Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.005
Filtrar
1.
PeerJ ; 11: e16050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744236

RESUMO

Ephemeral wetlands are globally important systems that are regulated by regular cycles of wetting and drying, which are primarily controlled by responses to relatively short-term weather events (e.g., precipitation and evapotranspiration). Climate change is predicted to have significant effects on many ephemeral wetland systems and the organisms that depend on them through altered filling or drying dates that impact hydroperiod. To examine the potential effects of climate change on pine flatwoods wetlands in the southeastern United States, we created statistical models describing wetland hydrologic regime using an approximately 8-year history of water level monitoring and a variety of climate data inputs. We then assessed how hydrology may change in the future by projecting models forward (2025-2100) under six future climate scenarios (three climate models each with two emission scenarios). We used the model results to assess future breeding conditions for the imperiled Reticulated Flatwoods Salamander (Ambystoma bishopi), which breeds in many of the study wetlands. We found that models generally fit the data well and had good predictability across both training and testing data. Across all models and climate scenarios, there was substantial variation in the predicted suitability for flatwoods salamander reproduction. However, wetlands with longer hydroperiods tended to have fewer model iterations that predicted at least five consecutive years of reproductive failure (an important metric for population persistence). Understanding potential future risk to flatwoods salamander populations can be used to guide conservation and management actions for this imperiled species.


Assuntos
Mudança Climática , Urodelos , Animais , Áreas Alagadas , Melhoramento Vegetal , Ambystoma
2.
Oecologia ; 202(4): 807-818, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37615743

RESUMO

Understanding processes that govern and sustain biological diversity is a central goal of community ecology. Unisexual complexes, where reproduction depends on sperm from males of one or more bisexual host species, are rare and the processes driving their diversity and structure remain poorly understood. Unisexual Ambystoma salamanders produce distinct biotypes ('genomotypes') depending on which bisexual species they 'steal' sperm from. This reproductive mode should generate distinct assemblages depending on the locally available bisexual host species. Yet, how availability and relative abundance of multiple bisexual hosts influences composition and diversity of natural unisexual assemblages at local or regional scales remains unknown. We hypothesize that host identity most directly drives local assemblage composition, with host variation associated with increased beta and gamma diversity within unisexuals. We collected genetic samples from Ambystoma salamanders across Pelee Island, Ontario, Canada (2015-2022). Two host species were identified (A. texanum and A. laterale) with nine sites having a single host and one site having both. Unisexual assemblages were grouped into four clusters by similarity, with host identity being a key determinant. Gamma diversity increased as a result of distinct host-specific assemblages forming at different sites on the island (i.e., high beta diversity). Assemblage composition, but not diversity, was correlated with relative host abundance, which may reflect matching niche requirements between host and unisexual forms they produce. Our results demonstrate that diversity and structure of unisexual assemblages are clearly shaped by their host(s) and such systems may serve as models for studying how biotic interactions shape ecological communities.


Assuntos
Sêmen , Urodelos , Masculino , Animais , Ambystoma , Biodiversidade , Ploidias
3.
Virus Res ; 335: 199196, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37597665

RESUMO

B-cell lymphoma-2 (BCL-2) superfamily molecules play crucial roles in mitochondrial apoptosis induced by Chinese giant salamander iridovirus (GSIV). As an anti-apoptotic molecule in the BCL-2 family, the molecular mechanism of Bcl-w during GSIV infection remains unknown. In this study, we characterized for the first time an amphibian Bcl-w from Chinese giant salamander Andrias davidianus (AdBcl-w), and its function and regulatory mechanism during GSIV infection were investigated. AdBcl-w possesses the conserved structural features of Bcl-w and shares 35-54% sequence identities with other Bcl-w. mRNA expression of AdBcl-w was most abundant in liver and muscle. The AdBcl-w mRNA expression was regulated during GSIV infection. Western blotting assays revealed that the level of Bcl-w protein was downregulated markedly as the infection progresses. Confocal microscopy showed that overexpressed AdBcl-w was translocated to the mitochondria after infection with GSIV. Flow cytometry analysis demonstrated that compared with control, the apoptotic progress in cells transfected with AdBcl-w was reduced while that in cells transfected with AdBcl-w siRNA was enhanced. The number of virus major capsid protein gene copies was lower and protein synthesis was reduced in AdBcl-w overexpressing cells. In addition, AdBcl-w could bind directly to the pro-apoptotic molecule AdBak, while this interaction was weakened with GSIV infection. Moreover, p53 level was reduced and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-w overexpressing cells during GSIV infection. These results suggested that AdBcl-w inhibit GSIV replication by regulating the virus induced mitochondrial apoptosis.


Assuntos
Iridovirus , Animais , Iridovirus/genética , Proteína Supressora de Tumor p53 , Mitocôndrias , Apoptose , Urodelos , Replicação Viral , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro
4.
PLoS One ; 18(8): e0289296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527281

RESUMO

Plethodontid salamanders are well known for their distinct courtship rituals and the associated pheromonal signaling. However, little is known about pheromones produced in the lone Asian plethodontid species Karsenia koreana. Here, we examined the localization patterns of proteins of the sodefrin precursor-like factor (SPF) pheromone system in K. koreana. Using an antibody generated against SPF proteins from another plethodontid, Desmognathus ocoee, we tested three types of skin glands in K. koreana males via immunohistochemistry: the mental gland and two types of dorsal tail base glands-caudal courtship glands and dorsal granular glands. SPF immunoreactivity was detected in the known courtship gland, the mental gland, as well as granular glands, but not in caudal courtship glands. Due to immunoreaction specificity, we hypothesize the proteins of the SPF system in K. koreana and D. ocoee are structurally and functionally related and are used as courtship pheromones in K. koreana. Also, we hypothesize that K. koreana males transmit SPF to the female during the tail-straddling walk via dorsal granular glands. Finally, K. koreana male caudal courtship glands may be producing SPF proteins that are not recognized by our SPF antibody or these glands may play a different role in courtship than anticipated.


Assuntos
Feromônios , Urodelos , Animais , Masculino , Feminino , Feromônios/metabolismo , Oligopeptídeos/metabolismo , Proteínas , Anticorpos
5.
J Morphol ; 284(9): e21618, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585223

RESUMO

The vomer is an important tooth-bearing cranial bone in the lungless salamanders (Caudata: Plethodontidae) that serves different functional roles in aquatic versus terrestrial feeding. Vomerine tooth rows that run parallel with the maxillary teeth are thought to help grasp prey while expelling water from the mouth, while posterior extensions of the tooth row may help terrestrial taxa bring prey down the throat. We hypothesize that these two general morphological types will correlate with the habitat (aquatic vs. terrestrial) of adult salamanders. Alternatively, variation in form may be due to taxonomic effects, such that closely related species will have similar vomer morphology regardless of adult habitat. To test this hypothesis, we examined vomer shape on a set of species of the morphologically diverse tribe Spelerpini, in which two of the five genera (Eurycea and Gyrinophilus) include both aquatic and terrestrial species. Data were collected using micro computed tomography (micro-CT) scans from specimens from the Field Museum of Natural History and the Illinois Natural History Survey; additional data was obtained from public online repositories including Morphosource.org. Two-dimensional geometric morphometric analyses were performed to capture shape variation of both the vomer and the vomerine tooth row. We found clear separation between aquatic and terrestrial taxa, with most of the variation due to differences in the vomerine tooth row. Differences ascribed to habitat use likely correspond to feeding behavior, and the functional role of the vomer in prey processing warrants further investigation in this species-rich salamander family.


Assuntos
Dente , Urodelos , Animais , Urodelos/anatomia & histologia , Vômer , Microtomografia por Raio-X , Dente/diagnóstico por imagem , Boca
6.
Parasite ; 30: 27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409878

RESUMO

Polystomatidae is a monogenean family whose representatives infect mainly (semi)-aquatic tetrapods. Species of Sphyranura Wright, 1879 exhibit ectoparasitism on salamander hosts, with molecular work supporting their inclusion within Polystomatidae, at an early diverging, yet unresolved, position in the clade of otherwise endoparasitic polystomatid parasites of batrachian hosts. Records of representatives of Sphyranura are scarce with genetic data only available for S. oligorchis Alvey, 1933. Based on detailed morphological examination and comparison with type material, we identified worms belonging to Sphyranura infecting Oklahoma salamander (Eurycea tynerensis) as S. euryceae Hughes & Moore, 1943. Along with an amended diagnosis of Sphyranura, we provide the first molecular data for S. euryceae in the form of a mitochondrial genome and nuclear (18S, 28S rRNA) markers. Close morphological similarity between the two species of Sphyranura is reflected in low genetic divergence. Mitochondrial level comparison reveals instances of tRNA gene rearrangements in polystomatids. Although the phylogenetic reconstruction supports Sphyranura as early branching in the lineage of polystomatid monogeneans infecting batrachians, certain nodes remain unresolved.


Title: Diagnostic modifié, génome mitochondrial et position phylogénétique de Sphyranura euryceae (Neodermata, Monogenea, Polystomatidae), un parasite de la salamandre de l'Oklahoma. Abstract: Les Polystomatidae sont une famille de monogènes dont les représentants infectent principalement les tétrapodes (semi)-aquatiques. Les espèces de Sphyranura Wright, 1879 présentent un ectoparasitisme sur les hôtes salamandres, et des travaux moléculaires soutiennent leur inclusion dans les Polystomatidae, à une position divergente précoce mais non résolue dans le clade des Polystomatidae endoparasites d'hôtes batraciens. Les signalements des représentants de Sphyranura sont rares et les données génétiques ne sont disponibles que pour S. oligorchis Alvey, 1933. Sur la base d'un examen morphologique détaillé et d'une comparaison avec le matériel type, nous avons identifié les vers appartenant à Sphyranura infectant la salamandre de l'Oklahoma (Eurycea tynerensis) comme S. euryceae Hughes & Moore, 1943. Parallèlement à un diagnostic modifié de Sphyranura, nous fournissons les premières données moléculaires pour S. euryceae sous la forme d'un génome mitochondrial et de marqueurs nucléaires (ARNr 18S, 28S). La similitude morphologique étroite entre les deux espèces de Sphyranura se traduit par une faible divergence génétique. La comparaison au niveau mitochondrial révèle des cas de réarrangements des gènes des ARNt chez les Polystomatidae. Bien que la reconstruction phylogénétique soutienne Sphyranura comme un rameau précoce dans la lignée des monogènes Polystomatidae infectant les batraciens, certains nœuds restent non résolus.


Assuntos
Genoma Mitocondrial , Parasitos , Trematódeos , Animais , Filogenia , Parasitos/genética , Urodelos/genética , Oklahoma
7.
Environ Toxicol ; 38(10): 2450-2461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461261

RESUMO

Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Geleia de Wharton/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doxorrubicina/toxicidade , Células Cultivadas , Mitocôndrias/metabolismo , Urodelos , Diferenciação Celular
8.
PLoS One ; 18(7): e0288282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428788

RESUMO

The molecular detection of DNA fragments that are shed into the environment (eDNA) has become an increasingly applied tool used to inventory biological communities and to perform targeted species surveys. This method is particularly useful in habitats where it is difficult or not practical to visually detect or trap the target organisms. Central Texas Eurycea salamanders inhabit both surface and subterranean aquatic environments. Subterranean surveys are challenging or infeasible, and the detection of salamander eDNA in water samples is an appealing survey technique for these situations. Here, we develop and validate an eDNA assay using quantitative PCR for E. chisholmensis, E. naufragia, and E. tonkawae. These three species are federally threatened and constitute the Septentriomolge clade that occurs in the northern segment of the Edwards Aquifer. First, we validated the specificity of the assay in silico and with DNA extracted from tissue samples of both target Septentriomolge and non-target amphibians that overlap in distribution. Then, we evaluated the sensitivity of the assay in two controls, one with salamander-positive water and one at field sites known to be occupied by Septentriomolge. For the salamander-positive control, the estimated probability of eDNA occurrence (ψ) was 0.981 (SE = 0.019), and the estimated probability of detecting eDNA in a qPCR replicate (p) was 0.981 (SE = 0.011). For the field control, the estimated probability of eDNA occurring at a site (ψ) was 0.938 (95% CRI: 0.714-0.998). The estimated probability of collecting eDNA in a water sample (θ) was positively correlated with salamander relative density and ranged from 0.371 (95% CRI: 0.201-0.561) to 0.999 (95% CRI: 0.850- > 0.999) among sampled sites. Therefore, sites with low salamander density require more water samples for eDNA evaluation, and we determined that our site with the lowest estimated θ would require seven water samples for the cumulative collection probability to exceed 0.95. The estimated probability of detecting eDNA in a qPCR replicate (p) was 0.882 (95% CRI: 0.807-0.936), and our assay required two qPCR replicates for the cumulative detection probability to exceed 0.95. In complementary visual encounter surveys, the estimated probability of salamanders occurring at a known-occupied site was 0.905 (SE = 0.096), and the estimated probability of detecting salamanders in a visual encounter survey was 0.925 (SE = 0.052). We additionally discuss future research needed to refine this method and understand its limitations before practical application and incorporation into formal survey protocols for these taxa.


Assuntos
DNA Ambiental , Animais , DNA Ambiental/genética , DNA Ambiental/análise , Urodelos/genética , Texas , DNA/genética , Água/análise
9.
Zootaxa ; 5293(1): 145-160, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37518493

RESUMO

Hynobius akiensis sensu lato has recently been split into three species based on short sequence analyses of cyt-b gene of mtDNA and without data of nuclear DNA, and strange sympatric distribution in some areas has been indicated in two species. We analyzed nuclear DNA marker (SNPs) and complete sequence of cyt-b in H. akiensis sensu lato to reassess species delimitation and genetic introgression among species. As a result, we found two lineages with discordant mitochondrial and nuclear DNA in some areas. Of H. akiensis sensu lato, each of the two contains the type locality of two species recently reported (H. sumidai and H. geiyoensis), and the use of these names has been previously advocated. However, their sympatric distribution was rejected based on nuclear DNA data, which we consider is more reliable than mtDNA. We thus clarify geographic boundary of these two species and revise the species delimitations.


Assuntos
DNA Mitocondrial , Urodelos , Animais , Urodelos/genética , Filogenia , Japão , DNA Mitocondrial/genética , Mitocôndrias/genética
10.
Microb Pathog ; 182: 106220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423497

RESUMO

Andrias davidianus ranavirus (ADRV) is a member of the genus ranavirus (family Iridoviridae). ADRV 2L is an envelope protein that could be essential in viral infection. In the present study, the function of ADRV 2L was investigated by fusion with the biotin ligase TurboID tag. A recombinant ADRV with a V5-TurboID tag fused in the N-terminal of 2L (ADRVT-2L) and a recombinant ADRV expressing V5-TurboID (ADRVT) were constructed, respectively. Infection of the recombinant viruses and wild-type ADRV (ADRVWT) in the Chinese giant salamander thymus cell line (GSTC) showed that ADRVT-2L had reduced cytopathic effect and lower virus titers than the other two viruses, indicating the fusion of a big tag affected ADRV infection. Analysis of the temporal expression profile showed that the expression of V5-TurboID-2L was delayed than wild-type 2L. However, electron microscopy found that the virion morphogenesis was not affected in ADRVT-2L-infected cells. Furthermore, the virus binding assay revealed that the adsorption efficiency of ADRVT-2L was considerably decreased compared to the other two viruses. Therefore, these data showed that linking the TurboID tag to ADRV 2L affected virus adsorption to the cell membrane, which suggested an important role of 2L in virus entry into cells.


Assuntos
Iridoviridae , Ranavirus , Animais , Ranavirus/genética , Adsorção , Linhagem Celular , Urodelos
11.
Nat Commun ; 14(1): 3270, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277333

RESUMO

Batrachochytrium salamandrivorans (Bsal) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal, and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Comércio , Quitridiomicetos/fisiologia , Internacionalidade , Anfíbios/microbiologia , Urodelos/microbiologia , Biodiversidade , Anuros , América do Norte/epidemiologia , Micoses/veterinária , Micoses/microbiologia
12.
Am Nat ; 202(1): 92-106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37384763

RESUMO

AbstractIn species that provide parental care, parents will sometimes cannibalize their own young (i.e., filial cannibalism). Here, we quantified the frequency of whole-clutch filial cannibalism in a species of giant salamander (eastern hellbender; Cryptobranchus alleganiensis) that has experienced precipitous population declines with unknown causes. We used underwater artificial nesting shelters deployed across a gradient of upstream forest cover to assess the fates of 182 nests at 10 sites over 8 years. We found strong evidence that nest failure rates increased at sites with low riparian forest cover in the upstream catchment. At several sites, reproductive failure was 100%, mainly due to cannibalism by the caring male. The high incidence of filial cannibalism at degraded sites was not explained by evolutionary hypotheses for filial cannibalism based on poor adult body condition or low reproductive value of small clutches. Instead, larger clutches at degraded sites were most vulnerable to cannibalism. We hypothesize that high frequencies of filial cannibalism of large clutches in areas with low forest cover could be related to changes in water chemistry or siltation that influence parental physiology or that reduce the viability of eggs. Importantly, our results identify chronic nest failure as a possible mechanism contributing to population declines and observed geriatric age structure in this imperiled species.


Assuntos
Canibalismo , Urodelos , Masculino , Animais , Evolução Biológica , Florestas , Reprodução
13.
BMC Ecol Evol ; 23(1): 26, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370002

RESUMO

BACKGROUND: Climate affects the thermal adaptation and distribution of hosts, and drives the spread of Chytridiomycosis-a keratin-associated infectious disease of amphibians caused by the sister pathogens Batrachochytrium dendrobatidi (Bd) and B. salamandrivorans (Bsal). We focus on their climate-pathogen relationships in Eurasia, the only region where their geographical distributions overlap. Eurasia harbours invaded and native areas of both pathogens and the natural habitats where they co-exist, making it an ideal region to examine their environmental niche correlations. Our understanding of how climate change will affect their distribution is broadened by the differences in climate correlates and niche characteristics between Bd and Bsal in Asia and Europe. This knowledge has potential conservation implications, informing future spread of the disease in different regions. RESULTS: We quantified the environmental niche overlap between Bd and Bsal in Eurasia using niche analyses. Results revealed partial overlap in the niche with a unique 4% of non-overlapping values for Bsal, suggesting segregation along certain climate axes. Bd tolerates higher temperature fluctuations, while Bsal requires more stable, lower temperature and wetter conditions. Projections of their Realized Climatic Niches (RCNs) to future conditions show a larger expansion of suitable ranges (SRs) for Bd compared to Bsal in both Asia and Europe, with their centroids shifting in different directions. Notably, both pathogens' highly suitable areas in Asia are expected to shrink significantly, especially under the extreme climate scenarios. In Europe, they are expected to expand significantly. CONCLUSIONS: Climate change will impact or increase disease risk to amphibian hosts, particularly in Europe. Given the shared niche space of the two pathogens across available climate gradients, as has already been witnessed in Eurasia with an increased range expansion and niche overlap due to climate change, we expect that regions where Bsal is currently absent but salamanders are present, and where Bd is already prevalent, may be conducive for the spread of Bsal.


Assuntos
Quitridiomicetos , Micoses , Animais , Anfíbios , Urodelos , Micoses/epidemiologia , Micoses/veterinária , Batrachochytrium
14.
Curr Microbiol ; 80(7): 214, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195436

RESUMO

Given the current and future costs of antibiotic-resistant bacteria to human health and economic productivity, there is an urgent need to develop new antimicrobial compounds. Antimicrobial peptides are a promising alternative to conventional antibiotics and other antimicrobials. Amphibian skin is a rich source of bioactive compounds, but the antibacterial properties of salamander skin peptides have been neglected. Here, we examined the in vitro ability of skin peptides from 9 species of salamander representing 6 salamander families to inhibit the growth of ESKAPE pathogens, which are bacteria that have developed resistance to conventional antibiotics. We also examined whether the skin peptides caused lysis of human red blood cells. Skin peptides from Amphiuma tridactylum had the greatest antimicrobial properties, completely inhibiting the growth of all bacterial strains except for Enterococcus faecium. Likewise, skin peptides from Cryptobranchus alleganiensis completely inhibited the growth of several of the bacterial strains. In contrast, skin peptide mixtures from Ambystoma maculatum, Desmognathus fuscus, Eurycea bislineata, E. longicauda, Necturus beyeri, N. maculosus, and Siren intermedia did not completely inhibit bacterial growth even at the highest concentrations. Finally, none of the skin peptide mixtures caused lysis of human red blood cells. Together, we demonstrate that salamander skin produces peptides with potent antibacterial properties. It remains to elucidate the peptide sequences and their antibacterial mechanisms.


Assuntos
Anti-Infecciosos , Urodelos , Animais , Humanos , Antibacterianos/farmacologia , Peptídeos/farmacologia , Pele/microbiologia , Bactérias , Testes de Sensibilidade Microbiana
15.
PeerJ ; 11: e15446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223119

RESUMO

Hematological parameters are essential indices for assessing the function of blood and reflecting not only the health status of animal but also their physiological adaptation to the environment. Herein, the composition of blood cells and the hematological parameters of wild Batrachuperus karlschmidti were examined for the first time, and the effects of sex, body size, body mass, and age on the hematological parameters were explored. The morphology and morphometric data of the blood cells, as well as the hematological parameters, of B. karlschmidti were slightly differ from those of its congener. However, hematological differences between sexes were only found in erythrocyte and leukocyte count, and mean cell volume (MCV), which possibly reflecting the need for better oxygen distribution and stronger immune protection for reproduction. Hematocrit (Hct) and mean cell hemoglobin (MCH) were strongly dependent on body mass. These also might have been attributed to higher oxygen requirements with larger body masses. This is a pilot project exploring the hematology of this species that may help establish hematological parameters in future for supporting species protection and monitoring studies, as well as help understanding the physiological adaptation of this species.


Assuntos
Hematologia , Urodelos , Animais , Projetos Piloto , Células Sanguíneas , Oxigênio
16.
Zootaxa ; 5258(4): 351-378, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37044589

RESUMO

For approximately four decades, scientists have known of the existence of several undescribed species of Siren in the southeastern United States Coastal Plain. One of these species, S. reticulata, was recently described, but a small, seepage-dwelling species has remained undescribed until now. To resolve outstanding questions concerning the phylogeny of Siren, we collected sequence and morphometric data from specimens across the range of Siren. We found S. lacertina and S. reticulata to represent strongly supported monophyletic groups, with S. reticulata having a sister relationship to all other Siren. Additionally, we found five distinct mtDNA lineages within what has been recognized as S. intermedia. Siren lacertina and type-locality S. intermedia (lineage A) are sister mtDNA lineages, whereas S. intermedia lineages B and C show a high level of mitogenomic divergence from type-locality S. intermedia. Analyses of two scnDNA loci revealed that S. lacertina is monophyletic but nested with low positional support in a clade including the three S. intermedia mtDNA lineages. Further study is needed to determine whether S. intermedia lineages A, B, and C represent distinct species or incompletely sorted lineages. We restrict the range of S. intermedia to the region from the Escambia and Perdido river drainages of Florida and Alabama eastward through Virginia (the combined ranges of lineages A, B, and C). We also elevate S. i. nettingi (lineage E) to species status and include the larger S. i. texana form in that taxon, generating a species that occurs from the Mobile Bay drainages westward through the Mississippi Basin and southwest into northeastern Mexico. Lastly, we describe a new miniature species, S. sphagnicola, that ranges from the Florida Parishes of Louisiana eastward to the westernmost tributary creeks of Choctawhatchee Bay in the western Florida panhandle.


Assuntos
DNA Mitocondrial , Urodelos , Animais , Filogenia , DNA Mitocondrial/genética
17.
Ann Anat ; 249: 152097, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37011824

RESUMO

BACKGROUND: Amphibian skin has been studied for many decades, especially the metamorphic changes in the skin of frogs. Less attention has been paid to salamander skin. Here, we describe changes in the skin structure during postembryonic development in a salamandrid species, the Balkan crested newt Triturus ivanbureschi. METHOD: Using traditional histological techniques we examined the skin in the trunk region of three premetamorphic larval stages (hatchling, mid larval and late larval) and two postmetamorphic stages (juvenile, just after metamorphosis, and adult). RESULTS: In larval stages, skin consists only of the epidermis, which gradually develops from the single epithelial cell layer in hatchlings, to a stratified epidermis with gland nests and characteristic Leydig cells at the late larval stage. During metamorphosis, Leydig cells disappear, and the dermal layer develops. In postmetamorphic stages, skin is differentiated on stratified epidermis and the dermis with well-developed glands. Three types of glands were observed in the skin of the postmetamorphic stages: mucous, granular and mixed. Gland composition appears to be stage- and sex-specific, with juveniles and adult female being more similar to each other. In juveniles and adult female, there are a similar proportion of glands in both dorsal and ventral skin, whereas in adult male granular glands dominated the dorsal skin, while mixed glands dominated the ventral skin. CONCLUSION: Our results provide a baseline for future comparative research of skin anatomy in salamanders.


Assuntos
Triturus , Urodelos , Animais , Masculino , Feminino , Triturus/anatomia & histologia , Salamandridae , Pele/anatomia & histologia , Epiderme , Larva
18.
PLoS One ; 18(4): e0283377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079593

RESUMO

Translocations of freshwater species have become a widespread conservation strategy to mitigate the impacts of habitat fragmentation, yet they are not often rigorously monitored using animal movement data to determine their success. We demonstrate the value of monitoring pre- and post-translocation movements and home-range sizes of a fully-aquatic, benthic stream salamander, the eastern hellbender (Cryptobranchus a. alleganiensis) to determine translocation success. We studied the home range sizes, movements, and habitat use of individuals (n = 27) in two self-sustaining populations (S1 & S2) for one year, and then subsequently collected similar data from a subset of these individuals (n = 17) that were translocated into two nearby streams (T1 & T2) with dam-isolated, declining populations in the Blue Ridge Ecoregion of Tennessee. We collected 1,571 location data points (869 pre-translocation and 715 post-translocation) from four study sites, and evaluated effects of mass, sex, and pre-translocation home range size/sedentariness, as well as habitat covariates on home range size and movements. Hellbender home range sizes increased from pre-translocation estimates at both sites, but response depended primarily on physical characteristics of release sites. Home range and fine-scale movement metrics indicated that hellbenders translocated from S1 to T1 settled in more quickly, had greater site fidelity, and smaller home ranges than hellbenders translocated from S2 to T2. Hellbender movements were influenced by cover rock size and density rather than individual characteristics. Study-long survival rates of translocated hellbenders increased from S1 to T1 (80% to 100%) and decreased from S2 to T2 (76% to 33%). Monitoring pre- and post-translocation movements was a valuable method for evaluating short-term translocation success in a freshwater environment. For future hellbender translocations, managers should prioritize selecting suitable release sites with contiguous boulder-dense areas (1-2 per m2), adequate prey (crayfish) densities (>1/m2), and habitats with low risk of predation.


Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital , Animais , Urodelos/fisiologia , Translocação Genética , Tennessee
19.
Sci Rep ; 13(1): 3588, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869050

RESUMO

Biofluorescence occurs when a living organism absorbs high energy light and reemits it at longer wavelengths. Many species within clades of vertebrates are known to fluoresce including mammals, reptiles, birds, and fish. Most, if not all, amphibians exhibit biofluorescence when exposed to either blue (440-460 nm) or ultra-violet (360-380 nm) wavelengths of light. Salamanders (Lissamphibia: Caudata) appear to consistently fluoresce in green wavelengths (520-560 nm) when excited by blue light. Biofluorescence is theorized to have many ecological functions including mate signaling, camouflage, and mimicry. Despite the discovery of their biofluorescence, its role in salamander ecology and behavior remains unresolved. In this study we present the first case of biofluorescent sexual dimorphism within Amphibia and the first documentation of the biofluorescent pattern of a salamander within the Plethodon jordani species complex. This sexually dimorphic trait was discovered in the southern Appalachian endemic species, Southern Gray-Cheeked Salamander (Plethodon metcalfi, Brimley in Proc Biol Soc Wash 25:135-140, 1912), and may extend into other species within the Plethodon jordani and Plethodon glutinosus species complexes. We propose that this sexually dimorphic trait could be related to fluorescence of ventral modified granular glands used in plethodontid chemosensory communication.


Assuntos
Gafanhotos , Urodelos , Animais , Caracteres Sexuais , Região dos Apalaches , Bochecha , Comunicação , Mamíferos
20.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992326

RESUMO

Ranavirus is a large nucleocytoplasmic DNA virus. Chinese giant salamander iridovirus (CGSIV) belongs to the ranavirus genus, and its replication involves a series of essential viral genes. Viral PCNA is a gene closely associated with viral replication. CGSIV-025L also encodes PCNA-like genes. We have described the function of CGSIV-025L in virus replication. The promoter of CGSIV-025L is activated during viral infection, and it is an early (E) gene that can be effectively transcribed after viral infection. CGSIV-025L overexpression promoted viral replication and viral DNA replication. siRNA interfered with CGSIV-025L expression and attenuated viral replication and viral DNA replication. The Δ025L-CGSIV strain with the deletion of CGSIV-025L could not replicate normally and could be rescued by the replenishment of 025L. CGSIV-025L was proven to be an essential gene for CGSIV by overexpression, interference, and deletion mutation experiments. CGSIV-025L was found to interact with CGSIV-062L by yeast two-hybrid, CoIP, and GST pulldown. Thus, the current study demonstrated that CGSIV-025L is an essential gene of CGSIV, which may be involved in viral infection by participating in viral DNA replication and interacting with replication-related proteins.


Assuntos
Infecções por Vírus de DNA , Iridovirus , Ranavirus , Animais , Iridovirus/genética , Genes Essenciais , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/genética , DNA Viral/genética , Infecções por Vírus de DNA/veterinária , Replicação Viral , Ranavirus/genética , Genes Virais , Urodelos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...