Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.367
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762607

RESUMO

Using a model of Parkinson's disease (PD) induced by the bilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA) into rat brain substantia nigra (SN), we showed uridine to exert a protective effect associated with activation of the mitochondrial ATP-dependent potassium (mitoK-ATP) channel. Injection of 4 µg neurotoxin evoked a 70% decrease in the time the experimental animal spent on the rod in the RotaRod test, an increase in the amount of lipid peroxides in blood serum and cerebral-cortex mitochondria and the rate of reactive oxygen species formation, and a decrease in Ca2+ retention in mitochondria. Herewith, lymphocytes featured an increase in the activity of lactate dehydrogenase, a cytosolic enzyme of glycolysis, without changes in succinate-dehydrogenase activity. Structural changes occurring in the SN and striatum manifested themselves in the destruction of mitochondria, degeneration of neurons and synapses, and stratification of myelin sheaths in them. Subcutaneous injections of 30 µg/kg uridine for 22 days restored the neurotoxin-induced changes in these parameters to levels close to the control. 5-Hydroxydecanoate (5 mg/kg), a specific mitoK-ATP channel inhibitor, eliminated the beneficial effect of uridine for almost all characteristics tested, indicating the involvement of the mitoK-ATP channel in the protective effect of uridine. The mechanism of the protective effect of uridine and its therapeutic applications for the prevention and treatment of PD are discussed.


Assuntos
Neurotoxinas , Doença de Parkinson , Animais , Ratos , Oxidopamina , Uridina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Encéfalo , Trifosfato de Adenosina
2.
PLoS One ; 18(8): e0290675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616296

RESUMO

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, has had an enduring impact on global public health. However, SARS-CoV-2 is only one of multiple pathogenic human coronaviruses (CoVs) to have emerged since the turn of the century. CoVs encode for several nonstructural proteins (nsps) that are essential for viral replication and pathogenesis. Among them is nsp15, a uridine-specific viral endonuclease that is important in evading the host immune response and promoting viral replication. Despite the established endonuclease function of nsp15, little is known about other determinants of its cleavage specificity. In this study we investigate the role of RNA secondary structure in SARS-CoV-2 nsp15 endonuclease activity. Using a series of in vitro endonuclease assays, we observed that thermodynamically stable RNA structures were protected from nsp15 cleavage relative to RNAs lacking stable structure. We leveraged the s2m RNA from the SARS-CoV-1 3'UTR as a model for our structural studies as it adopts a well-defined structure with several uridines, two of which are unpaired and thus highly probable targets for nsp15 cleavage. We found that SARS-CoV-2 nsp15 specifically cleaves s2m at the unpaired uridine within the GNRNA pentaloop of the RNA. Further investigation revealed that the position of uridine within the pentaloop also impacted nsp15 cleavage efficiency suggesting that positioning within the pentaloop is necessary for optimal presentation of the scissile uridine and alignment within the nsp15 catalytic pocket. Our findings indicate that RNA secondary structure is an important determinant of nsp15 cleavage and provides insight into the molecular mechanisms of RNA recognition by nsp15.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2/genética , Regiões 3' não Traduzidas , Endonucleases , Uridina
3.
Nucleic Acids Res ; 51(17): 9432-9441, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37587716

RESUMO

Posttranscriptional modifications of tRNA are widely conserved in all domains of life. Especially, those occurring within the anticodon often modulate translational efficiency. Derivatives of 5-hydroxyuridine are specifically found in bacterial tRNA, where 5-methoxyuridine and 5-carboxymethoxyuridine are the major species in Gram-positive and Gram-negative bacteria, respectively. In certain tRNA species, 5-carboxymethoxyuridine can be further methylated by CmoM to form the methyl ester. In this report, we present the X-ray crystal structure of Escherichia coli CmoM complexed with tRNASer1, which contains 5-carboxymethoxyuridine at the 5'-end of anticodon (the 34th position of tRNA). The 2.22 Å resolution structure of the enzyme-tRNA complex reveals that both the protein and tRNA undergo local conformational changes around the binding interface. Especially, the hypomodified uracil base is flipped out from the canonical stacked conformation enabling the specific molecular interactions with the enzyme. Moreover, the structure illustrates that the enzyme senses exclusively the anticodon arm region of the substrate tRNA and examines the presence of key determinants, 5-carboxymethoxyuridine at position 34 and guanosine at position 35, offering molecular basis for the discriminatory mechanism against non-cognate tRNAs.


Assuntos
RNA de Transferência , Anticódon , Escherichia coli/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Metilação , Conformação de Ácido Nucleico , RNA de Transferência/metabolismo , Uridina/metabolismo
4.
Curr Protoc ; 3(7): e829, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37498139

RESUMO

The palladium-catalyzed direct C-H olefination of unprotected uridine, 2'-deoxyuridine, uridine monophosphate, and uridine analogues are described here. This protocol provides an efficient, atom-economical, and environmentally friendly method for the introduction of an alkenyl group at the C5 position of the uracil without pre-functionalization. A series of C5-alkenylated uridine analogues, including some biologically significant compounds and potential pharmaceutical candidates, were synthesized with exposed hydroxyl groups on the ribose. © 2023 Wiley Periodicals LLC. Basic Protocol 1: The reaction of uridine, 2'-deoxyuridine, and sofosbuvir for the C-H olefination with methyl acrylate Basic Protocol 2: The reaction of uridine and 2'-deoxyuridine for the C-H olefination with styrene.


Assuntos
Ácidos Nucleicos , Paládio , Catálise , Alcenos , Uridina , Desoxiuridina
5.
Medicina (Kaunas) ; 59(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374310

RESUMO

Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2',3'-di-O-cinnamoyl-5'-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure-activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s).


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Estrutura Molecular , Uridina/farmacologia , Uridina/uso terapêutico , Simulação de Acoplamento Molecular , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
J Periodontal Res ; 58(5): 959-967, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37349891

RESUMO

OBJECTIVE: To analyse the salivary epitranscriptomic profiles as periodontitis biomarkers using multiplexed mass spectrometry (MS). BACKGROUND: The field of epitranscriptomics, which relates to RNA chemical modifications, opens new perspectives in the discovery of diagnostic biomarkers, especially in periodontitis. Recently, the modified ribonucleoside N6-methyladenosine (m6A) was revealed as a crucial player in the etiopathogenesis of periodontitis. However, no epitranscriptomic biomarker has been identified in saliva to date. MATERIALS AND METHODS: Twenty-four saliva samples were collected from periodontitis patients (n = 16) and from control subjects (n = 8). Periodontitis patients were stratified according to stage and grade. Salivary nucleosides were directly extracted and, in parallel, salivary RNA was digested into its constituent nucleosides. Nucleoside samples were then quantified by multiplexed MS. RESULTS: Twenty-seven free nucleosides were detected and an overlapping set of 12 nucleotides were detected in digested RNA. Among the free nucleosides, cytidine and three other modified nucleosides (inosine, queuosine and m6Am) were significantly altered in periodontitis patients. In digested RNA, only uridine was significantly higher in periodontitis patients. Importantly there was no correlation between free salivary nucleoside levels and the levels of those same nucleotides in digested salivary RNA, except for cytidine, m5C and uridine. This statement implies that the two detection methods are complementary. CONCLUSION: The high specificity and sensitivity of MS allowed the detection and quantification of multiple nucleosides from RNA and free nucleosides in saliva. Some ribonucleosides appear to be promising biomarkers of periodontitis. Our analytic pipeline opens new perspectives for diagnostic periodontitis biomarkers.


Assuntos
Nucleosídeos , Periodontite , Humanos , Nucleosídeos/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Nucleotídeos/análise , Periodontite/diagnóstico , RNA/análise , Citidina/análise , Uridina , Biomarcadores/análise , Saliva/química
7.
Nucleic Acids Res ; 51(14): 7451-7464, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37334828

RESUMO

5-Methylated cytosine is a frequent modification in eukaryotic RNA and DNA influencing mRNA stability and gene expression. Here we show that free 5-methylcytidine (5mC) and 5-methyl-2'-deoxycytidine are generated from nucleic acid turnover in Arabidopsis thaliana, and elucidate how these cytidines are degraded, which is unclear in eukaryotes. First CYTIDINE DEAMINASE produces 5-methyluridine (5mU) and thymidine which are subsequently hydrolyzed by NUCLEOSIDE HYDROLASE 1 (NSH1) to thymine and ribose or deoxyribose. Interestingly, far more thymine is generated from RNA than from DNA turnover, and most 5mU is directly released from RNA without a 5mC intermediate, since 5-methylated uridine (m5U) is an abundant RNA modification (m5U/U ∼1%) in Arabidopsis. We show that m5U is introduced mainly by tRNA-SPECIFIC METHYLTRANSFERASE 2A and 2B. Genetic disruption of 5mU degradation in the NSH1 mutant causes m5U to occur in mRNA and results in reduced seedling growth, which is aggravated by external 5mU supplementation, also leading to more m5U in all RNA species. Given the similarities between pyrimidine catabolism in plants, mammals and other eukaryotes, we hypothesize that the removal of 5mU is an important function of pyrimidine degradation in many organisms, which in plants serves to protect RNA from stochastic m5U modification.


Assuntos
Arabidopsis , RNA , Animais , Timina , Uridina/metabolismo , Pirimidinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA , Mamíferos/genética
8.
Biochem Biophys Res Commun ; 672: 193-200, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356286

RESUMO

Oxidized methylcytidines 5-hydroxymethyl-2'deoxycytidine (5hmdC) and 5-formy-2'deoxycytidine (5fdC) are deaminated by cytidine deaminase (CDA) into genome-toxic variants of uridine, triggering DNA damage and cell death. These compounds are promising chemotherapeutic agents for cancer cells that are resistant to pyrimidine derivative drugs, such as decitabine and cytarabine, which are inactivated by CDA. In our study, we found that cancer cells infected with mycoplasma exhibited a markedly increased sensitivity to 5hmdC and 5fdC, which was independent of CDA expression of cancer cells. In vitro biochemical assay showed that the homologous CDA protein from mycoplasma was capable of deaminating 5hmdC and 5fdC into their uridine form. Moreover, mycoplasma infection increased the sensitivity of cancer cells to 5hmdC and 5fdC, whereas administration of Tetrahydrouridine (THU) attenuated this effect, suggesting that mycoplasma CDA confers a similar effect as human CDA. As mycoplasma infection occurs in many primary tumors, our findings suggest that intratumoral microbes could enhance the tumor-killing effect and expand the utility of oxidized methylcytidines in cancer treatment.


Assuntos
Infecções por Mycoplasma , Neoplasias , Humanos , Uridina , Tetra-Hidrouridina/farmacologia , Citidina Desaminase/genética , Desoxicitidina
9.
Methods Mol Biol ; 2672: 377-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335490

RESUMO

Labeling of the nucleolus in Arabidopsis thaliana can be achieved by incorporation of 5'-ethynyl uridine (EU) into bulk RNA. Although EU does not selectively label the nucleolus, the abundance of ribosomal transcripts results in the predominant accumulation of the signal in the nucleolus. Ethynyl uridine has the advantage of being detected via Click-iT chemistry providing a specific signal and low background. While the protocol presented here employs fluorescent dye and allows visualization of the nucleolus by microscopy, this method can also be used for other downstream applications. Though we tested nucleolar labeling only in A. thaliana, in principle it can be applied to other plant species.


Assuntos
Nucléolo Celular , RNA , Uridina/metabolismo , RNA/metabolismo , Nucléolo Celular/metabolismo , Microscopia , Ribossomos/metabolismo
10.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175899

RESUMO

All practically possible hydrogen abstraction reactions for guanosine and uridine have been investigated through quantum chemical calculations of energy barriers and rate constants. This was done at the level of density functional theory (DFT) with the ωB97X-D functional and the 6-311++G(2df,2pd) Pople basis set. Transition state theory with the Eckart tunneling correction was used to calculate the rate constants. The results show that the reaction involving the hydrogen labelled C4' in the ribofuranose part has the largest rate constant for guanosine with the value 5.097×1010 L mol-1s-1 and the largest for uridine with the value 1.62×1010 L mol-1s-1. Based on the results for these two nucleosides, there is a noticeable similarity between the rate constants in the ribofuranose part of the molecule, even though they are bound to two entirely different nucleobases.


Assuntos
Guanosina , Hidrogênio , Hidrogênio/química , Uridina , Cinética , Modelos Teóricos
11.
Plant Physiol ; 193(1): 271-290, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37177985

RESUMO

Viral RNAs can be uridylated in eukaryotic hosts. However, our knowledge of uridylation patterns and roles remains rudimentary for phytoviruses. Here, we report global 3' terminal RNA uridylation profiles for representatives of the main families of positive single-stranded RNA phytoviruses. We detected uridylation in all 47 viral RNAs investigated here, revealing its prevalence. Yet, uridylation levels of viral RNAs varied from 0.2% to 90%. Unexpectedly, most poly(A) tails of grapevine fanleaf virus (GFLV) RNAs, including encapsidated tails, were strictly monouridylated, which corresponds to an unidentified type of viral genomic RNA extremity. This monouridylation appears beneficial for GFLV because it became dominant when plants were infected with nonuridylated GFLV transcripts. We found that GFLV RNA monouridylation is independent of the known terminal uridylyltransferases (TUTases) HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) in Arabidopsis (Arabidopsis thaliana). By contrast, both TUTases can uridylate other viral RNAs like turnip crinkle virus (TCV) and turnip mosaic virus (TuMV) RNAs. Interestingly, TCV and TuMV degradation intermediates were differentially uridylated by HESO1 and URT1. Although the lack of both TUTases did not prevent viral infection, we detected degradation intermediates of TCV RNA at higher levels in an Arabidopsis heso1 urt1 mutant, suggesting that uridylation participates in clearing viral RNA. Collectively, our work unveils an extreme diversity of uridylation patterns across phytoviruses and constitutes a valuable resource to further decipher pro- and antiviral roles of uridylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Uridina/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Nucleotidiltransferases/metabolismo
12.
Biochem Biophys Res Commun ; 665: 152-158, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163935

RESUMO

Uridine has formerly been shown to alleviate obesity and hepatic lipid accumulation. N-carbamoyl aspartate (NCA) provides carbon atoms to uridine in de novo pyrimidine biosynthesis pathway. However, whether NCA is involved in the lipid metabolism remains elusive. Here we showed that NCA supplementation significantly decreased (P < 0.05) serum cholesterol (CHOL), high-density lipoprotein (HDL), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels of mice, and significantly increased (P < 0.05) relative mRNA expression of genes related to the synthesis of pyrimidine nucleotides and polyunsaturated fatty acids. Besides, supplemented with NCA significantly decreased body weight and area under the curve (AUC), and increased body temperature in the high-fat diet fed mice. For further, relative protein expression of uridine monophosphate synthase (UMPS), sterol regulatory element-binding protein 1(SREBP-1) and phosphorylated hormone-sensitive triglyceride lipase (P-HSL) in the liver, and uncoupling protein 1 (UCP-1) in interscapular brown adipose tissue (iBAT) also showed upregulated in the high-fat diet fed mice. Thus, NCA promoted de novo synthesis of pyrimidine and polyunsaturated fatty acid, and reduced body weight by stimulating high-fat diet-induced thermogenesis of iBAT.


Assuntos
Tecido Adiposo Marrom , Ácido Aspártico , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Ácido Aspártico/metabolismo , Peso Corporal , Termogênese/genética , Dieta Hiperlipídica/efeitos adversos , Pirimidinas/farmacologia , Uridina/metabolismo
13.
Nat Metab ; 5(5): 765-776, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198474

RESUMO

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.


Assuntos
RNA , Ribose , Camundongos , Animais , Uridina/metabolismo , Uridina Fosforilase/metabolismo , Uracila/metabolismo
14.
Nature ; 618(7963): 151-158, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198494

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Assuntos
Glucose , Neoplasias Pancreáticas , Ribose , Microambiente Tumoral , Uridina , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribose/metabolismo , Uridina/química , Glucose/deficiência , Divisão Celular , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo , Humanos
15.
Nat Commun ; 14(1): 2987, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225690

RESUMO

The most widely used method for intracellular RNA fluorescence labeling is MS2 labeling, which generally relies on the use of multiple protein labels targeted to multiple RNA (MS2) hairpin structures installed on the RNA of interest (ROI). While effective and conveniently applied in cell biology labs, the protein labels add significant mass to the bound RNA, which potentially impacts steric accessibility and native RNA biology. We have previously demonstrated that internal, genetically encoded, uridine-rich internal loops (URILs) comprised of four contiguous UU pairs (8 nt) in RNA may be targeted with minimal structural perturbation by triplex hybridization with 1 kD bifacial peptide nucleic acids (bPNAs). A URIL-targeting strategy for RNA and DNA tracking would avoid the use of cumbersome protein fusion labels and minimize structural alterations to the RNA of interest. Here we show that URIL-targeting fluorogenic bPNA probes in cell media can penetrate cell membranes and effectively label RNAs and RNPs in fixed and live cells. This method, which we call fluorogenic U-rich internal loop (FLURIL) tagging, was internally validated through the use of RNAs bearing both URIL and MS2 labeling sites. Notably, a direct comparison of CRISPR-dCas labeled genomic loci in live U2OS cells revealed that FLURIL-tagged gRNA yielded loci with signal to background up to 7X greater than loci targeted by guide RNA modified with an array of eight MS2 hairpins. Together, these data show that FLURIL tagging provides a versatile scope of intracellular RNA and DNA tracking while maintaining a light molecular footprint and compatibility with existing methods.


Assuntos
Neoplasias de Células Escamosas , Neoplasias Cutâneas , Humanos , DNA/genética , Membrana Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA , Uridina
16.
Biotechnol Lett ; 45(5-6): 689-702, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071381

RESUMO

OBJECTIVES: This work aimed to construct a versatile, effective, and food-grade Agrobacterium tumefaciens-mediated transformation (ATMT) system for recombinant expression in the filamentous fungus Penicillium rubens (also known as Pencillium chrysogenum). RESULTS: In this study, the wild-type P. chrysogenum VTCC 31172 strain was re-classified as P. rubens by a multilocus sequencing analysis. Further, the pyrG gene required for uridine/uracil biosynthesis was successfully deleted in the VTCC 31172 strain by homologous recombination to generate a stable uridine/uracil auxotrophic mutant (ΔpyrG). The growth of the P. rubens ΔpyrG strain could be restored by uridine/uracil supplementation, and a new ATMT system based on the uridine/uracil auxotrophic mechanism was established for this strain. The optimal ATMT efficiency could reach 1750 transformants for 106 spores (equivalent to 0.18%). In addition, supplementation of uridine/uracil at the concentrations of 0.005-0.02% during the co-cultivation process significantly promoted transformation efficiency. Especially, we demonstrated that the pyrG marker and the amyB promoter from the koji mold Aspergillus oryzae were fully functional in P. rubens ΔpyrG. Expression of the DsRed reporter gene under the regulation of the A. oryzae amyB promoter lighted up the mycelium of P. rubens with a robust red signal under fluorescence microscopy. Furthermore, genomic integration of multiple copies of the Aspergillus fumigatus phyA gene under the control of the amyB promoter significantly enhanced phytase activity in P. rubens. CONCLUSIONS: The ATMT system developed in our work provides a safe genetic platform for producing recombinant products in P. rubens without using drug resistance markers.


Assuntos
Penicillium , Penicillium/genética , Penicillium/metabolismo , Agrobacterium tumefaciens/genética , Uracila/metabolismo , Uridina , Transformação Genética
17.
BMC Plant Biol ; 23(1): 204, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076827

RESUMO

BACKGROUND: Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS: In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION: We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.


Assuntos
Glicosiltransferases , Quercetina , Tabaco , Flavonoides/metabolismo , Flavonóis , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/metabolismo , Estresse Fisiológico/genética , Tabaco/genética , Tabaco/metabolismo , Uridina/metabolismo , Difosfato de Uridina/metabolismo
18.
Nat Commun ; 14(1): 2261, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081027

RESUMO

As a crucial factor of their therapeutic efficacy, the currently marketed mRNA vaccines feature uniform substitution of uridine (U) by the corresponding C-nucleoside, pseudouridine (Ψ), in 1-N-methylated form. Synthetic supply of the mRNA building block (1-N-Me-Ψ-5'-triphosphate) involves expedient access to Ψ as the principal challenge. Here, we show selective and atom-economic 1N-5C rearrangement of ß-D-ribosyl on uracil to obtain Ψ from unprotected U in quantitative yield. One-pot cascade transformation of U in four enzyme-catalyzed steps, via D-ribose (Rib)-1-phosphate, Rib-5-phosphate (Rib5P) and Ψ-5'-phosphate (ΨMP), gives Ψ. Coordinated function of the coupled enzymes in the overall rearrangement necessitates specific release of phosphate from the ΨMP, but not from the intermediary ribose phosphates. Discovery of Yjjg as ΨMP-specific phosphatase enables internally controlled regeneration of phosphate as catalytic reagent. With driving force provided from the net N-C rearrangement, the optimized U reaction yields a supersaturated product solution (∼250 g/L) from which the pure Ψ crystallizes (90% recovery). Scale up to 25 g isolated product at enzyme turnovers of ∼105 mol/mol demonstrates a robust process technology, promising for Ψ production. Our study identifies a multistep rearrangement reaction, realized by cascade biocatalysis, for C-nucleoside synthesis in high efficiency.


Assuntos
Nucleosídeos , Pseudouridina , Uridina/metabolismo , Pseudouridina/metabolismo , Biocatálise , Uracila
19.
Sci Rep ; 13(1): 5351, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005440

RESUMO

Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.


Assuntos
Proteínas Ferro-Enxofre , Mathanococcus , Humanos , Mathanococcus/genética , Uridina/metabolismo , Cisteína/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo
20.
Zhonghua Er Ke Za Zhi ; 61(5): 453-458, 2023 May 02.
Artigo em Chinês | MEDLINE | ID: mdl-37096266

RESUMO

Objective: To analyze the clinical features of children with uridine responsive developmental epileptic encephalopathy 50 (DEE50) caused by CAD gene variants. Methods: A retrospective study was conducted on 6 patients diagnosed with uridine-responsive DEE50 caused by CAD gene variants at Beijing Children's Hospital and Peking University First Hospital from 2018 to 2022. The epileptic seizures, anemia, peripheral blood smear, cranial magnetic resonance imaging (MRI), visual evoked potential (VEP), genotype features and the therapeutic effect of uridine were descriptively analyzed. Results: A total of 6 patients, including 3 boys and 3 girls, aged 3.5(3.2,5.8) years, were enrolled in this study. All patients presented with refractory epilepsy, anemia with anisopoikilocytosis and global developmental delay with regression. The age of epilepsy onset was 8.5 (7.5, 11.0) months, and focal seizures were the most common seizure type (6 cases). Anemia ranged from mild to severe. Four patients had peripheral blood smears prior to uridine administration, showing erythrocytes of variable size and abnormal morphology, and normalized at 6 (2, 8) months after uridine supplementation. Two patients suffered from strabismus, 3 patients had VEP examinations, indicating of suspicious optic nerve involvement, and normal fundus examinations. VEP was re-examined at 1 and 3 months after uridine supplementation, suggesting significant improvement or normalization. Cranial MRI were performed at 5 patients, demonstrating cerebral and cerebellar atrophy. They had cranial MRI re-examined after uridine treatment with a duration of 1.1 (1.0, 1.8) years, indicating significant improvement in brain atrophy. All patients received uridine orally at a dose of 100 mg/(kg·d), the age at initiation of uridine treatment was 1.0 (0.8, 2.5) years, and the duration of treatment was 2.4 (2.2, 3.0) years. Immediate cession of seizures was observed within days to a week after uridine supplementation. Four patients received uridine monotherapy and were seizure free for 7 months, 2.4 years, 2.4 years and 3.0 years respectively. One patient achieved seizure free for 3.0 years after uridine supplementation and had discontinued uridine for 1.5 years. Two patients were supplemented with uridine combined with 1 to 2 anti-seizure medications and had a reduced seizure frequency of 1 to 3 times per year, and they had achieved seizure free for 8 months and 1.4 years respectively. Conclusions: The clinical manifestations of DEE50 caused by CAD gene variants present a triad of refractory epilepsy, anemia with anisopoikilocytosis, and psychomotor retardation with regression, accompanied by suspected optic nerve involvement, all of which respond to uridine treatment. Prompt diagnosis and immediate uridine supplementation could lead to significant clinical improvement.


Assuntos
Anemia , Epilepsia Resistente a Medicamentos , Epilepsia , Doenças Neurodegenerativas , Masculino , Feminino , Humanos , Criança , Lactente , Epilepsia/genética , Estudos Retrospectivos , Uridina , Potenciais Evocados Visuais , Eletroencefalografia/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...