RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Miconia albicans (MA) is consumed all over the Brazilian territory as a remedy to treat rheumatoid arthritis and has been increasingly used to alleviate the deleterious symptoms caused by Chikungunya virus (CHIKV). AIM OF THE STUDY: To investigate the effect of MA leaf and stem hydroethanolic extracts (LE and SE, respectively), their fractions enriched in triterpene acids or polyphenols as well isolated constituents, on CHIKV hosted in Vero cells. MATERIALS AND METHODS: Polyphenol profiles of LE and SE were dereplicated by HPLC-DAD-ESI-MS/MS, aided by standards. Polyphenol-rich (LEx and SEx) and triterpenic acid-rich (LOH and SOH) fractions were obtained in Amberlite XAD-4 and alkalinized 95% ethanol (EtOH) extraction, respectively. TPC and TFC were assessed by colorimetric methods. Three representative flavonoids and two triterpenic acids were quantified by HPLC. CHIKV load suppression was evaluated in Vero cells by real-time qRTâPCR at noncytotoxic concentrations. RESULTS: Fifteen flavonoids were characterized in LE and SE. LEx presented isoquercitrin, quercitrin, rutin (0.49-1.51%) and quercetin. The TPC was 48 and 62 mg QE/g extract, and the TFC was 11.93 and 0.76 mg QE/g extract for LEx and SEx, respectively. LOH presented ursolic (15.3%) and oleanolic (8.0%) acids. A reduction (91-97%) in the CHIKV load was produced by the triterpene fraction, quercitrin and quercetin; the latter maintained the activity down to one twentieth of the tolerated concentration. CONCLUSION: M. albicans contains flavonoids and triterpenic acids that are effective against CHIKV, which might justify its use to alleviate sequelae of CHIKV infection. However, further investigations on the species and its active constituents are needed.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Melastomataceae , Triterpenos , Animais , Chlorocebus aethiops , Febre de Chikungunya/tratamento farmacológico , Células Vero , Quercetina/farmacologia , Espectrometria de Massas em Tandem , Flavonoides/farmacologia , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêuticoRESUMO
Objective: To investigate the efficacy and safety profile of different doses of magnesium isoglycyrrhizinate in the treatment of chronic liver disease with elevated alanine aminotransferase (ALT). Methods: Computer retrieval of literature was conducted in the CNKI, Wanfang, and PubMed databases from the establishment of the databases until February 2023. The Cochrane risk of bias assessment tool was used to evaluate the quality of the included literature after screening the literature and extracting the data. RevMan 5.4 and Stata 15.0 software were used to analyze the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), total effective rate, and incidence of adverse events. Results: Finally, 10 articles were selected, including a total of 1 522 cases. All the included studies were of good quality and at low risk of bias. Meta-analysis results showed that compared with 100 mg/d magnesium isoglycyrrhizinate injection, 200 mg/d magnesium isoglycyrrhizinate injection had significantly reduced patients' ALT [MD = -30.73, 95% confidence interval (CI): -52.52 ~ -8.94, Z = 2.76, P = 0.006; I (2) = 98%, P < 0.001], AST (MD = -34.30, 95% CI: -57.78 ~ -10.82, Z = 2.86, P = 0.004; I (2) = 99%, P < 0.001) and TBil (MD = -15.37, 95% CI: -27.66 ~ -3.09), Z = 2.45, P = 0.01; I (2) = 98%, P < 0.001) levels. The total effective rate reported in seven articles showed no heterogeneity among the studies (I (2) = 0.0%, P = 0.98). The total effective rate was higher in 200 mg/d magnesium isoglycyrrhizinate injection than that of 100 mg/d magnesium isoglycyrrhizinate injection (OR = 3.49, 95% CI: 2.05 ~ 5.95, Z = 4.59, P < 0.001), and there was no statistically significant difference in adverse reactions. Conclusion: 200 mg/d magnesium isoglycyrrhizinate injection can more rapidly and effectively improve the levels of ALT, AST, and TBil in patients with chronic liver disease, with an increased total effective rate and a good safety profile.
Assuntos
Hepatopatias , Saponinas , Triterpenos , Humanos , Alanina Transaminase , Bilirrubina , Saponinas/efeitos adversos , Triterpenos/efeitos adversosRESUMO
BACKGROUND: Ursolic acid (UA) is found in many plants, and has been reported to have anti-protease, antioxidant, anti-inflammatory, antimicrobial, nephroprotective, hepatoprotective, and cardioprotective effects. OBJECTIVE: The purpose of this study was to investigate the effects of ursolic acid in cerulein-induced acute pancreatitis (AP). MATERIALS AND METHODS: Thirty-two Wistar albino rats were randomly assigned to 4 equal groups: Sham, acute pancreatitis, treatment, and ursolic acid group. RESULTS: Serum amylase levels in the AP and treatment groups were significantly higher than in the others (p < 0.05). In addition, serum IL-1ß, IL-6, and TNF-α levels were significantly higher in the AP group in comparison with the treatment group. Although pancreatic tissue total oxidant activity in the AP and treatment groups was similar, pancreatic tissue total antioxidant capacity was significantly higher in the treatment group than in the AP group. CONCLUSIONS: Damage to the pancreas and remote organs in AP was observed to be reduced by UA. In addition, oxidative stress was observed to be decreased by the effect of UA.
ANTECEDENTES: El ácido ursólico se encuentra en numerosas plantas y se ha informado que tiene efectos antiproteasas, antioxidantes, antiinflamatorios, antimicrobianos, nefroprotectores, hepatoprotectores y cardioprotectores. OBJETIVO: Este estudio tuvo como objetivo investigar los efectos del ácido ursólico en la pancreatitis aguda inducida por ceruleína. MATERIAL Y MÉTODOS: Treinta y dos ratas albinas Wistar fueron asignadas aleatoriamente a cuatro grupos iguales: grupo simulado, grupo de pancreatitis aguda, grupo de tratamiento y grupo de ácido ursólico. RESULTADOS: Los niveles de amilasa sérica en los grupos de pancreatitis aguda y de tratamiento fueron significativamente más altos que en los otros grupos (p < 0.05). Además, los niveles séricos de IL-1ß, IL-6 y TNF-α fueron significativamente más altos en el grupo de pancreatitis aguda en comparación con el grupo de tratamiento. Aunque la actividad oxidante total del tejido pancreático en ambos grupos fue similar, la capacidad antioxidante total del tejido pancreático en el grupo de tratamiento fue significativamente mayor. CONCLUSIÓN: Se observó que el ácido ursólico reduce el daño al páncreas y órganos remotos en la pancreatitis aguda, al igual que el estrés oxidativo.
Assuntos
Pancreatite , Triterpenos , Ratos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ceruletídeo , Ratos Wistar , Doença Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêuticoRESUMO
Asiatic acid, a pentacyclic triterpene, was converted into a series of piperazinyl, homopiperazinyl, and 1,5-diazocinyl spacered rhodamine conjugates, differing in the type of spacer and the substitution pattern on the rhodamine moiety of the hybrids. The compounds were tested for cytotoxic activity in SRB assays and compound 12, holding an EC50 of 0.8 nM, was the most cytotoxic compound of this series, but compound 18 (containing a ring expanded 1,5-diazocinyl moiety and n-propyl substituents on the rhodamine) was the most selective compound exhibiting a selectivity factor of almost 190 while retaining high cytotoxicity (EC50 = 1.9 nM, for A2780 ovarian carcinoma).
Assuntos
Neoplasias Ovarianas , Triterpenos , Feminino , Humanos , Triterpenos/farmacologia , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Amidas , RodaminasRESUMO
Chemical structural characterization of chemical compounds from hawthorn fruits and its thermal processed products was carried out in present study. By linking Global Natural Products Social (GNPS) Molecular Networking and MolNetEnhancer workflow, seventy-four chemical compounds in hawthorn fruits and its thermal processed products were tentatively identified. Three quercetagetin derivatives (quercetagetin-3-O-glucoside, quercetagetin-di-glucoside and its isomer), five quercetin or kaempferol derivatives (quercetin-acetylapiosyl-hexoside, quercetin-3-O-(6â³-malonyl-hexoside), quercetin-3-O-(6â³-malonyl-hexoside)-(1 â 2)-O-hexoside, quercetin-3-O-(6â³-malonyl-hexoside)-(1 â 2)-O-deoxyhexoside, kaempferol-3-O-(6â³-malonyl-hexoside)), six procyanidins including four (E)C-ethyl-procyanidins and two A-type procyanidins digallate, as well as 13 triterpenoids including ursolic aldehyde, triterpenoid glycosides, and triterpene acids were reported for the first time in hawthorn fruits. In addition, triterpenoids exhibited considerable thermal stability, while all of flavonoid glycosides, proanthocyanidins and 10 in 13 organic acids showed dramatic decrease after thermal processing.
Assuntos
Crataegus , Proantocianidinas , Triterpenos , Frutas , Quempferóis , Quercetina , Glucosídeos , GlicosídeosRESUMO
During breast cancer development, programmed cell death 1 ligand 1 (PD-L1) overexpression in neutrophils leads to delayed apoptosis and promotes neutrophil hyperproliferation in the lung to form a premetastatic niche, which is beneficial for pulmonary metastasis. Platycodin D (PlaD), a triterpenoid saponin with known anti-inflammatory and antitumor effects, has been reported to downregulate PD-L1 expression. This study aimed to investigate the inhibitory effect of PlaD on neutrophil PD-L1 in 4 T1 tumor-bearing mice and the potential mechanism of breast cancer pulmonary metastasis. In this study, the orthotopic 4 T1 murine mammary carcinoma model was administered 10 and 20 mg/kg PlaD by gavage. PlaD reduced the excess neutrophils and decreased their high migratory capacity in bone marrow, peripheral blood and lung tissue in the premetastatic period, thereby effectively inhibiting tumor growth and pulmonary metastasis. Moreover, PlaD inhibited the phosphatidylinositol-3-kinase (PI3K)/Akt pathway by decreasing the expression of PD-L1 in neutrophils and promoted neutrophil apoptosis. In vitro, PlaD treatment decreased the viability and inhibited migration of neutrophil-like dHL-60 in a dose-dependent manner. Similarly, PlaD inhibited the increase in PD-L1 induced by IFN-γ stimulation and subsequently induced apoptosis in dHL-60 cells. In conclusion, the administration of PlaD inhibited the PI3K/Akt signaling pathway by reducing the expression of PD-L1 in neutrophils. PlaD promoted neutrophil apoptosis, thereby inhibiting the establishment of a premetastatic niche and ultimately blocking the development of pulmonary metastasis.
Assuntos
Neoplasias Pulmonares , Saponinas , Triterpenos , Animais , Camundongos , Antígeno B7-H1 , Neutrófilos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pulmonares/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Apoptose , Fosfatidilinositol 3-QuinaseRESUMO
Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.
Assuntos
Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Triterpenos Pentacíclicos , Meios de Contraste , Eritrócitos Anormais , LipossomosRESUMO
Dozens of triterpenes have been isolated from Camptotheca acuminata, however, triterpene metabolism in this plant remains poorly understood. The common C28 carboxy located in the oleanane-type and ursane-type triterpenes indicates the existence of a functionally active triterpene, C28 oxidase, in this plant. Thorough mining and screening of the CYP716 genes were initiated using the multi-omics database for C. acuminata. Two CYP716A (CYP716A394 and CYP716A395) and three CYP716C (CYP716C80-CYP716C82) were identified based on conserved domain analyses and hierarchical cluster analyses. CYP716 microsomal proteins were prepared and their enzymatic activities were evaluated in vitro. The CYP716 classified into the CYP716C subfamily displays ß-amyrin oxidation activity, and CYP716A displays α-amyrin and lupeol oxidation activity, based on gas chromatography-mass spectrometry analyses. The oxidation products were determined based on their mass and nuclear magnetic resonance spectrums. The optimum reaction conditions and kinetic parameters for CYP716C were determined, and functions were verified in Nicotiana benthaminana. Relative quantitative analyses revealed that these CYP716C genes were enriched in the leaves of C. acuminata plantlets after 60 d. These results indicate that CYP716C plays a dominant role in oleanane-type triterpene metabolism in the leaves of C. acuminata via a substrate-specific manner, and CYP716A is responsible for ursane- and lupane-type triterpene metabolism in fruit. This study provides valuable insights into the unique CYP716C-mediated oxidation step of pentacyclic triterpene biosynthesis in C. acuminata.
Assuntos
Camptotheca , Triterpenos , Camptotheca/metabolismo , Oxirredutases , Triterpenos Pentacíclicos , Triterpenos/metabolismoRESUMO
Spinal cord injury (SCI) is a debilitating condition that results in significant impairment of motor function and sensation. Despite the ongoing efforts to develop effective treatments, there are currently very limited options available for patients with SCI. Celastrol, a natural anti-inflammatory compound extracted from Tripterygium wilfordii, has been shown to exhibit anti-inflammatory and anti-apoptotic properties. In this study, we aimed to explore the therapeutic potential of celastrol for SCI and elucidate the underlying molecular mechanisms involved. We found that local tissue often experiences a significant decrease in cAMP content and occurrs apoptosis after SCI. However, the treatment of celastrol could promote the production of cAMP by up-regulating the VIP-ADCYAP1R1-GNAS pathway. This could effectively inhibit the phosphorylation of JNK and prevent apoptosis, ultimately improving the exercise ability after SCI. Together, our results reveal celastrol may be a promising therapeutic agent for the treatment of SCI.
Assuntos
Traumatismos da Medula Espinal , Triterpenos , Anti-Inflamatórios/farmacologia , Apoptose , Cromograninas/farmacologia , Cromograninas/uso terapêutico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/uso terapêutico , Triterpenos Pentacíclicos/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , AnimaisRESUMO
Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.
Assuntos
Astrágalo , Saponinas , Triterpenos , Saponinas/farmacologia , Triterpenos/farmacologia , Proliferação de CélulasRESUMO
In the last decade, gypsogenin has attracted widespread attention from medicinal chemists by virtue of its prominent anti-cancer potential. Despite its late identification, gypsogenin has proved itself as a new anti-proliferative player battling for a frontline position among other classic pentacyclic triterpenes such as oleanolic acid, glycyrrhetinic acid, ursolic acid, betulinic acid, and celastrol. Herein, we present the most important reactions of gypsogenin via modification of its four functional groups. Furthermore, we demonstrate insights into the anti-cancer activity of gypsogenin and its semisynthetic derivatives and go further by introducing our perspective to judiciously guide the prospective rational design. The present article opens a new venue for a better exploitation of gypsogenin chemical entity as a lead compound in cancer chemotherapy. To the best of our knowledge, this is the first review article exploring the anti-cancer activity of gypsogenin derivatives.
Assuntos
Neoplasias , Ácido Oleanólico , Saponinas , Triterpenos , Humanos , Estudos Prospectivos , Triterpenos Pentacíclicos/química , Triterpenos/química , Saponinas/uso terapêutico , Neoplasias/tratamento farmacológicoRESUMO
Betulinic acid (BA) and betulin (BE) are naturally pentacyclic triterpenes with documented biological activities, especially antitumor and anti-inflammatory activity. However, their bioavailability in vivo is not satisfactory in terms of medical applications. Thus, to improve the solubility and bioavailability so as to improve the efficacy, 28-O-succinyl betulin (SBE), a succinyl derivative of BE, was synthesized and its solubility, in vitro and in vivo anti-tumor activities, the apoptosis pathway as well as the pharmacokinetic properties were investigated. The results showed that SBE exhibited significantly higher solubility in most of the tested solvents, and showed a maximum solubility of 7.19 ± 0.66 g/L in n-butanol. In vitro and in vivo anti-tumor activity assays indicated both BA and SBE exhibited good anti-tumor activities, and SBE demonstrated better potential compared to BA. An increase in the ratio of Bad/Bcl-xL and activation of caspase 9 was found in SBE treated Hela cells, suggesting that the intrinsic mitochondrial pathway is involved in SBE induced apoptosis. Compared with BA, SBE showed much-improved absorption and bioavailability in pharmacokinetic studies.
Assuntos
Ácido Betulínico , Triterpenos , Humanos , Ratos , Animais , Células HeLa , Solubilidade , Triterpenos/farmacologia , Triterpenos Pentacíclicos , Linhagem Celular TumoralRESUMO
Limonoids, a class of abundant natural tetracyclic triterpenoids, present diverse biological activity and provide a versatile platform amenable by chemical modifications for clinical use. Among all of the limonoids isolated from natural sources, obacunone, nomilin, and limonin are the primary hub of limonoid-based chemical modification research. To date, more than 800 limonoids analogs have been synthesized, some of which possess promising biological activities. This review not only discusses the synthesis of limonoid derivatives as promising therapeutic candidates and details the pharmacological studies of their underlying mechanisms from 2002 to 2022, but also proposes a preliminary limonoid synthetic structure-activity relationship (SAR) and provides future direction of limonoid derivatization research.
Assuntos
Limoninas , Triterpenos , Limoninas/farmacologia , Limoninas/química , Triterpenos/química , Relação Estrutura-AtividadeRESUMO
Pharmacological induction of fetal hemoglobin has proven to be a promising therapeutic intervention in ß-hemoglobinopathies by reducing the globin chain imbalance and inhibiting sickle cell polymerization. Fagonia indica has shown therapeutic relevance to ß-thalassemia. Therefore, we study the ethnopharmacological potential of Fagonia indica and its biomarker compounds for their HbF induction ability for the treatment of ß-thalassemia. Here, we identify, compound 8 (triterpenoid glycosides) of F. indica. as a prominent HbF inducer in-vitro and in-vivo. Compound 8 showed potent erythroid differentiation, enhanced cellular proliferation, ample accumulation of total hemoglobin, and a strong notion of γ-globin gene expression in K562 cultures. Compound 8 treatment also revealed strong induction of erythroid differentiation and fetal hemoglobin mRNA and protein in adult erythroid precursor cells. This induction was associated with simultaneous downregulation of BCL11A and SOX6, and overexpression of the GATA-1 gene, suggesting a compound 8-mediated partial mechanism involved in the reactivation of fetal-like globin genes. The in vivo study with compound 8 (10 mg/kg) in ß-YAC mice resulted in significant HbF synthesis demonstrated by the enhanced level of F-cells (84.14 %) and an 8.85-fold increase in the γ-globin gene. Overall, the study identifies compound 8 as a new HbF-inducing entity and provides an early "proof-of-concept" to enable the initiation of preclinical and clinical studies in the development of this HbF-inducing agent for ß-thalassemia.
Assuntos
Hemoglobinopatias , Triterpenos , Talassemia beta , Humanos , Animais , Camundongos , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Talassemia beta/metabolismo , Glicosídeos/farmacologia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Células K562 , Fatores de Transcrição , Expressão Gênica , Proteínas RepressorasRESUMO
ß-Amyrin is a pentacyclic triterpenoid and has anti-viral, anti-bacterial and anti-inflammatory activities. The synthetic pathway of ß-amyrin has been analyzed and its heterogeneous synthesis has been achieved in Saccharomyces cerevisiae. Squalene epoxidase (SQE) catalyzes the oxygenation of squalene to form 2,3-oxidosqualene and is rate-limiting in the synthetic pathways of ß-amyrin. The endogenous SQE in S. cerevisiae is insufficient for high production of ß-amyrin. Herein, eight squalene epoxidases derived from different plants were selected and characterized in S. cerevisiae for improved biosynthesis of ß-amyrin. Among them, the squalene epoxidase from Oryza sativa (OsSQE52) showed the best performance compared to other plant-derived sources. Through protein remodeling, the mutant OsSQE52L256R, obtained based on modeling analysis, increased the titer of ß-amyrin by 2.43-fold compared to that in the control strain with ERG1 overexpressed under the same conditions. Moreover, the expression of OsSQE52L256R was optimized with the improvement of precursor supply to further increase the production of ß-amyrin. Finally, the constructed strains produced 66.97 mg/L ß-amyrin in the shake flask, which was 6.45-fold higher than the original strain. Our study provides alternative SQEs for efficient production of ß-amyrin as well as other triterpenoids derived from 2,3-oxidosqualene.
Assuntos
Oryza , Triterpenos , Esqualeno Mono-Oxigenase/genética , Saccharomyces cerevisiae/genética , Esqualeno , Oryza/genéticaRESUMO
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases in the world. The effective therapeutic methods and drugs are still not clear. Astragaloside IV (AS-IV), a triterpenoid saponin isolated from the root of Huangqi, has a beneficial effect in the treatment of AD. However, whether AS-IV alters microglia in the inflammation of AD is still ambiguous. In our study, 99 common targets were collected between AS-IV and AD. BCL2 apoptosis regulator (Bcl-2), pro-apoptotic BCL-2 protein BAX, epidermal growth factor receptor (EGFR), and receptor tyrosine phosphatase type C (PTPRC) were screened for inflammation and microglia in the above targets by network pharmacology. Interleukin-1ß (IL-1ß) and EGFR both interact with signal transducer and activator of transcription 3 (STAT3) by a protein interaction network, and IL-1ß had a higher affinity for AS-IV based on molecular docking. Enrichment revealed targets involved in the regulation of neuronal cell bodies, growth factor receptor binding, EGFR tyrosine kinase inhibitor resistance., etc. Besides, AS-IV alleviated the reduced cell proliferation in amyloid-beta (Aß)-treated microglial BV2 cells. AS-IV affected BV2 cell morphological changes and decreased cluster of differentiation 11b (CD11b) gene, IL-1ß, and EGFR mRNA levels increment during lipopolysaccharide (LPS) injury in BV2 cell activation. Therefore, AS-IV may regulate microglial activation and inflammation via EGFR-dependent pathways in AD. EGFR and IL-1ß are vital targets that may relate to each other to coregulate downstream molecular functions in the cure of AD. Our study provides a candidate drug and disease target for the treatment of neurodegenerative diseases in the clinic.
Assuntos
Doença de Alzheimer , Saponinas , Triterpenos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doenças Neuroinflamatórias , Microglia , Farmacologia em Rede , Simulação de Acoplamento Molecular , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Receptores ErbB , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2RESUMO
Obsessive-Compulsive disorder (OCD) is a long-term and persistent mental illness characterised by obsessive thoughts and compulsive behaviours. Numerous factors can contribute to the development or progression of OCD. These factors may result from the dysregulation of multiple intrinsic cellular pathways, including SIRT-1, Nrf2, and HO-1. Inhibitors of selective serotonin reuptake (SSRIs) are effective first-line treatments for OCD. In our ongoing research, we have investigated the role of SIRT-1, Nrf2, and HO-1, as well as the neuroprotective potential of Acetyl-11-keto-beta boswellic acid (AKBA) against behavioural and neurochemical changes in rodents treated with 8-OH-DPAT. In addition, the effects of AKBA were compared to those of fluvoxamine (FLX), a standard OCD medication. Injections of 8-OH-DPAT into the intra-dorso raphe nuclei (IDRN) of rats for seven days induced repetitive and compulsive behaviour accompanied by elevated oxidative stress, inflammatory processes, apoptosis, and neurotransmitter imbalances in CSF, blood plasma, and brain samples. Chronic administration of AKBA at 50 mg/kg and 100 mg/kg p.o. restored histopathological alterations in the cortico-striatal-thalamo-cortical (CSTC) pathway, including the cerebral cortex, striatum, and hippocampal regions. Our investigation revealed that when AKBA and fluvoxamine were administered together, the alterations were restored to a greater degree than when administered separately. These findings demonstrate that the neuroprotective effect of AKBA can serve as an effective basis for developing a novel OCD treatment.
Assuntos
Transtorno Obsessivo-Compulsivo , Triterpenos , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , 8-Hidroxi-2-(di-n-propilamino)tetralina/uso terapêutico , Transtorno Obsessivo-Compulsivo/induzido quimicamente , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/metabolismo , Córtex Cerebral/metabolismo , Triterpenos/farmacologia , Plasma/metabolismoRESUMO
Gypenosides, structurally analogous to ginsenosides and derived from a sustainable source, are recognized as the principal active compounds found in Gynostemma pentaphyllum, a Chinese medicinal plant used in the treatment of the metabolic syndrome. By bioactive tracking isolation of the plants collected from different regions across China, we obtained four new gypenosides (1-4), together with nine known gypenosides (5-13), from the methanol extract of the plant. The structures of new gypenosides were elucidated by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectra, complemented by chemical degradation experiments. Through comprehensive evaluation involving COL1A1 promoter assays and PP2Cα activity assays, we established a definitive structure-activity relationship for these dammarane-type triterpenoids, affirming the indispensability of the C-3 saccharide chain and C-17 lactone ring in effectively impeding extracellular matrix (ECM) deposition within hepatic stellate cells. Further in vivo study on the CCl4-induced liver damage mouse model corroborated that compound 5 significantly ameliorated the process of hepatic fibrosis by oral administration. These results underscore the potential of dammarane-type triterpenoids as prospective anti-fibrotic leads and highlight their prevalence as key molecular frameworks in the therapeutic intervention of chronic hepatic disorders.
Assuntos
Ginsenosídeos , Triterpenos , Animais , Camundongos , Gynostemma , Cirrose Hepática/tratamento farmacológico , Triterpenos/farmacologia , Matriz ExtracelularRESUMO
Olea europaea L. leaves contain a wide variety of pentacyclic triterpenes (TTPs). TTPs exhibit many pharmacological activities, including antihyperlipidemic effects. Metabolic alterations, such as dyslipidemia, are an established risk factor for hepatocellular carcinoma (HCC). Therefore, the use of TTPs in the adjunctive treatment of HCC has been proposed as a possible method for the management of HCC. However, TTPs are characterized by poor water solubility, permeability, and bioavailability. In this work, a microemulsion (ME) loading a TTP-enriched extract (EXT) was developed, to overcome these limits and obtain a formulation for oral administration. The extract-loaded microemulsion (ME-EXT) was fully characterized, assessing its chemical and physical parameters and release characteristics, and the stability was evaluated for two months of storage at 4 °C and 25 °C. PAMPA (parallel artificial membrane permeability assay) was used to evaluate the influence of the formulation on the intestinal passive permeability of the TTPs across an artificial membrane. Furthermore, human hepatocarcinoma (HepG2) cells were used as a cellular model to evaluate the effect of EXT and ME-EXT on de novo lipogenesis induced by elevated glucose levels. The effect was evaluated by detecting fatty acid synthase expression levels and intracellular lipid accumulation. ME-EXT resulted as homogeneous dispersed-phase droplets, with significantly increased EXT aqueous solubility. Physical and chemical analyses showed the high stability of the formulation over 2 months. The formulation realized a prolonged release of TTPs, and permeation studies demonstrated that the formulation improved their passive permeability. Furthermore, the EXT reduced the lipid accumulation in HepG2 cells by inhibiting de novo lipogenesis, and the ME-EXT formulation enhanced the inhibitory activity of EXT on intracellular lipid accumulation.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Olea , Triterpenos , Humanos , Triterpenos Pentacíclicos , Lipogênese , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Emulsões/química , Neoplasias Hepáticas/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/química , Membranas Artificiais , Folhas de Planta , LipídeosRESUMO
CONTEXT: Tormentic acid (TA), an effective triterpenoid isolated from Chaenomeles speciosa (Sweet) Nakai (Rosaceae) fruits, exerts an effective treatment for gastric damage. OBJECTIVE: To investigate the gastroprotective effect of TA on indomethacin (IND) damaged GES-1 cells and rats, and explore potential mechanisms. MATERIALS AND METHODS: TA concentrations of 1.563-25 µM were used. Cell proliferation, apoptosis and migration were performed using MTT, colony formation, wound healing, migration, Hoechst staining assays. SD rats were divided into control, IND, TA (1, 2 and 4 mg/kg) + IND groups, once a day for 21 continuous days. Twenty-four hours after the last administration, all groups except the control group were given IND (100 mg/kg) by gavage. Gastric juice parameters, gastric ulcer, gastric blood flow (GBF), blood biochemical parameters and cytokine analysis and gastric mucosal histopathology were detected for 2 h and 6 h after IND oral administration. The mRNA and protein expression of miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho A/MLC pathway were analyzed in the IND-damaged GES-1 cells and gastric tissue of rats. RESULTS: TA might ameliorate the gastric mucosal injury by accelerating the IND-damaged GES-1 cell proliferation and migration, ameliorating GBF, ulcer area and pathologic changes, the redox system and cytokine levels, the gastric juice parameters, elevating the gastric pH in IND damaged rats; suppressed miR-139 mRNA expression, elevated CXCR4 and CXCL12 mRNA and protein expression, p-PLC, p-PKC, Rho A, MLCK and p-MLC protein expression. DISCUSSION AND CONCLUSIONS: TA may have potential use as a clinical drug candidate for gastric mucosal lesion treatment.