RESUMO
New N-alkylindole-substituted 2-(pyrid-3-yl)-acrylonitriles with putative kinase inhibitory activity and their (p-cymene)Ru(II) piano-stool complexes were prepared and tested for their antiproliferative efficacy in various cancer models. Some of the indole-based derivatives inhibited tumor cell proliferation at (sub-)micromolar concentrations with IC50 values below those of the clinically relevant multikinase inhibitors gefitinib and sorafenib, which served as positive controls. A focus was set on the investigation of drug mechanisms in HCT-116 p53-knockout colon cancer cells in order to evaluate the dependence of the test compounds on p53. Colony formation assays as well as experiments with tumor spheroids confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic caspase-3/7 activity and ROS formation, as well as anti-angiogenic properties. Docking calculations with EGFR and VEGFR-2 identified the two 3-aryl-2-(pyrid-3-yl)acrylonitrile derivatives 2a and 2b as potential kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in cancer treatment.
Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Tirfostinas , Humanos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53 , Tirfostinas/síntese química , Tirfostinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células HCT116RESUMO
In order to adapt in host tissues, microbial pathogens regulate their gene expression through a variety of transcription factors. Here, we have functionally characterized Rv0792c, a HutC homolog from Mycobacterium tuberculosis. In comparison to the parental strain, a strain of M. tuberculosis with a Rv0792c mutant was compromised for survival upon exposure to oxidative stress and infection in guinea pigs. RNA sequencing analysis revealed that Rv0792c regulates the expression of genes involved in stress adaptation and virulence of M. tuberculosis. Solution small-angle X-ray scattering (SAXS) data-steered model building confirmed that the C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by exponential enrichment (SELEX) resulted in the identification of single-strand DNA (ssDNA) aptamers that can be used as a tool to identify small-molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data-based modeling, we identified residues essential for Rv0792c's aptamer binding activity. In this study, we also identified I-OMe-Tyrphostin as an inhibitor of Rv0792c's aptamer and DNA binding activity. The identified small molecule reduced the growth of intracellular M. tuberculosis in macrophages. The present study thus provides a detailed shape-function characterization of a HutC family of transcription factor from M. tuberculosis. IMPORTANCE Prokaryotes encode a large number of GntR family transcription factors that are involved in various fundamental biological processes, including stress adaptation and pathogenesis. Here, we investigated the structural and functional role of Rv0792c, a HutC homolog from M. tuberculosis. We demonstrated that Rv0792c is essential for M. tuberculosis to adapt to oxidative stress and establish disease in guinea pigs. Using a systematic evolution of ligands by exponential enrichment (SELEX) approach, we identified ssDNA aptamers from a random ssDNA library that bound to Rv0792c protein. These aptamers were thoroughly characterized using biochemical and biophysical assays. Using SAXS, we determined the structural model of Rv0792c in both the presence and absence of the aptamers. Further, using a combination of SELEX and SAXS methodologies, we identified I-OMe-Tyrphostin as a potential inhibitor of Rv0792c. Here we provide a detailed functional characterization of a transcription factor belonging to the HutC family from M. tuberculosis.
Assuntos
Aptâmeros de Nucleotídeos , Mycobacterium tuberculosis , Tuberculose , Animais , Cobaias , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tirfostinas , Espalhamento a Baixo Ângulo , Aptâmeros de Nucleotídeos/química , Difração de Raios X , Fatores de Transcrição/metabolismo , DNA/metabolismoRESUMO
PURPOSE: To explore the regulation of SOCS3 in the JAK2/STAT3 pathway during vocal fold fibroblast activation after vocal fold injury. METHODS: Normal vocal fold fibroblasts (VFFs), injured VFFs, and simulated injured VFFs (normal VFFs supplemented with transforming growth factor beta [TGF-ß]) were treated with a JAK2 inhibitor (AG490), and SOCS3 was overexpressed in each group. Type I collagen (COL1), α-smooth muscle actin (α-SMA), SOCS3, JAK2, and STAT3 were detected using immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. RESULTS: Compared with normal VFFs, expression of SOCS3 was lower, but p-JAK/p-STAT3 and JAK2/STAT3 were higher in injured and simulated injured VFFs. After the addition of AG490, COL1 and α-SMA expressions did not change significantly in normal VFFs but was significantly decreased in the other two groups. The protein and mRNA expression levels of SOCS3 were significantly increased, while those of p-JAK/p-STAT3 and JAK2/STAT3 were significantly decreased. When SOCS3 was overexpressed, the COL1 and α-SMA expression levels in normal VFFs were not altered significantly, whereas they were significantly decreased in injured and simulated injured VFFs. The expression of p-JAK2/p-STAT3 significantly decreased when SOCS3 was overexpressed in injured and simulated injured VFFs. CONCLUSION: SOCS3 may regulate the activation of JAK2/STATA3 pathway after vocal fold injury. In addition, SOCS3 may inhibit excessive activation of vocal fold fibroblasts by downregulating JAK2/STAT3 in the early stages of vocal fold injury.
Assuntos
Tirfostinas , Prega Vocal , Fibroblastos , Fator de Crescimento Transformador betaRESUMO
Osteoarthritis (OA) is a complex chronic inflammatory disease characterized by articular degeneration and pain. Recent studies have identified interleukin 6 (IL-6) as a potential mediator leading to OA, but the therapeutic effects of inhibiting IL-6 signaling in intreating OA need to be further clarified. Here, we identified the intracellular signal transduction induced by recombinant IL-6 and focused on the impact of tyrphostin AG490 (a JAK2 inhibitor) on cartilage degeneration and OA pain. We found that IL-6 increased the inflammatory cytokines production and hypertrophic markers expression of primary mouse chondrocytes by activating JAK2/STAT3. Meanwhile, tyrphostin AG490 significantly attenuated articular degeneration and osteophyte formation in experimental mice with anterior cruciate ligament transection (ACLT) surgery. In vivo electrophysiological experiments showed that articular stimulation of IL-6 induced spinal hyperexcitability, which was prevented by coinjection of tyrphostin AG490. Specifically, compared with DMSO-treated ACLT mice, tyrphostin AG490 improved ambulate activity of mice and abolished the enhancement of serum bradykinin induced by IL-6. Together, we suggest that tyrphostin AG490 protected against progression of OA and improved OA prognosis by reducing cartilage degeneration and arthritis pain. Our findings provide further evidence for targeting IL-6 signaling in the treatment of OA.
Assuntos
Cartilagem Articular , Osteoartrite , Animais , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico , Interleucina-6/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos , Dor/tratamento farmacológico , Dor/metabolismo , Modelos Animais de DoençasRESUMO
Combination therapies or multi-targeted drugs have been pointed out as an option to prevent the emergence of resistant clones, which could make long-term treatment more effective and translate into better clinical outcomes for cancer patients. The NT157 compound is a synthetic tyrphostin that leads to long-term inhibition of IGF1R/IRS1-2-, STAT3- and AXL-mediated signaling pathways. Given the importance of these signaling pathways for the development and progression of lung cancer, this disease becomes an interesting model for generating preclinical evidence on the cellular and molecular mechanisms underlying the antineoplastic activity of NT157. In lung cancer cells, exposure to NT157 decreased, in a dose-dependent manner, cell viability, clonogenicity, cell cycle progression and migration, and induced apoptosis (p < 0.05). In the molecular scenario, NT157 reduced expression of IRS1 and AXL and phosphorylation of p38 MAPK, AKT, and 4EBP1. Besides, NT157 decreased expression of oncogenes BCL2, CCND1, MYB, and MYC and increased genes related to cellular stress and apoptosis, JUN, BBC3, CDKN1A, CDKN1B, FOS, and EGR1 (p < 0.05), favoring a tumor-suppressive cell signaling network in the context of lung cancer. Of note, JNK was identified as a key kinase for NT157-induced IRS1 and IRS2 phosphorylation, revealing a novel axis involved in the mechanism of action of the drug. NT157 also presented potentiating effects on EGFR inhibitors in lung cancer cells. In conclusion, our preclinical findings highlight NT157 as a putative prototype of a multitarget drug that may contribute to the antineoplastic arsenal against lung cancer.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Pirogalol/análogos & derivados , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Receptores ErbB/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Proto-Oncogenes , Pirogalol/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Tirfostinas/farmacologia , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Orthobunyaviruses have been reported to cause severe diseases in humans or animals, posing a potential threat to human health and socio-economy. Ebinur lake virus (EBIV) is a newly classified orthobunyavirus, which can induce the histopathogenic change and even the high mortality of infected BALB/c mice. Therefore, it is needed to further study the viral replication and pathogenesis, and develop the therapies to cope with its potential infection to human or animals. Here, through the reverse genetics system, the recombinant EBIV of wild type (rEBIV/WT) and NP-conjugated-eGFP (rEBIV/eGFP/S) were rescued for the application of the high-content screening (HCS) of antiviral drug. The eGFP fluorescence signal of the rEBIV/eGFP/S was stable in the process of successive passage in BHK-21 cells (over 10 passages) and this recombinant virus could replicate in various cell lines. Compared to the wild type EBIV, the rEBIV/eGFP/S caused the smaller plaques (diameter around 1 mm on 3 dpi) and lower peak titers (105 PFU/mL), suggesting attenuation due to the eGFP insertion. Through the high-content screening (HCS) system, two antiviral compounds, ribavirin and favipiravir, which previously reported to have effect to some bunyavirus were tested firstly. Ribavirin showed an inhibitory effect on the rEBIV/eGFP/S (EC50 = 14.38 µM) as our expect, while favipiravir with no inhibitory effect even using high doses. Furthermore, Tyrphostin A9 (EC50 = 0.72 µM for rEBIV/eGFP/S, EC50 = 0.05 µM for EBIV-WT) and UNC0638 (EC50 = 1.26 µM for rEBIV/eGFP/S, EC50 = 1.10 µM for rEBIV/eGFP/S) were identified with strong antiviral effect against EBIV in vitro from 150 antiviral compounds. In addition, the time-of-addition assay indicated that Tyrphostin A9 worked in the stage of viral post-infection, and the UNC0638 in all pre-, co-, and post-infection stages. This robust reverse genetics system will facilitate the investigation into the studying of viral replication and assembly mechanisms, and the development of drug and vaccine for EBIV in the future.
Assuntos
Orthobunyavirus , Amidas , Animais , Antivirais/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Pirazinas , Ribavirina/farmacologia , Tirfostinas , Replicação ViralRESUMO
Schwannomatosis is a rare genetic disorder that predisposes individuals to development of multiple schwannomas mainly in spinal and peripheral nerves and to debilitating chronic pain often unrelated to any schwannoma. Pathogenic variants of two genes, SMARCB1 and LZTR1, are causal in familial cases. However, many schwannomatosis patients lack mutations in these genes. Surgery is the standard treatment for schwannomas but leaves patients with increasing neurological deficits. Pain management is a daily struggle controlled by the use of multiple analgesic and anti-inflammatory drugs. There is a need for both nonsurgical treatment to manage tumor growth and nonaddictive, nonsedative pain control. Because standard clinical trials are exceedingly difficult for patients with rare disorders, precision medicine approaches offer the possibility of bespoke therapeutic regimens to control tumor growth. As a proof of principle, we obtained a bio-specimen of paraspinal schwannoma from a schwannomatosis patient with a germline point mutation in the SMARCB1/INI gene. We created an hTERT immortalized cell line and tested the ability of targeted small molecules with efficacy in neurofibromatosis type 2-related schwannomas to reduce cell viability and induce cell death. We identified WP1066, a STAT3 inhibitor, currently in phase 2 clinical trials for pediatric and adult brain tumors as a lead compound. It reduced cell viability and STAT-3 phosphorylation and induced expression of markers for both necroptosis and caspase-dependent cell death. The results demonstrate feasibility in creating patient-derived cell lines for use in precision medicine studies.
Assuntos
Neurilemoma , Neurofibromatoses , Piridinas , Neoplasias Cutâneas , Tirfostinas , Adulto , Morte Celular , Linhagem Celular Tumoral , Criança , Humanos , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/genética , Neurofibromatoses/patologia , Piridinas/farmacologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Tirfostinas/farmacologiaRESUMO
Current options for preventing or treating influenza are still limited, and new treatments for influenza viral infection are urgently needed. In the present study, we serendipitously found that a small-molecule inhibitor (AG1478), previously used for epidermal growth factor receptor (EGFR) inhibition, demonstrated a potent activity against influenza both in vitro and in vivo. Surprisingly, the antiviral effect of AG1478 was not mediated by its EGFR inhibitory activity, as influenza virus was insensitive to EGFR blockade by other EGFR inhibitors or by siRNA knockdown of EGFR. Its antiviral activity was also interferon independent as demonstrated by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout approach. Instead, AG1478 was found to target the Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1)-ADP-ribosylation factor 1 (ARF1) system by reversibly inhibiting GBF1 activity and disrupting its Golgi-cytoplasmic trafficking. Compared to known GBF1 inhibitors, AG1478 demonstrated lower cellular toxicity and better preservation of Golgi structure. Furthermore, GBF1 was found to interact with a specific set of viral proteins including M1, NP, and PA. Additionally, the alternation of GBF1 distribution induced by AG1478 treatment disrupted these interactions. Because targeting host factors, instead of the viral component, imposes a higher barrier for developing resistance, GBF1 modulation may be an effective approach to treat influenza infection.
Assuntos
Receptores ErbB , Fatores de Troca do Nucleotídeo Guanina , Influenza Humana , Quinazolinas , Tirfostinas , Antivirais/farmacologia , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tirfostinas/farmacologiaRESUMO
Aim: To ascertain the maximum tolerated dose (MTD)/maximum feasible dose (MFD) of WP1066 and p-STAT3 target engagement within recurrent glioblastoma (GBM) patients. Patients & methods: In a first-in-human open-label, single-center, single-arm 3 + 3 design Phase I clinical trial, eight patients were treated with WP1066 until disease progression or unacceptable toxicities. Results: In the absence of significant toxicity, the MFD was identified to be 8 mg/kg. The most common adverse event was grade 1 nausea and diarrhea in 50% of patients. No treatment-related deaths occurred; 6 of 8 patients died from disease progression and one was lost to follow-up. Of 8 patients with radiographic follow-up, all had progressive disease. The longest response duration exceeded 3.25 months. The median progression-free survival (PFS) time was 2.3 months (95% CI: 1.7 months-NA months), and 6-month PFS (PFS6) rate was 0%. The median overall survival (OS) rate was 25 months (95% CI: 22.5 months-NA months), with an estimated 1-year OS rate of 100%. Pharmacokinetic (PK) data demonstrated that at 8 mg/kg, the T1/2 was 2-3 h with a dose dependent increase in the Cmax. Immune monitoring of the peripheral blood demonstrated that there was p-STAT3 suppression starting at a dose of 1 mg/kg. Conclusion: Immune analyses indicated that WP1066 inhibited systemic immune p-STAT3. WP1066 had an MFD identified at 8 mg/kg which is the target allometric dose based on prior preclinical modeling in combination with radiation therapy and a Phase II study is being planned for newly diagnosed MGMT promoter unmethylated glioblastoma patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioblastoma/patologia , Glioma/tratamento farmacológico , Humanos , Piridinas , Fator de Transcrição STAT3/uso terapêutico , TirfostinasRESUMO
AIMS: Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. MAIN METHODS: A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. KEY FINDINGS: A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. SIGNIFICANCE: These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.
Assuntos
Axônios/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/prevenção & controle , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Tirfostinas/farmacologia , Animais , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ratos , Ratos Sprague-DawleyRESUMO
The aryl hydrocarbon receptor (AhR) is a receptor-type transcription factor that is crucial for endocrine disruption and carcinogenesis caused by environment chemicals. Previous studies have indicated that certain intracellular signals are involved in AhR activation by their agonists, but the detailed mechanism remains unclear. In this study, we screened for important molecules for AhR activation using SCAD inhibitor kits. Among 164 kinase inhibitors listed in these kits, tyrphostin AG1024, commonly used as an inhibitor of insulin-like growth factor receptor (IGF1R) and insulin receptor (IR), was identified as a potent inhibitor of 3-methylcholanthrene (MC)-mediated AhR activation. We further investigated the mechanism by which AG1024 suppresses MC-mediated AhR activation. AG1024 decreased AhR-dependent luciferase activity, CYP1A1 gene expression, and its protein expression. However, when IGF1R siRNA and IR siRNA were used, AhR activation was slightly increased, in contrast to AG1024 treatment. In addition, AG1024 treatment downregulated the expression of AhR protein but not AhR gene, and decreased both nucleic and cytosolic AhR proteins. Therefore, AG1024 suppressed AhR activation by downregulating AhR protein expression. The molecular target of AG1024 remains unclear, and should be an important target for the regulation of AhR-dependent toxicity.
Assuntos
Receptores de Hidrocarboneto Arílico , Tirfostinas , Citocromo P-450 CYP1A1/metabolismo , Receptor de Insulina , Receptores de Hidrocarboneto Arílico/metabolismo , Tirfostinas/toxicidadeRESUMO
Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death. However, there are no in vivo studies evaluating TRPM2's role and neuroprotective effects in PD. Here, we test the hypothesis that TRPM2 is upregulated in the 6-hydroxydopamine (6-OHDA) mouse model of PD and that its inhibition, by the AG490, is neuroprotective. For that, AG490 or vehicle were intraperitoneally administered into C57BL/6 mice. Mice then received 6-OHDA into the right striatum. Motor behavior assessments were evaluated 6, 13, and 20 days after surgery using the cylinder and apomorphine-induced rotational testes, and 7, 14, and 21 days after surgery using rotarod test. Brain samples of substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry and immunoblotting on days 7 and 21. We showed that TRPM2 protein expression was upregulated in 6-OHDA-treated animals. In addition, AG490 prevented dopaminergic neuron loss, microglial activation, and astrocyte reactivity in 6-OHDA-treated animals. The compound improved motor behaviors and Akt/GSK-3ß/caspase-3 signaling. We conclude that TRPM2 inhibition by AG490 is neuroprotective in the 6-OHDA model and that the TRPM2 channel may represent a potential therapeutic target for PD.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Canais de Cátion TRPM , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Canais de Cátion TRPM/metabolismo , TirfostinasRESUMO
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.
Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Neuroimunomodulação , Células Th2/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Células Dendríticas/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Janus Quinase 2/metabolismo , Camundongos Endogâmicos BALB C , Neuropeptídeos/metabolismo , Nicotina/farmacologia , Nicotina/uso terapêutico , Oxazolona/toxicidade , Fator de Transcrição STAT3/metabolismo , Células Th2/efeitos dos fármacos , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico , Nervo Vago/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
OBJECTIVE: The purpose of this study was to determine whether the epidermal growth factor receptor (EGFR), which is a classical receptor tyrosine kinase, is involved in the protective effect of morphine against ischemia/reperfusion (I/R)-induced myocardial mitochondrial damage. METHODS: Isolated rats hearts were subjected to global ischemia followed by reperfusion. Cardiac H9c2 cells were exposed to a simulated ischemia solution followed by Tyrode's solution to induce hypoxia/reoxygenation (H/R) injury. Triphenyltetrazolium chloride (TTC) was used to measure infarct size. The mitochondrial morphological and functional changes were determined using transmission election microscopy (TEM), mitochondrial stress assay, and mitochondrial swelling, respectively. Mitochondrial fluorescence indicator JC-1, DCFH-DA, and Mitosox Red were used to determine mitochondrial membrane potential (â³Ψm), intracellular reactive oxygen species (ROS) and mitochondrial superoxide. A TUNUL assay kit was used to detect the level of apoptosis. Western blotting analysis was used to measure the expression of proteins. RESULTS: Treatment of isolated rat hearts with morphine prevented I/R-induced myocardial mitochondrial injury, which was inhibited by the selective EGFR inhibitor AG1478, suggesting that EGFR is involved in the mitochondrial protective effect of morphine under I/R conditions. In support of this hypothesis, the selective EGFR agonist epidermal growth factor (EGF) reduced mitochondrial morphological and functional damage similarly to morphine. Further study demonstrated that morphine may alleviate I/R-induced cardiac damage by inhibiting autophagy but not apoptosis. Morphine increased protein kinase B (Akt), extracellular regulated protein kinases (ERK) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation, which was inhibited by AG1478, and EGF had similar effects, indicating that morphine may activate Akt, ERK, and STAT-3 via EGFR. Morphine and EGF increased intracellular reactive oxygen species (ROS) generation. This effect of morphine was inhibited by AG1478, indicating that morphine promotes intracellular ROS generation by activating EGFR. However, morphine did not increase ROS generation when cells were transfected with siRNA against EGFR. In addition, EGFR activity was markedly increased by morphine, but the effect of morphine was reversed by naltrindole. These results suggest that morphine may activate EGFR via δ-opioid receptor activation. CONCLUSIONS: Morphine may prevent I/R-induced myocardial mitochondrial damage by activating EGFR through δ-opioid receptors, in turn increasing RISK and SAFE pathway activity via intracellular ROS. Moreover, morphine may reduce myocardial injury by regulating autophagy but not apoptosis.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Animais , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Mitocôndrias Cardíacas/metabolismo , Morfina/farmacologia , Miócitos Cardíacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas , RNA Interferente Pequeno , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores Opioides/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacologia , TirfostinasRESUMO
Testicular ischemia reperfusion injury (tIRI) causes oxidative stress-induced DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to establish a direct link between JAK2 activation and the DNA damage response (DDR) signaling pathways and their role in tIRI-induced GCA using AG490, a JAK2 specific inhibitor. Male Sprague Dawley rats (n = 36) were divided into three groups: sham, unilateral tIRI and tIRI + AG490 (40 mg/kg). During tIRI, augmentation in the phosphorylation levels of the JAK2/STAT1/STAT3 was measured by immunohistochemistry. Observed spermatogenic arrest was explained by the presence of considerable levels of DSB, AP sites and 8OHdG and activation of caspase 9, caspase 3 and PARP, which were measured by colorimetric assays and TUNEL. The ATM/Chk2/H2AX and ATR/Chk1 pathways were also activated as judged by their increased phosphorylation using Western blot. These observations were all prevented by AG490 inhibition of JAK2 activity. Our findings demonstrate that JAK2 regulates tIRI-induced GCA, oxidative DNA damage and activation of the ATM/Chk2/H2AX and ATR/Chk1 DDR pathways, but the cell made the apoptosis decision despite DDR efforts.
Assuntos
Reparo do DNA/fisiologia , Janus Quinase 2/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caspase 3 , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/fisiologia , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/fisiologia , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Espermatogênese , Testículo/metabolismo , Testículo/fisiologia , Tirfostinas/farmacologiaRESUMO
Hepatitis D is the most severe form of human viral hepatitis and currently lacks an efficient therapy. Dendritic cell-derived exosomes (Dexs) have been found to induce immune responses capable of eliminating viruses. However, the therapeutic potential of antigen-loaded exosomes in hepatitis D is still unknown. Recently, we designed exosomes loaded with ubiquitinated hepatitis delta virus (HDV) small delta antigen (Ub-S-HDAg) and then treated mice bearing replicating HDV with these exosomes to explore their antiviral effect and mechanism. Mature dendritic cell-derived exosomes (mDexs) were loaded with Ub-S-HDAg and their antivirus function was evaluated in mice with HDV viremia. Furthermore, the proportion of CD8+ cells, the ratio of Th1/Th2 cells, the postimmunization levels of cytokines were explored, and the Janus kinases (JAK)/signal transducer and activator of transcription (STAT) pathway was evaluated with a JAK2 inhibitor AG490. In Ub-S-HDAg-Dexs group, the HDV RNA viral load was significantly decreased compared with other groups by CD8+ cell enrichment and an increase Th1/Th2 cell ratio. Furthermore, lymphocyte infiltration was increased, while the HDAg level was decreased in mouse liver tissue. However, there were no significant differences in HBV surface antigen (HBsAg), alanine aminotransferase (ALT), or aspartate aminotransferase (AST) levels among the groups. Moreover, p-JAK2, p-STAT1, p-STAT4, STAT1, and STAT4 expression was increased in Ub-S-HDAg-Dexs group. In conclusion, Ub-S-HDAg-Dexs might be a potential immunotherapeutic agent for eradicating HDV by inducing specific cellular immune response via the JAK/STAT pathway. IMPORTANCE Hepatitis D is the most severe viral hepatitis with accelerating the process of liver cirrhosis and increasing the risk of hepatocellular carcinoma. However, there are no effective antiviral drugs. Exosomes derived from mature dendritic cells are used not only as immunomodulators, but also as biological carriers to deliver antigens to induce robust immune response. Based on these properties, exosomes could be used as a biological immunotherapy by enhancing adaptive immune response to inhibit hepatitis D virus replication. Our research may provide a new therapeutic strategy to eradicate HDV in the future.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Micropartículas Derivadas de Células/imunologia , Exossomos/imunologia , Vírus Delta da Hepatite/imunologia , Antígenos da Hepatite delta/imunologia , Equilíbrio Th1-Th2/fisiologia , Alanina Transaminase/análise , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Aspartato Aminotransferases/análise , Micropartículas Derivadas de Células/virologia , Células Cultivadas , Citocinas/sangue , Células Dendríticas/imunologia , Exossomos/virologia , Feminino , Antígenos de Superfície da Hepatite B/análise , Antígenos da Hepatite delta/metabolismo , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Janus Quinase 2/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Tirfostinas/farmacologia , Carga Viral , Replicação Viral/imunologiaRESUMO
Epithelial-to-mesenchymal transition (EMT) recapitulates metastasis and can be induced in vitro through transforming growth factor (TGF)-ß signaling. A role for MMP activity in glioblastoma multiforme has been ascribed to EMT, but the molecular crosstalk between TGF-ß signaling and membrane type 1 MMP (MT1-MMP) remains poorly understood. Here, the expression of common EMT biomarkers, induced through TGF-ß and the MT1-MMP inducer concanavalin A (ConA), was explored using RNA-seq analysis and differential gene arrays in human U87 glioblastoma cells. TGF-ß triggered SNAIL and fibronectin expressions in 2D-adherent and 3D-spheroid U87 glioblastoma cell models. Those inductions were antagonized by the TGF-ß receptor kinase inhibitor galunisertib, the JAK/STAT inhibitors AG490 and tofacitinib, and by the diet-derived epigallocatechin gallate (EGCG). Transient gene silencing of MT1-MMP prevented the induction of SNAIL by ConA and abrogated TGF-ß-induced cell chemotaxis. Moreover, ConA induced STAT3 and Src phosphorylation, suggesting these pathways to be involved in the MT1-MMP-mediated signaling axis that led to SNAIL induction. Our findings highlight a new signaling axis linking MT1-MMP to TGF-ß-mediated EMT-like induction in glioblastoma cells, the process of which can be prevented by the diet-derived EGCG.
Assuntos
Neoplasias Encefálicas/patologia , Transição Epitelial-Mesenquimal/fisiologia , Glioblastoma/patologia , Metaloproteinase 14 da Matriz/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Concanavalina A , Fibronectinas/biossíntese , Humanos , Metaloproteinase 14 da Matriz/genética , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Tirfostinas/farmacologiaRESUMO
Umbilical cord mesenchymal stem cells (UCMSCs) are regarded as an ideal source for clinical use. Increasing evidence has suggested that microRNAs (miRNAs) work as a crucial regulator in the development of plentiful diseases, including intrauterine adhesions (IUA). Herein, we investigated the specific impacts of UCMSCs overexpressing miR-455-5p in IUA. UCMSCs were cocultured with endometrial stromal cells (ESCs). Thirty-two female mice were divided into four different treated groups: sham, model, model + UCMSC-miR-NC and model + UCMSC-miR-455-5p. Mice in model groups were induced by uterine curettage. MiR-455-5p overexpressed UCMSCs facilitated the proliferation and cell cycle progression of ESCs according to 5-ethynyl-2'-deoxyuridine assay and flow cytometry analysis. Hematoxylin-eosin and Masson staining revealed that miR-455-5p upregulation in UCMSCs increased the number of endometrial glands and suppressed endometrial fibrosis in murine uterine tissues. Western blotting displayed that miR-455-5p overexpressed UCMSCs promoted the activation of Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling in ESCs and murine uterine tissues. Mechanistically, miR-455-5p targeted 3' untranslated region of suppressor of cytokine signaling 3 (SOCS3), which was confirmed by luciferase reporter assay. Reverse transcription quantitative polymerase chain reaction demonstrated that miR-455-5p was lowly expressed and SOCS3 was highly expressed in murine uterine tissues of IUA model. Moreover, Pearson correlation analysis showed that their expression was inversely correlated. Rescue assays suggested that inhibiting JAK/STAT3 signaling reversed effects of miR-455-5p on the behaviors of ESCs. The results indicated that miR-455-5p overexpression in UCMSCs helps to attenuate endometrial injury and repair damaged endometrium by activating SOCS3-mediated JAK/STAT3 signaling.
Assuntos
Endométrio/patologia , Janus Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Regeneração , Fator de Transcrição STAT3/metabolismo , Cordão Umbilical/citologia , Regulação para Cima/genética , Animais , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Endométrio/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Fenótipo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Tirfostinas/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
Cancer continues to be a growing burden, especially in the resource limited regions of the world, and more effective and affordable therapies are highly desirable. In this study, the effect of X-ray irradiation and four inhibitors, viz. those against epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2) was evaluated in lung, breast, and cervical cancer cell lines, including normal cell lines to determine and compare the potential therapeutic benefit of these treatment modalities. A clonogenic survival assay was used to determine the radiosensitivity and cytotoxicity of inhibitors of EGFR, PI3K/mTOR, and Bcl-2 in the cell lines. From the data, the equivalent dose at which 50% of the cell populations were killed, for cancer and normal cells, was used to determine the relative cellular sensitivity to X-ray irradiation and inhibitor treatment. It was found that breast cancer cell lines were more sensitive to X-ray irradiation, whilst cervical and lung cancer cell lines were more sensitive to EGFR and PI3K/mTOR inhibitor therapy. These data suggest that patients with breast cancer possessing similar characteristics to MDA-MB-231 and MCF-7 cells may derive therapeutic benefit from X-ray irradiation, whilst EGFR and PI3K/mTOR inhibitor therapy may potentially benefit cancer patients possessing cancers similar to HeLa and A549 cells.
Assuntos
Neoplasias da Mama/terapia , Neoplasias Pulmonares/terapia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias do Colo do Útero/terapia , Compostos de Anilina/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Quinazolinas/farmacologia , Quinolinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Sulfonamidas/farmacologia , Tirfostinas/farmacologia , Neoplasias do Colo do Útero/metabolismo , Raios XRESUMO
Tuberculosis is a global health problem caused by infection with the Mycobacterium tuberculosis (Mtb) bacteria. Although antibiotic treatment has dramatically reduced the impact of tuberculosis on the population, the existence and spreading of drug resistant strains urgently demands the development of new drugs that target Mtb in a different manner than currently used antibiotics. The prokaryotic ubiquitin-like protein (Pup) proteasome system is an attractive target for new drug development as it is unique to Mtb and related bacterial genera. Using a Pup-based fluorogenic substrate, we screened for inhibitors of Dop, the Mtb depupylating protease, and identified I-OMe-Tyrphostin AG538 (1) and Tyrphostin AG538 (2). The hits were validated and determined to be fast-reversible, non-ATP competitive inhibitors. We synthesized >25 analogs of 1 and 2 and show that several of the synthesized compounds also inhibit the depupylation actions of Dop on native substrate, FabD-Pup. Importantly, the pupylation activity of PafA, the sole Pup ligase in Mtb, was also inhibited by some of these compounds.