Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.854
Filtrar
1.
Cells ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672206

RESUMO

Thyroid Hormones (THs) are a class of signaling molecules produced by coupling iodine with tyrosine residues. In vertebrates, extensive data support their important role in a variety of processes such as metabolism, development and metamorphosis. On the other hand, in invertebrates, the synthesis and role of the THs have been, so far, poorly investigated, thus limiting our understanding of the function and evolution of this important animal signaling pathway. In sea urchins, for example, while several studies focused on the availability and function of external sources of iodotyrosines, preliminary evidence suggests that an endogenous TH pathway might be in place. Here, integrating available literature with an in silico analysis, various homologous genes of the vertebrate TH molecular toolkit have been identified in the sea urchin Strongylocentrotus purpuratus. They include genes involved in the synthesis (Sp-Pxdn), metabolism (Sp-Dios), transport (Sp-Ttrl, Sp-Mct7/8/10) and response (Sp-Thr, Sp-Rxr and Sp-Integrin αP) to thyroid hormones. To understand the cell type(s) involved in TH synthesis and/or response, we studied the spatial expression of the TH toolkit during urchin development. Exploiting single-cell transcriptomics data in conjunction with in situ hybridization and immunohistochemistry, we identified cell types that are potentially producing or responding to THs in the sea urchin. Finally, growing sea urchin embryos until the larva stage with and without a source of inorganic iodine, we provided evidence that iodine organification is important for larval skeleton growth.


Assuntos
Iodo , Strongylocentrotus purpuratus , Animais , Strongylocentrotus purpuratus/genética , Ouriços-do-Mar , Vertebrados/genética , Larva/metabolismo , Hormônios Tireóideos/metabolismo , Iodo/metabolismo
2.
Proc Biol Sci ; 290(1990): 20221928, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629110

RESUMO

Bats have undergone one of the most drastic limb innovations in vertebrate history, associated with the evolution of powered flight. Knowledge of the genetic basis of limb organogenesis in bats has increased but little has been documented regarding the differences between limb organogenesis in bats and that of other vertebrates. We conducted embryological comparisons of the timelines of limb organogenesis in 24 bat species and 72 non-bat amniotes. In bats, the time invested for forelimb organogenesis has been considerably extended and the appearance timing of the forelimb ridge has been significantly accelerated, whereas the timing of the finger and first appearance of the claw development has been delayed, facilitating the enlargement of the manus. Furthermore, we discovered that bats initiate the development of their hindlimbs earlier than their forelimbs compared with other placentals. Bat neonates are known to be able to cling continuously with their well-developed foot to the maternal bodies or habitat substrates soon after birth. We suggest that this unique life history of neonates, which possibly coevolved with powered flight, has driven the accelerated development of the hindlimb and precocious foot.


Assuntos
Quirópteros , Animais , Recém-Nascido , Humanos , Vertebrados , Membro Anterior , Organogênese/genética , Membro Posterior , Eutérios , Voo Animal
3.
Theriogenology ; 198: 305-316, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634444

RESUMO

Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Masculino , Humanos , Sêmen , Vertebrados , Animais Selvagens , Poluentes Ambientais/toxicidade , Poluição Ambiental , Mamíferos , Genitália Masculina , Reprodução
4.
Nat Commun ; 14(1): 26, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596786

RESUMO

Although alkaline sensation is critical for survival, alkali-activated receptors are yet to be identified in vertebrates. Here, we showed that the OTOP1 channel can be directly activated by extracellular alkali. Notably, OTOP1 biphasically mediated proton influx and efflux with extracellular acid and base stimulation, respectively. Mutations of K221 and R554 at the S5-S6 and S11-S12 linkers significantly reduced alkali affinity without affecting acid activation, suggesting that different domains are responsible for acid- and alkali-activation of OTOP1. The selectivity for H+ was significantly higher in OTOP1 activated by alkali than that by acid, further suggesting that the two activations might be independent gating processes. Given that the alkali-activation of OTOP1 and the required key residues were conserved in the six representative vertebrates, we cautiously propose that OTOP1 participates in alkaline sensation in vertebrates. Thus, our study identified OTOP1 as an alkali-activated channel.


Assuntos
Álcalis , Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Proteínas de Transporte
5.
Proc Natl Acad Sci U S A ; 120(4): e2207854119, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649436

RESUMO

The Carboniferous (358.9 to 298.9 Ma) saw the emergence of marine ecosystems dominated by modern vertebrate groups, including abundant stem-group holocephalans (chimaeras and relatives). Compared with the handful of anatomically conservative holocephalan genera alive today-demersal durophages all-these animals were astonishingly morphologically diverse, and bizarre anatomies in groups such as iniopterygians hint at specialized ecological roles foreshadowing those of the later, suction-feeding neopterygians. However, flattened fossils usually obscure these animals' functional morphologies and how they fitted into these important early ecosystems. Here, we use three-dimensional (3D) methods to show that the musculoskeletal anatomy of the uniquely 3D-preserved iniopterygian Iniopera can be best interpreted as being similar to that of living holocephalans rather than elasmobranchs but that it was mechanically unsuited to durophagy. Rather, Iniopera had a small, anteriorly oriented mouth aperture, expandable pharynx, and strong muscular links among the pectoral girdle, neurocranium, and ventral pharynx consistent with high-performance suction feeding, something exhibited by no living holocephalan and never clearly characterized in any of the extinct members of the holocephalan stem-group. Remarkably, in adapting a distinctly holocephalan anatomy to suction feeding, Iniopera is more comparable to modern tetrapod suction feeders than to the more closely related high-performance suction-feeding elasmobranchs. This raises questions about the assumed role of durophagy in the evolution of holocephalans' distinctive anatomy and offers a rare glimpse into the breadth of ecological niches filled by holocephalans in a pre-neopterygian world.


Assuntos
Ecossistema , Crânio , Animais , Sucção , Crânio/anatomia & histologia , Vertebrados/anatomia & histologia , Peixes/anatomia & histologia , Comportamento Alimentar
6.
J Morphol ; 284(2): e21552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601696

RESUMO

The Shorthead lamprey Mordacia mordax (Mordaciidae, Agnatha) represents one of the earliest stages of vertebrate evolution. This study investigates the ultrastructural anatomy of the cornea, iris and anterior chamber in the eyes of this species in both the downstream and upstream migrant phases of its protracted lifecycle to assess the morphological and quantitative changes associated with growth, corneal function and vision. Using light and both scanning and transmission electron microscopy, the cornea is found to be divided into dermal and scleral components separated by a mucoid layer. A range of distinguishing corneal features are compared in the two adult phases of the lifecycle, including epithelial microprojections, mucus-secreting epithelial cells, the number, thickness, formation and level of branching and anastomosing of collagen lamellae, the type and distribution of vertical sutures, the structure of the mucoid layer and annular ligament and the number and distribution of a large number of basement membranes throughout the cornea. Significant differences are found between the two phases, which are thought to reflect adaptations to the variable environmental conditions encountered throughout this species' lifecycle. The study provides insights into the evolutionary pressures on extant representatives of the earliest stages in the evolution of the vertebrate eye.


Assuntos
Lampreias , Migrantes , Animais , Humanos , Peixes , Córnea , Vertebrados
8.
Nat Commun ; 14(1): 232, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646694

RESUMO

Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.


Assuntos
Metilação de DNA , Genoma , Animais , Metilação de DNA/genética , Genoma/genética , Invertebrados/genética , Vertebrados/genética , Vertebrados/metabolismo , Epigênese Genética , DNA/metabolismo
9.
Nat Commun ; 14(1): 262, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650141

RESUMO

Species' life histories determine population demographics and thus the probability that introduced populations establish and spread. Life histories also influence which species are most likely to be introduced, but how such 'introduction biases' arise remains unclear. Here, we investigate how life histories affect the probability of trade and introduction in phylogenetic comparative analyses across three vertebrate classes: mammals, reptiles and amphibians. We find that traded species have relatively high reproductive rates and long reproductive lifespans. Within traded species, introduced species have a more extreme version of this same life history profile. Species in the pet trade also have long reproductive lifespans but lack 'fast' traits, likely reflecting demand for rare species which tend to have slow life histories. We identify multiple species not yet traded or introduced but with life histories indicative of high risk of future trade, introduction and potentially invasion. Our findings suggest that species with high invasion potential are favoured in the wildlife trade and therefore that trade regulation is crucial for preventing future invasions.


Assuntos
Répteis , Vertebrados , Animais , Humanos , Filogenia , Anfíbios , Mamíferos , Espécies Introduzidas , Atividades Humanas
10.
Evol Dev ; 25(1): 54-72, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36594351

RESUMO

Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.


Assuntos
Calcificações da Polpa Dentária , Tubarões , Dente , Animais , Vertebrados , Odontogênese
11.
Genome Biol Evol ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36518048

RESUMO

The troponin (Tn) complex, responsible for the Ca2+ activation of striated muscle, is composed of three interacting protein subunits: TnC, TnI, and TnT, encoded by TNNC, TNNI, and TNNT genes. TNNI and TNNT are sister gene families, and in mammals the three TNNI paralogs (TNNI1, TNNI2, TNNI3), which encode proteins with tissue-specific expression, are each in close genomic proximity with one of the three TNNT paralogs (TNNT2, TNNT3, TNNT1, respectively). It has been widely presumed that all vertebrates broadly possess genes of these same three classes, although earlier work has overlooked jawless fishes (cyclostomes) and cartilaginous fishes (chimeras, rays, and sharks), which are distantly related to other jawed vertebrates. With a new phylogenetic and synteny analysis of a diverse array of vertebrates including these taxonomic groups, we define five distinct TNNI classes (TNNI1-5), with TNNI4 and TNNI5 being only present in non-amniote vertebrates and typically found in tandem, and four classes of TNNT (TNNT1-4). These genes are located in four genomic loci that were generated by the 2R whole-genome duplications. TNNI3, encoding "cardiac TnI" in tetrapods, was independently lost in cartilaginous and ray-finned fishes. Instead, ray-finned fishes predominantly express TNNI1 in the heart. TNNI5 is highly expressed in shark hearts and contains a N-terminal extension similar to that of TNNI3 found in tetrapod hearts. Given that TNNI3 and TNNI5 are distantly related, this supports the hypothesis that the N-terminal extension may be an ancestral feature of vertebrate TNNI and not an innovation unique to TNNI3, as has been commonly believed.


Assuntos
Tubarões , Troponina I , Animais , Troponina I/genética , Troponina T/genética , Filogenia , Vertebrados/genética , Peixes/genética , Mamíferos , Tubarões/genética , Evolução Molecular
12.
Acta Histochem ; 125(1): 151988, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566584

RESUMO

BACKGROUND: At present, there is an increased interest in the vaginal microbiome. It is believed that microbes play equally important roles in the vagina, including the modulation of neuronal pathways, as in the gut. However, in man as well as in animals, the vagina is the least well-studied part of the female reproductive system. The vagina, a fibromuscular tract, having two main functions, i.e., childbirth and sexual intercourse, is mainly innervated by the pudendal nerve and the pelvic splanchnic nerves (the uterovaginal nerve plexus) containing sympathetic, parasympathetic and nociceptive nerve fibers. Innervation density in the vaginal wall undergoes significant remodeling due to hormonally mediated physiological activity. Knowledge about expression and function of neuropeptides and neurotransmitters in the vaginal fibers is incomplete or not established. Most research concerning the neuroregulation of the vagina and the function and expression of neuropeptides and neurotransmitters, is performed in several vertebrate species, including large farm animals, rodents, domestic fowl and lizards. METHODS: This review summarizes, on a bibliographic basis, the current knowledge on vaginal innervation and function of neuropeptides and neurotransmitters expressed in vaginal nerve fibers in several vertebrate species, including humans. The presence and role played by the local microbioma is also explored. CONCLUSION: A thorough knowledge of the vaginal innervation is necessary to unravel the putative communication of the vaginal microbiome and vaginal nerve fibers, but also to understand the effects of vaginal pathologies and of administered drugs on the neuroregulation of the vagina.


Assuntos
Neuropeptídeos , Humanos , Animais , Feminino , Neuropeptídeos/metabolismo , Vagina/metabolismo , Neurônios/metabolismo , Neurotransmissores , Vertebrados/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
13.
Gene ; 854: 147083, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36481278

RESUMO

The vertebrate IFN regulatory factor (IRF) family consists of 11 members that exert distinct roles in a variety of biological processes, including antiviral defense, regulation of cell proliferation, differentiation and apoptosis. Of these, IRF10 is widely present in different vertebrate lineages, but appears to have been lost in primates and rodents. To understand the evolutionary occurrence of IRF10, we performed comparative analyses of currently available genomic data in a taxonomically diverse set of vertebrates, and found that IRF10 originated after the divergence of chondrichthyans from gnathostomes. Phylogenetically, vertebrate IRF10 is much more closely related to IRF4 than to IRF8 or IRF9, although these four IRFs may have a common ancestor. In addition, the loss of IRF10 in Euarchontoglires might be resulted from mutation accumulation, and the rate of mutations in rodents appears to be higher than in the primate lineage. In primates, the gene-disruptive mutations may have occurred at least prior to the separation of new world monkey and old world primates, roughly 40 million years ago. Overall, we propose a detailed evolutionary scenario for IRF10, which may help us understand the evolutionary mechanisms in the expansion and contraction of the IRF family.


Assuntos
Proteínas Aviárias , Vertebrados , Animais , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Proteínas Aviárias/genética
14.
Glob Chang Biol ; 29(1): 97-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250232

RESUMO

Human-induced environmental changes have a direct impact on species populations, with some species experiencing declines while others display population growth. Understanding why and how species populations respond differently to environmental changes is fundamental to mitigate and predict future biodiversity changes. Theoretically, species life-history strategies are key determinants shaping the response of populations to environmental impacts. Despite this, the association between species life histories and the response of populations to environmental changes has not been tested. In this study, we analysed the effects of recent land-cover and temperature changes on rates of population change of 1,072 populations recorded in the Living Planet Database. We selected populations with at least 5 yearly consecutive records (after imputation of missing population estimates) between 1992 and 2016, and for which we achieved high population imputation accuracy (in the cases where missing values had to be imputed). These populations were distributed across 553 different locations and included 461 terrestrial amniote vertebrate species (273 birds, 137 mammals, and 51 reptiles) with different life-history strategies. We showed that populations of fast-lived species inhabiting areas that have experienced recent expansion of cropland or bare soil present positive populations trends on average, whereas slow-lived species display negative population trends. Although these findings support previous hypotheses that fast-lived species are better adapted to recover their populations after an environmental perturbation, the sensitivity analysis revealed that model outcomes are strongly influenced by the addition or exclusion of populations with extreme rates of change. Therefore, the results should be interpreted with caution. With climate and land-use changes likely to increase in the future, establishing clear links between species characteristics and responses to these threats is fundamental for designing and conducting conservation actions. The results of this study can aid in evaluating population sensitivity, assessing the likely conservation status of species with poor data coverage, and predicting future scenarios of biodiversity change.


Assuntos
Biodiversidade , Mudança Climática , Animais , Humanos , Temperatura , Aves , Vertebrados , Mamíferos , Ecossistema
15.
Sci Total Environ ; 862: 160753, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513231

RESUMO

Urban infrastructures can provide 'novel' habitats for marine and terrestrial animals and plants, enhancing their ability to adapt to urban environments. In particular, coastal infrastructures characterized by a complex three-dimensional morphology, such as breakwaters, could provide species refuges and food. We investigated the role of breakwaters in providing habitat for vertebrates and plants, and the influence of anthropogenic litter in regulating the value of these structures as habitat. We sampled vertebrate and plant species and quantified the amount of anthropogenic litter on breakwaters and adjacent rocky habitats at several sites in three different countries (Italy, Spain and Chile). We found breakwaters to accumulate more litter items (e.g. especially plastics) than adjacent rocky habitats by means of their large-scale (i.e., 1 m) structural complexity. Birds, which used the artificial infrastructure as transitory habitat, reached similar abundances in breakwaters compared with adjacent rocky platforms. In contrast, synanthropic mammal species, such as Rattus norvegicus and feral cats, were slightly more frequent on breakwaters and appeared to use them as permanent habitat. Plants were frequent in the upper zone of breakwaters and, even though many macrophyte species can trap litter, their cover correlated negatively with anthropogenic litter density. Therefore, breakwaters provide either transitory or permanent habitats for different species, despite functioning as a sink for anthropogenic litter. Thus, new infrastructure should be designed with lower structural complexity in their supralittoral zone limiting the proliferation of synanthropic species. In addition, restricting public access to sensitive areas and enforcing littering fines could enhance the ecological value of these novel habitats by reducing the benefits to pest species.


Assuntos
Ecossistema , Vertebrados , Animais , Gatos , Ratos , Plásticos , Chile , Itália , Monitoramento Ambiental , Mamíferos
16.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R143-R151, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534585

RESUMO

Nearly a century ago, Homer Smith proposed that the glomerulus evolved to meet the challenge of excretion of water in freshwater vertebrates. This hypothesis has been repeatedly restated in the nephrology and renal physiology literature, even though we now know that vertebrates evolved and diversified in marine (saltwater) environments. A more likely explanation is that the vertebrate glomerulus evolved from the meta-nephridium of marine invertebrates, with the driving force for ultrafiltration being facilitated by the apposition of the filtration barrier to the vasculature (in vertebrates) rather than the coelom (in invertebrates) and the development of a true heart and the more complex vertebrate vascular system. In turn, glomerular filtration aided individual regulation of divalent ions like magnesium, calcium, and sulfate compatible with the function of cardiac and skeletal muscle required for mobile predators. The metabolic cost, imposed by reabsorption of the small amounts of sodium required to drive secretion of these over-abundant divalent ions, was small. This innovation, developed in a salt-water environment, provided a preadaptation for life in freshwater, in which the glomerulus was co-opted to facilitate water excretion, albeit with the additional metabolic demand imposed by the need to reabsorb the majority of filtered sodium. The evolution of the glomerulus in saltwater also provided preadaptation for terrestrial life, where the imperative is conservation of both water and electrolytes. The historical contingencies of this scenario may explain why the mammalian kidney is so metabolically inefficient, with ∼80% of oxygen consumption being used to drive reabsorption of filtered sodium.


Assuntos
Glomérulos Renais , Vertebrados , Animais , Glomérulos Renais/metabolismo , Vertebrados/metabolismo , Rim/metabolismo , Água , Sódio/metabolismo , Mamíferos/metabolismo
17.
Dev Biol ; 493: 40-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370769

RESUMO

Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.


Assuntos
Evolução Molecular , Opsinas , Animais , Opsinas/genética , Opsinas/metabolismo , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Opsinas de Bastonetes/genética
18.
Fish Shellfish Immunol ; 132: 108485, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521804

RESUMO

Tryptophan is mainly degraded through kynurenine pathway (KP) in vertebrates which is closely related to the nerve and depression, while the studies on immunity is still limited. This study aims to explore the functions of tryptophan in the innate immunity of primitive vertebrate lamprey. MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide) assay showed that tryptophan had no obvious effect on cell viability. Tryptophan was transported into leukocytes and degraded via the KP after tryptophan supplement. Tryptophan treatment (T1x and T2x) failed to alter the total antioxidant capacity regardless of stimulation and exposure time. Real-time quantitative PCR and western blotting results revealed that tryptophan was not only able to reduce the expression of pro-inflammatory factors Lj-TNF-α, Lj-IL1ß and Lj-NF-κB, but also to upregulate the expression of anti-inflammatory factor Lj-TGF-ß independent of stimulation and time. In addition, tryptophan can exert immune tolerance function by inhibiting TLR-MyD88 and promoting (Indoleamine 2, 3-Dioxygenase) IDO-kynurenine-AHR (aryl hydrocarbon receptor) pathways. This study provides a new understanding for tryptophan-kynurenine metabolism and mechanism of immune tolerance function in primitive vertebrate lamprey.


Assuntos
Cinurenina , Receptores de Hidrocarboneto Arílico , Animais , Cinurenina/metabolismo , Triptofano/farmacologia , Triptofano/metabolismo , Tolerância Imunológica , Vertebrados/metabolismo
19.
Mol Immunol ; 153: 146-159, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502743

RESUMO

We have studied the origin of immunoglobulin genes in fish. There are two evolutionary lines of bony fish, Actinopterygii and Sarcopterygii. The former gave rise to most of the current fish and the latter to the animals that went to land. Non-teleost actinopterygians are significant evolutionary, sharing a common ancestor with sarcopterygians. There are three different immunoglob- ulin isotypes in ray-finned fish: IgM, IgD and IgT. We deduce that translocon formation in im- munoglobulins genes occurred already in non-teleost Actinopterygii. We establish a relationship between no teleosts and teleostean fish at the domain level of different immunoglobulins. We found two evolutionary lines of immunoglobulin. A line that starts from Immunoglobulin M and another from an ancestral Immunoglobulin W. The M line is stable, and the W line gives rise to the IgD of the fish. Immunoglobulin T emerges by recombination between both lines.


Assuntos
Peixes , Imunoglobulinas , Animais , Imunoglobulinas/genética , Peixes/genética , Imunoglobulina M/genética , Isotipos de Imunoglobulinas/genética , Vertebrados , Evolução Biológica , Filogenia , Proteínas de Peixes/genética
20.
Curr Biol ; 33(2): 389-396.e3, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36580916

RESUMO

The conversion of natural ecosystems into human-modified landscapes (HMLs) is the main driver of biodiversity loss in terrestrial ecosystems.1,2,3 Even when species persist within habitat remnants, populations may become so small that ecological interactions are functionally lost, disrupting local interaction networks.4,5 To uncover the consequences of land use changes toward ecosystem functioning, we need to understand how changes in species richness and abundance in HMLs6,7,8 rearrange ecological networks. We used data from forest vertebrate surveys and combined modeling and network analysis to investigate how the structure of predator-prey networks was affected by habitat insularization induced by a hydroelectric reservoir in the Brazilian Amazonia.9 We found that network complexity, measured by interaction diversity, decayed non-linearly with decreasingly smaller forest area. Although on large forest islands (>100 ha) prey species were linked to 3-4 potential predators, they were linked to one or had no remaining predator on small islands. Using extinction simulations, we show that the variation in network structure cannot be explained by abundance-related extinction risk or prey availability. Our findings show that habitat loss may result in an abrupt disruption of terrestrial predator-prey networks, generating low-complexity ecosystems that may not retain functionality. Release from predation on some small islands may produce cascading effects over plants that accelerate forest degradation, whereas predator spillover on others may result in overexploited prey populations. Our analyses highlight that in addition to maintaining diversity, protecting large continuous forests is required for the persistence of interaction networks and related ecosystem functions.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Humanos , Florestas , Biodiversidade , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...