: 62 fecal samples (15.9%,62/389) were trichomonad-positive under light microscopy, and the trichomonad-like cells were clearly observed in the culture contents. The PCR results showed that 100 samples were trichomonad-positive, including 45 P. hominis-positive samples (11.6%,45/389), 32 T. foetus-positive samples (8.2%,32/389), and 33 T. buttreyi-positive samples (8.5%,33/389), respectively. Double mixed infections were observed in 10 samples. The prevalence of T. foetus and P. hominis were both significantly higher in raccoon dogs with diarrhea (13.9%, and 25.0%) than that in raccoon dogs without diarrhea (7.6%, and 9.3%) (p < 0.05).All samples confirmed as trichomonad-positive under microscopy were also found to be trichomonad-positive by PCR analysis. The sequencing and phylogenetic analysis demonstrated the sequences obtained in this study belonged to P. hominis, T. foetus and T. buttreyi SSU rRNA, respectively. Among them, the T. buttreyi SSU rRNA sequences obtained in this study harbored the new sequence polymorphisms. Based on preliminary morphological and molecular analyses, raccoon dogs are considered as the new host of T. foetus and T. buttreyi. CONCLUSION: This is the first report about the identifcation and prevalence of T. foetus and T. buttreyi in raccoon dogs in China, and the results increase our knowledge about the host range and prevalence of trichomonad species.
Assuntos
Fezes , Infecções Protozoárias em Animais , Cães Guaxinins , Animais , Cães Guaxinins/parasitologia , China/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Fezes/parasitologia , Tritrichomonas foetus/isolamento & purificação , Tritrichomonas foetus/genética , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Trichomonadida/genética , Trichomonadida/isolamento & purificação , Trichomonadida/classificação , DNA de Protozoário/genéticaRESUMO
Histomonas meleagridis, an anaerobic intercellular parasite, is known to infect gallinaceous birds, particularly turkeys and chickens. The resurgence of histomonosis in recent times has resulted in significant financial setbacks due to the prohibition of drugs used for disease treatment. Currently, research on about H. meleagridis primarily concentrate on the examination of its virulence, gene expression analysis, and the innate immunity response of the host organism. However, there is a lack of research on differentially expressed miRNAs (DEMs) related to liver infection induced by H. meleagridis. In this study, the weight gain and pathological changes at various post-infection time points were evaluated through animal experiments to determine the peak and early stages of infection. Next, High-throughput sequencing was used to examine the expression profile of liver miRNA at 10 and 15 days post-infection (DPI) in chickens infected with the Chinese JSYZ-F strain of H. meleagridis. A comparison with uninfected controls revealed the presence of 120 and 118 DEMs in the liver of infected chickens at 10 DPI and 15 DPI, respectively, with 74 DEMs being shared between the two time points. Differentially expressed microRNAs (DEMs) were categorized into three groups based on the time post-infection. The first group (L1) includes 45 miRNAs that were differentially expressed only at 10 DPI and were predicted to target 1646 genes. The second group (L2) includes 43 miRNAs that were differentially expressed only at 15 DPI and were predicted to target 2257 genes. The third group (L3) includes 75 miRNAs that were differentially expressed at both 10 DPI and 15 DPI and were predicted to target 1623 genes. At L1, L2, and L3, there were 89, 87, and 41 significantly enriched Gene Ontology (GO) terms, respectively (p<0.05). The analysis of differentially expressed miRNA target genes using KEGG pathways revealed significant enrichment at L1, L2, and L3, with 3, 4, and 5 pathways identified, respectively (p<0.05). This article suggests that the expression of liver miRNA undergoes dynamic alterations due to H. meleagridis and the host. It showed that the expression pattern of L1 class DEMs was more conducive to regulating the development of the inflammatory response, while the L2 class DEMs were more conducive to augmenting the inflammatory response. The observed patterns of miRNA expression associated with inflammation were in line with the liver's inflammatory process following infection. The results of this study provide a basis for conducting a comprehensive analysis of the pathogenic mechanism of H. meleagridis from the perspective of host miRNAs.
Assuntos
Galinhas , Fígado , MicroRNAs , Doenças das Aves Domésticas , Trichomonadida , Animais , Galinhas/parasitologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Aves Domésticas/parasitologia , Fígado/parasitologia , Fígado/metabolismo , Trichomonadida/genética , Infecções Protozoárias em Animais/parasitologia , Transcriptoma , Perfilação da Expressão Gênica/veterináriaRESUMO
Pentatrichomonas hominis is a common intestinal parasitic protozoan that causes abdominal pain and diarrhea, and poses a zoonotic risk. Probiotics, known for enhancing immunity and pathogen resistance, hold promise in combating parasitic infections. This study aimed to evaluate two porcine-derived probiotics, Lactobacillus reuteri LR1 and Lactobacillus plantarum LP1, against P. hominis infections in pigs. Taxonomic identity was confirmed through 16 S rRNA gene sequencing, with L. reuteri LR1 belonging to L. reuteri species and L. plantarum LP1 belonging to L. plantarum species. Both probiotics exhibited robust in vitro growth performance. Co-culturing intestinal porcine epithelial cell line (IPEC-J2) with these probiotics significantly improved cell viability compared with the control group. Pre-incubation probiotics significantly enhanced the mRNA expression of anti-oxidative response genes in IPEC-J2 cells compared with the PHGD group, with L. reuteri LR1 and L. plantarum LP1 significantly up-regulating CuZn-SODãCAT and Mn-SOD genes expression (p < 0.05). The anti-oxidative stress effect of L. reuteri LR1 was significantly better than that of L. plantarum LP1 (p < 0.05). Furthermore, pre-incubation with the probiotics alleviated the P. hominis-induced inflammatory response. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated IL-6ãIL-8 and TNF-α gene expression(p < 0.05) compared with the PHGD group. The probiotics also mitigated P. hominis-induced apoptosis. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated Caspase3 and Bax gene expression (p < 0.05), significantly up-regulated Bcl-2 gene expression (p < 0.05) compared with the PHGD group. Among them, L. plantarum LP1 showed better anti-apoptotic effect. These findings highlight the probiotics for mitigating P. hominis infections in pigs. Their ability to enhance anti-oxidative responses, alleviate inflammation, and inhibit apoptosis holds promise for therapeutic applications. Simultaneously, probiotics can actively contribute to inhibiting trichomonal infections, offering a novel approach for preventing and treating diseases such as P. hominis. Further in vivo studies are required to validate these results and explore their potential in animal and human health.
Assuntos
Lactobacillus plantarum , Probióticos , Animais , Probióticos/farmacologia , Suínos , Linhagem Celular , Lactobacillus plantarum/fisiologia , Limosilactobacillus reuteri/fisiologia , Trichomonadida/fisiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/parasitologiaRESUMO
Intestinal health is one of the key factors required for the growth and production of turkeys. Histomoniasis (blackhead disease), caused by a protozoan parasite, Histomonas meleagridis, is a reemerging threat to the turkey industry. Increased incidences of histomoniasis have been reported in recent years due to withdrawal of antihistomonas treatments. H. meleagridis affects ceca and causes cecal inflammation and necrosis. H. meleagridis migrates from ceca to the liver and causes liver necrosis, resulting in high mortalities. Ironically, field outbreaks of histomoniasis are not always associated with high mortalities, while low mortalities have also been documented. There are several exacerbating factors associated with high mortality rates in histomoniasis outbreaks, with concurrent infection being one of them. Recurrent histomoniasis outbreaks in a newly constructed barn were documented, and concurrent infection of H. meleagridis and hemorrhagic enteritis virus was confirmed. Currently, neither commercial vaccines nor prophylactic or therapeutic solutions are available to combat histomoniasis. However, there are treatments, vaccines, and solutions to minimize or prevent concurrent infections in turkeys. In addition to implementing biosecurity measures, measures to prevent concurrent infections are critical steps that the turkey industry can follow to reduce mortality rates and minimize the production and economic losses associated with histomoniasis outbreaks.
Infección simultánea por Histomonas meleagridis y el virus de la enteritis hemorrágica en una parvada de pavos con antecedentes recurrentes de enfermedad de la cabeza negra. La salud intestinal es uno de los factores clave necesarios para el crecimiento y producción de los pavos. La histomoniasis (enfermedad de la cabeza negra), causada por un parásito protozoario, Histomonas meleagridis, es una amenaza reemergente para la industria del pavo. En los últimos años se ha informado de un aumento de la incidencia de histomoniasis debido al retiro de los tratamientos con antihistomonas. Histomonas meleagridis afecta los ciegos y causa inflamación y necrosis cecal. Histomonas meleagridis migra desde los ciegos al hígado y causa necrosis hepática, lo que resulta en una alta mortalidad. Irónicamente, los brotes de histomoniasis en el campo no siempre se asocian con una mortalidad elevada, aunque también se han documentado mortalidades bajas. Hay varios factores exacerbantes asociados con altas tasas de mortalidad en los brotes de histomoniasis, siendo la infección concurrente uno de ellos. Se documentaron brotes recurrentes de histomoniasis en un alojamiento avícola recién construido y se confirmó la infección concurrente de H. meleagridis y el virus de la enteritis hemorrágica. Actualmente no se dis-pone de vacunas comerciales ni soluciones profilácticas o terapéuticas para combatir la histomoniasis. Sin embargo, existen tratamientos, vacunas y soluciones para minimizar o prevenir infecciones concurrentes en los pavos. Además de implementar medidas de bioseguridad, las medidas para prevenir infecciones concurrentes son pasos críticos que la industria del pavo puede seguir para reducir las tasas de mortalidad y minimizar las pérdidas económicas y de producción asociadas con los brotes de histomoniasis.
Assuntos
Doenças das Aves Domésticas , Trichomonadida , Perus , Animais , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/parasitologia , Trichomonadida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Coinfecção/parasitologia , Surtos de Doenças/veterinária , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologiaRESUMO
BACKGROUND: Histomonas meleagridis can infect chickens and turkeys. It uses the eggs of the cecal worm Heterakis gallinarum as a vector and reservoir. Litter beetles (Alphitobius diaperinus) and other arthropod species have been implicated as potential vectors, but little information about other arthropod species as potential vectors is known. METHODS: Four broiler breeder pullet farms were sampled every 4 months. On each farm, three types of traps were set inside and outside two houses. Trapped arthropod specimens were morphologically identified at order level and grouped into families/types when possible. Selected specimens from abundant types found both inside and outside barns were screened for H. meleagridis and H. gallinarum by qPCR. RESULTS: A total of 4743 arthropod specimens were trapped. The three most frequently encountered orders were Diptera (38%), Coleoptera (17%), and Hymenoptera (7%). Three hundred seventeen discrete types were differentiated. More arthropods were trapped outside than inside. Alpha diversity was greater outside than inside but not significantly influenced by season. The composition of the arthropod populations, including the insectome, varied significantly between trap location and seasons. Up to 50% of litter beetles tested positive for H. meleagridis DNA 4 months after an observed histomonosis outbreak. Sporadically litter beetles were positive for H. gallinarum DNA. Thirteen further arthropod types were tested, and specimens of four Dipteran families tested positive for either one or both parasites. CONCLUSIONS: This study describes the insectome in and around broiler breeder pullet farms and identifies new potential vectors of H. meleagridis through qPCR. The results show a limited but present potential of arthropods, especially flies, to transmit histomonosis between farms.
Assuntos
Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Infecções por Protozoários , Trichomonadida , Animais , Feminino , Aves Domésticas , Galinhas/parasitologia , Fazendas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/parasitologia , Perus/parasitologia , Trichomonadida/genética , Infecções Protozoárias em Animais/epidemiologiaRESUMO
Tritrichomonas muris is a common flagellated protist isolated from the cecum of wild rodents. This commensal protist has been shown previously to alter immune phenotypes in laboratory mice. Other trichomonads, referred to as Tritrichomonas musculis and Tritrichomonas rainier, also naturally colonize laboratory mice and cause immune alterations. This report formally describes two new trichomonads, Tritrichomonas musculus n. sp., and Tritrichomonas casperi n. sp., at the ultrastructural and molecular level. These two protists were isolated from laboratory mice and were differentiated by their size and the structure of their undulating membrane and posterior flagellum. Analysis at the 18S rRNA and trans-ITS genetic loci supported their designation as distinct species, related to T. muris. To assess the true extent of parabasalid diversity infecting laboratory mice, 135 mice bred at the National Institutes of Health (NIH) were screened using pan-parabasalid primers that amplify the trans-ITS region. Forty-four percent of mice were positive for parabasalids, encompassing a total of eight distinct sequence types. Tritrichomonas casperi and Trichomitus-like protists were dominant. T. musculus and T. rainier were also detected, but T. muris was not. Our work establishes a previously underappreciated diversity of commensal trichomonad flagellates that naturally colonize the enteric cavity of laboratory mice.
Assuntos
Parabasalídeos , Trichomonadida , Tritrichomonas , Animais , Camundongos , Tritrichomonas/ultraestrutura , Trichomonadida/genética , Eucariotos , Flagelos/ultraestruturaRESUMO
Intestinal health plays a major role in profitable and efficient turkey production. Blackhead disease (histomoniasis) is caused by Histomonas meleagridis, an anaerobic protozoan parasite. Histomonas meleagridis disrupts intestinal integrity and may cause systemic infection. Some field outbreaks of blackhead disease are associated with low morbidity and mortality, while in some instances, it may cause severe morbidity and mortality. In the current study, a presumptive diagnosis of blackhead disease was made based on the characteristic gross lesions in the liver and ceca. The cecal culture, PCR, and sequencing confirmed the presence of H. meleagridis and Pentatrichomonas hominis. Pentatrichomonas hominis has been reported in enteritis cases of several other species, such as dogs, cats, and cattle. The impact of P. hominis on intestinal health of turkeys has not previously been studied, and to the best of our knowledge, this is the first case report of concurrent H. meleagridis and P. hominis infection in turkeys.
Reporte de caso- Infección simultánea de Histomonas meleagridis y Pentatrichomonas hominis en un brote de enfermedad de la cabeza negra en pavos. La salud intestinal juega un papel importante en la producción rentable y eficiente de pavos. La enfermedad de la cabeza negra (histomoniasis) es causada por Histomonas meleagridis, que es un parásito protozoario anaeróbico. Histomonas meleagridis altera la integridad intestinal y puede causar una infección sistémica. Algunos brotes de campo de la enfermedad de la cabeza negra están asociados con una baja morbilidad y mortalidad, mientras que en algunos casos puede causar una morbilidad y mortalidad severas. En el presente estudio, se realizó un diagnóstico presuntivo de la enfermedad de la cabeza negra con base a las lesiones macroscópicas características en el hígado y el ciego. El cultivo cecal, un método de PCR y secuenciación confirmaron la presencia de H. meleagridis y Pentatrichomonas hominis. Se ha reportado la presencia de Pentatrichomonas hominis en casos de enteritis de varias otras especies, como perros, gatos y ganado. El impacto de P. hominis en la salud intestinal de los pavos no se había estudiado previamente y según nuestro conocimiento, este es el primer reporte de un caso de infección simultánea por H. meleagridis y P. hominis en pavos.
Assuntos
Doenças dos Bovinos , Doenças do Cão , Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Trichomonadida , Trichomonas , Animais , Bovinos , Cães , Perus/parasitologia , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/parasitologia , Surtos de Doenças/veterinária , Doenças dos Bovinos/epidemiologia , Doenças do Cão/epidemiologiaRESUMO
Histomonosis has become an important disease of turkeys since the ban of effective feed additives and therapeutics. Some critical risk factors for pathogen introduction into a farm have already been identified but open questions remain. Therefore, a retrospective case-control-study was used to identify the most significant risk factors for Histomonas (H.) meleagridis-introduction into a turkey farm. A total of 113 questionnaires were collected from 73 control-farms and 40 Histomonas-positive case-farms in Germany between 20 April 2021 and 31 January 2022. The data were analysed for possible risk factors by descriptive and univariate, single- and multi-factorial analysis. The presence of earthworms, snails and beetles, as vectors of H. meleagridis, as well as the proximity to other poultry-keeping farms in addition to a frequent observation of wild birds nearby the turkey farm, showed the highest risk potential for histomonosis outbreaks. Furthermore, poor biosecurity measures seem to have increased the probability for an outbreak. Insufficient climate management, straw as litter material and an inadequate litter refill frequency might have promoted a favourable humidity for vector- or pathogen survival providing important areas for improved disease control measures in the future.RESEARCH HIGHLIGHTSA retrospective case-control-study was conducted to identify impactful risk factors for a H. meleagridis introduction.The probability of a histomonosis outbreak was increased by the presence of vectors and reservoirs nearby a farm.Impactful risk factors concerning biosecurity measures, climate and litter management were identified.
Assuntos
Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Trichomonadida , Animais , Perus , Infecções Protozoárias em Animais/epidemiologia , Estudos Retrospectivos , Doenças das Aves Domésticas/epidemiologia , Aves DomésticasRESUMO
Trichomonads, anaerobic microbial eukaryotes members of the phylum Parabasalia, are common obligate extracellular symbionts that can lead to pathological or asymptomatic colonization of various mucosal surfaces in a wide range of animal hosts. Results from previous in vitro studies have suggested a number of intriguing mucosal colonization strategies by Trichomonads, notably highlighting the importance of interactions with bacteria. However, in vivo validation is currently lacking. A previous metatranscriptomics study into the cause of idiopathic chronic diarrhoea in macaques reported the presence of an unidentified protozoan parasite related to Trichomonas vaginalis. In this work, we performed a reanalysis of the published data in order to identify the parasite species present in the macaque gut. We also leveraged the information-rich metatranscriptomics data to investigate the parasite behaviour in vivo. Our results indicated the presence of at least 3 genera of Trichomonad parasite; Tetratrichomonas, Pentatrichomonas and Trichomitus, 2 of which had not been previously reported in the macaque gut. In addition, we identified common in vivo expression profiles shared amongst the Trichomonads. In agreement with previous findings for other Trichomonads, our results highlighted a relationship between Trichomonads and mucosal bacterial diversity which could be influential in health and disease.
Assuntos
Parasitos , Trichomonadida , Trichomonas vaginalis , Animais , Macaca , Eucariotos , Diarreia/veterináriaRESUMO
Reptiles are frequently kept as pet animals. They are considered as important reservoirs of protozoa with veterinary-medical significance. At a reptile farm in Ireland, fecal samples were collected from 98 captive reptiles, representing 43 species of three orders (Squamata, Testudines, and Crocodylia). After DNA extraction, all samples were screened by conventional PCRs, targeting the ribosomal small subunit (SSU) RNA and alpha-tubulin genes of trichomonads and SSU RNA gene of Acanthamoeba spp. One leopard gecko (Eublepharis macularius) was positive for a not yet reported species/genotype of the genus Monocercomonas, different from M. colubrorum. Various Acanthamoeba genotypes were detected in six reptilian species, i.e., Acanthamoeba genotype T11 in Eunectes notaeus and Heloderma suspectum/horridum; genotype T4 in Varanus exanthematicus, Chlamydosaurus kingii, and Macrochelys temminckii; and the genotype T13 in Iguana iguana. Some of these amoeba species might have clinicopathological significance in both humans and animals. Our findings highlight the importance to monitor pathogenic protozoa in pet as well as wildlife reptiles, as a source of possible infection for animals and humans living nearby.
Assuntos
Acanthamoeba , Amoeba , Trichomonadida , Humanos , Animais , Acanthamoeba/genética , Répteis/parasitologia , Genótipo , Fezes , Trichomonadida/genética , RNARESUMO
Tetratrichomonas gallinarum and Trichomonas gallinae can colonize the alimentary tract of domestic birds. However, little information is available on the epidemiology of the two trichomonad species in domestic free-range poultry in China. In this study, the occurrence and genetic characteristic of T. gallinarum and T. gallinae among free-range chickens, ducks, and geese in Anhui Province, China, were investigated. The 1910 fecal samples collected from 18 free-range poultry farms throughout Anhui Province were examined for the presence of T. gallinarum and T. gallinae by PCR and sequence analysis of the small subunit (SSU) rRNA gene of T. gallinarum and ITS1-5.8S-ITS2 sequence of T. gallinae. The overall occurrence of T. gallinarum in poultry was 1.2% (22/1910), with infection rates of 2.1% (17/829) in chickens, 0.2% (1/487) in ducks, and 0.7% (4/594) in geese. The constructed phylogeny tree using the concatenated ITS1-5.8S-ITS2 region and SSU rRNA indicated the T. gallinarum isolates detected in this study were closely related to previously defined genogroups A, D, and E, respectively. Nine (0.5%) fecal samples were positive for T. gallinae, with infection rates of 0.8% (7/829) in chickens, 0.4% (2/487) in ducks, and 0% (0/594) in geese. Sequence and phylogenetic analysis showed that four T. gallinae ITS1-5.8S-ITS2 sequences obtained from chicken feces and one duck fecal sample belonged to genotype ITS-OBT-Tg-1. This is the first report of the prevalence and genetic characterization of T. gallinarum and T. gallinae in free-range chickens, ducks, and geese in China.
Assuntos
Doenças das Aves , Trichomonadida , Tricomoníase , Trichomonas , Animais , Doenças das Aves/epidemiologia , Galinhas , Patos , Filogenia , Aves Domésticas , Prevalência , Trichomonas/genética , Tricomoníase/epidemiologia , Tricomoníase/veterináriaRESUMO
Histomonosis (syn. blackhead disease) is caused by the protozoan parasite Histomonas meleagridis and can result in high mortality in turkey flocks, a situation driven by the limitation of prophylactic and therapeutic interventions. Multi-locus sequence typing confirmed the existence of two genotypes, with the vast majority of reported histomonosis outbreaks being caused by genotype 1 in contrast to only a few detections of genotype 2. For the first time, genotype 2 of H. meleagridis was successfully isolated from an outbreak of histomonosis in a flock of 5-week-old turkeys and a clonal culture was established. Using this culture, an experimental infection was performed in naïve turkeys. The animal trial reflected the observations from the field outbreak and coincided with a previously reported case of histomonosis caused by genotype 2, albeit no mortality was observed in the infected birds whereas 17.1% mortality was noticed in the field outbreak from appearance of disease until slaughter. Post mortem investigations demonstrated that lesions were restricted to the caeca in the field outbreak and the experimental trial. In parallel with the experimental reproduction of pathological changes, an oral vaccination of day-old turkeys with a monoxenic genotype 1 vaccine was carried out to determine efficacy against a genotype 2 challenge. Successful vaccine uptake was characterized by the presence of the vaccine in the caeca determined by qPCR and immunohistochemistry (IHC). Excretion of the vaccine strain was confirmed prior challenge, with the majority of birds developing antibodies. The new monoxenic vaccine was able to minimize lesions in the caeca demonstrating heterologous protection. No parasites were detected in the liver by IHC in any of the vaccinated birds, compared to non-vaccinated animals. However, in 6 out of 17 birds of the vaccinated group a positive signal was obtained by real time PCR from liver samples with 2 positives being typeable by conventional PCR as genotype 2. Overall, H. meleagridis genotype 2 infection was successfully reproduced. Experimental vaccination with a genetically distantly related genotype 1 was able to reduce lesions, supporting protection by a recently developed vaccine candidate as an efficacious prophylactic strategy.
Assuntos
Parasitos , Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Infecções por Protozoários , Trichomonadida , Vacinas , Animais , Genótipo , Tipagem de Sequências Multilocus , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/prevenção & controle , Reprodução , Trichomonadida/genética , Perus , VacinaçãoRESUMO
Histomoniasis is caused by the protozoa Histomonas meleagridis (HM) that are laterally transmitted among birds leading to high mortality in commercial flocks. This study tested an HM infection model assessing the lateral transmission of HM in turkey poults raised on floor pens. Day (d)-old female turkey poults (n = 320) were individually wing-tagged and allocated to one of four treatment groups (4 floor pens/group and 20 poults/pen) based on the percentage of poults inoculated with HM: 1) 10% (HM10); 2) 20% (HM20); 3) 30% (HM30); and 4) 40% (HM40). On d 9, seeder poults intracloacally received a 1 mL inoculum/bird containing â¼80,000 histomonads. Poults were individually weighed on d 0, 9, and 25 and feed intake recorded on per pen basis. On d 25, all birds were euthanized by cervical dislocation and ceca and liver were evaluated for HM lesions. Data were analyzed using JMP (Pro16) and significance (P ≤ 0.05) between treatments were determined by LSD test. Mortality was 7.63%, 12.5%, 21.58%, and 20.59%, while transmission rates from inoculated to non-inoculated birds were 62.5%, 57.5%, 92.43%, and 78.75% in HM10, HM20, HM30, and HM40 groups, respectively. Average daily feed intake was proportionally reduced with the increasing number of inoculated poults from HM10 to HM40. Average daily gain was significantly lower in HM30 and HM40 poults compared to those in HM10 and HM20 during the postchallenge period (d 10-25). Therefore, we herein report the successful lateral transmission of HM among turkey poults raised on floor pens. This research model closely resembles commercial field conditions and affords a much-needed platform for conducting relevant basic and applied research on histomoniasis in poultry.
Assuntos
Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Infecções por Protozoários , Trichomonadida , Animais , Galinhas , Feminino , Doenças das Aves Domésticas/parasitologia , Infecções Protozoárias em Animais/parasitologia , PerusRESUMO
BACKGROUND: Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecum miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis. RESULTS: Compared with the controls, 94 and 127 DEMs were found in cecum of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp/kegg/kegg1.html ) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. For previous uses, the Kanehisa laboratory have happily provided permission. The integrated analysis of miRNA-gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. CONCLUSION: This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection.
Assuntos
MicroRNAs , Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Trichomonadida , Animais , Ceco , Galinhas/parasitologia , MicroRNAs/genética , Doenças das Aves Domésticas/parasitologia , Trichomonadida/genética , PerusRESUMO
Tetratrichomonas gallinarum and Trichomonas gallinae are pathogenic avian parasites that infect a wide range of bird species. The pathologic potential of T. gallinarum is controversial, whereas T. gallinae causes disease in many avian species. Infections are often asymptomatic in doves and pigeons; thus, columbids are presumed to represent the natural hosts for trichomonads. The detection of T. gallinarum and T. gallinae is based on direct microscopic observation or a conventional PCR assay. Microscopy is not very sensitive, and identification of the trichomonads at the genus or species level is not possible. Conventional PCR assays have been developed primarily for phylogenetic studies, which detect a wide range of Trichomonas spp. but do not allow their differentiation. We developed a duplex real-time PCR (rtPCR) assay for the simultaneous detection and differentiation of T. gallinarum and T. gallinae. We found that the rtPCR assay detected 102 plasmid DNA copies of T. gallinarum and as few as 101 plasmid DNA copies of T. gallinae.
Assuntos
Doenças das Aves , Trichomonadida , Trichomonas , Animais , Doenças das Aves/diagnóstico , Doenças das Aves/parasitologia , Columbidae , DNA , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Trichomonadida/genética , Trichomonas/genéticaRESUMO
The objectives of this study were to evaluate whether a preinfection of Eimeria adenoeides (EAD) or Eimeria tenella (ET) could affect the severity of subsequent histomoniasis in turkeys (Experiment 1) and if previous exposure to EAD infection, when a single or multiple inoculations of EAD were administered with sufficient time for complete cecal recovery, would affect the severity of HM incidence and lesions (Experiment 2). In Experiment 1, 200 poults were assigned to 1 of 5 groups, as follows: unchallenged negative control, positive challenge control inoculated with 105 HM, EAD at 500 oocysts/bird and Histomonas meleagridis (HM), EAD at 2500 oocysts/bird and HM, or ET at 9 × 106 oocysts/bird and HM. ET and EAD were inoculated on day 15 and HM on day 20. In Experiment 2, the trial consisted of two different challenge ages to evaluate short- or long-term EAD effects before HM challenge. Poults (n = 260) were assigned to either early-HM-challenged groups (HM on day 19 challenge control or EAD at 2500 oocysts/bird on day 14 with HM on day 19) or late-HM-challenged groups (HM on day 35 challenge control, EAD at 2500 oocysts/bird on day 14 and HM on day 35, or EAD at 100 oocysts/bird every 2-3 days during the first 3 weeks and HM on day 35). An unchallenged negative-control group was used for both the early- and late-challenge phases in Experiment 2. Mortalities were recorded, and surviving poults were scored for histomoniasis-related hepatic and cecal lesions. In Experiment 1, preinfection with both doses of EAD reduced the mortality as well as the cecal and hepatic lesions caused by histomoniasis. In Experiment 2, neither short- nor long-term preinfection with EAD had an effect on histomoniasis-related mortality or lesions. Differences between Experiments 1 and 2 may be due to the level of infection caused by the prechallenge with EAD and the resulting destruction of cecal tissue.
Evaluación de la preinfección por Eimeria adenoeides sobre la severidad de la histomoniasis en pavos. Los objetivos de este estudio fueron evaluar si una preinfección por Eimeria adenoeides (EAD) o Eimeria tenella (ET) podría afectar la severidad de la histomoniasis subsequente en pavos (Experimento 1); y si la exposición previa a la infección por E. adenoeides, cuando se administraron una o varias inoculaciones de E. adenoeides con tiempo suficiente para la completa recuperación cecal, afectaría la gravedad de la incidencia y las lesiones de Histomonas meleagridis (Experimento 2). En el Experimento 1, se asignaron 200 pavipollos en cinco grupos, de la siguiente manera: control negativo no desafiado, control de desafío positivo inoculado con 105 de H. meleagridis, un grupo con E. adenoeides a 500 ooquistes/ave e H. meleagridis (HM), otro grupo con E. adenoeides a 2500 ooquistes/ave y H. meleagridis, o E. tenella a 9×106 ooquistes/ave y H. meleagridis. Se inocularon E. tenella y E. adenoeides el día 15 y H. meleagridis el día 20. En el Experimento 2, el ensayo consistió en dos edades de exposición diferentes para evaluar los efectos de E. adenoeides a corto o largo plazo antes del desafío con H. meleagridis. Los pavipollos (n = 260) se asignaron a los grupos de desafío temprano con H. meleagridis (H. meleagridis en el día 19 en el grupo control de desafío o E. adenoeides con 2500 ooquistes/ave el día 14 y con H. meleagridis en el día 19) o los grupos de desafío tardío con H. meleagridis (H. meleagridis en el día 35 del control de desafío, E. adenoeides a 2,500 ooquistes/ave el día 14 y H. meleagridis en el día 35, o E. adenoeides con 100 ooquistes/ave cada 2-3 días durante las primeras 3 semanas y H. meleagridis en el día 35). En el Experimento 2, se utilizó un grupo de control negativo no desafiado para ambas fases de exposición temprana y tardía. Se registraron la mortalidad y los pavipollos supervivientes se asignaron puntuaciones en cuanto a lesiones hepáticas y cecales relacionadas con histomoniasis. En el Experimento 1, la preinfección con ambas dosis de E. adenoeides redujo la mortalidad, así como las lesiones cecales y hepáticas causadas por histomoniasis. En el Experimento 2, ni la preinfección a corto ni a largo plazo con E. adenoeides tuvo un efecto sobre la mortalidad o las lesiones relacionadas con la histomoniasis. Las diferencias entre los Experimentos 1 y 2 pueden deberse al nivel de infección causado por el desafío previo con E. adenoeides y la destrucción resultante del tejido cecal.
Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Infecções por Protozoários , Trichomonadida , Animais , Coccidiose/veterinária , Oocistos , PerusRESUMO
Repeated serial in vitro passage of Histomonas meleagridis, the etiological agent of histomoniasis (blackhead) of turkeys, was demonstrated to markedly achieve attenuation and reduction of virulence as compared to the original wild-type isolate. Four experiments were performed to evaluate the route (oral vs. intracloacal) and age (day-of-hatch vs. d 14) for administration of attenuated H. meleagridis isolates as vaccine candidates against homologous or heterologous wild-type challenge. Attenuated H. meleagridis were developed from 2 different strains (Buford strain originating in Georgia; PHL2017 strain originating in Northwest Arkansas). Buford P80a (passage 80, assigned as isolate lineage "a" following repeated passage) was selected as the primary vaccine candidate and was evaluated in Experiments 1-3. Experiment 4 evaluated selected candidates of attenuated PHL2017 (P67, P129) and Buford (P80a, P200a, P138b, P198c) strains against Buford wild-type challenge. As has been demonstrated previously, wild-type H. meleagridis cultures administered orally after 1 day of age were not infective in the current studies, but infection with wild-type cultures could be induced orally at day-of-hatch. Infection was effectively achieved via the intracloacal route at day-of-hatch and in older turkeys (d 21, d 28-29, d 35). Intracloacal inoculation of turkeys with the attenuated passaged isolates as vaccine candidates at d 14 was shown to produce significant (P < 0.05) protection from mortality, reduction in body weight gain, as well as reduction in hepatic and cecal lesions in these experiments following challenge with either the homologous wild-type isolate or from a wild-type strain obtained years later from a geographically disparate area of the United States. Inoculation with the attenuated H. meleagridis isolates at day-of-hatch, either orally or cloacally, did not produce significant protection against subsequent wild-type challenge. While offering significant protection with minimal vaccine-related negative effects, the protection from cloacal vaccine administration was neither significantly robust nor encouraging for industry application using the methods evaluated in the present manuscript since mortalities and lesions were not completely reduced which could thereby potentially allow transmission from residual infection and shedding within a flock.
Assuntos
Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Vacinas Protozoárias , Trichomonadida , Animais , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Infecções Protozoárias em Animais/prevenção & controle , PerusRESUMO
The poultry pathogen Histomonas meleagridis is transmitted by chicken cecal worms (Heterakis gallinarum) and is potentially transmitted by second order insect vectors and paratenic hosts. Darkling beetles (Alphitobius diaperinus) are poultry farm pests that infest barns. An outstanding question is the degree to which darkling beetles transmit both Heterakis and Histomonas. In this study we monitored populations of darkling beetles and assessed their positivity for both Heterakis and Histomonas by PCR. Uniquely, this study was conducted during the scheduled deconstruction of Auburn University's Poultry Research Farm. Therefore, we were able to monitor beetle and litter infection status months and years after bird depopulation. The duration of our monitoring continued through three seasons. We show that environmental DNA from both Heterakis and Histomonas persist in the environment long after prior infections, even in the absence of living Heterakis and its hosts. Finally, in an intensive search for live Heterakis, we discovered reniform nematodes (plant parasitic nematodes) residing in the soil floor of poultry farms.
Assuntos
Ascaridídios , DNA , Doenças das Aves Domésticas , Trichomonadida , Animais , Galinhas , DNA/química , DNA/isolamento & purificação , Abrigo para Animais , Doenças das Aves Domésticas/parasitologia , Trichomonadida/genéticaRESUMO
Histomonas meleagridis is a trichomonad protozoan parasite that can cause an important poultry disease known as histomoniasis; Marek's disease virus (MDV) and subtype J avian leukosis virus (ALV-J) usually cause avian oncogenic diseases. Although these diseases have been reported in a single pathogen infection, information about their coinfection is scarce. This study reports a naturally occurring case of coinfection with H. meleagridis, MDV, and ALV-J in a local chicken flock at the age of 150 days. Necropsy revealed necrosis and swelling in the liver and spleen. Histologic analysis showed large areas of mild to severe necrosis of hepatocytes, with numerous intralesional trophozoites of H. meleagridis by H&E and periodic acid-Schiff staining; H&E staining showed pleomorphic and neoplastic lymphoid tumor cells in the liver and myeloid cells with eosinophilic cytoplasmic granules in the spleen. Coexpression of MDV and ALV-J antigens was detected in the liver by fluorescence multiplex immunohistochemistry staining. The 18S rRNA gene of H. meleagridis, meq gene of MDV, and gp85 gene of ALV-J were identified in mixed liver and spleen tissues by PCR and sequencing, respectively.
Reporte de casoCaracterización patológica de la coinfección con Histomonas meleagridis, el virus de la enfermedad de Marek y el virus de la leucosis aviar subtipo J en pollos Histomonas meleagridis es un parásito protozoario tricomonial que puede causar una enfermedad avícola importante conocida como histomoniasis; El virus de la enfermedad de Marek (MDV) y el virus de la leucosis aviar subtipo J (ALV-J) suelen causar enfermedades oncogénicas aviares. Aunque estas enfermedades se han reportado como infecciones patógenas separadas, la información sobre coinfección es escasa. Este estudio reporta un caso natural de coinfección con H. meleagridis, el virus de la enfermedad de Marek y el virus de la leucosis aviar subtipo J en una parvada de pollos local a la edad de 150 días. La necropsia reveló necrosis e inflamación del hígado y el bazo. El análisis histológico mostró grandes áreas de necrosis de hepatocitos de leve a severa, con numerosos trofozoítos intralesionales de H. meleagridis por tinción de hematoxilina y eosina y por tinción de ácido periódico-Schiff. La tinción de hematoxilina y eosina mostró células linfoides neoplásicas y pleomórficas en el hígado y en el bazo presencia de células mieloides con gránulos citoplásmicos eosinofílicos. La coexpresión de antígenos del virus de Marek y de la leucosis aviar subtipo J se detectó en el hígado mediante tinción inmunohistoquímica de fluorescencia múltiple. El gene de ARNr 18S de H. meleagridis, el gene meq del virus de Marek y el gene gp85 del virus de la leucosis aviar subtipo J se identificaron en tejidos mixtos de hígado y bazo mediante PCR y secuenciación, respectivamente.