RESUMO
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Vírus de RNA de Cadeia Positiva , Animais , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Estágios do Ciclo de Vida , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Proteínas Virais/metabolismoRESUMO
Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.
Assuntos
RNA Helicases DEAD-box , HIV-1 , Vírus de RNA de Cadeia Positiva , Replicação Viral , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , HIV-1/fisiologia , Vírus de RNA de Cadeia Positiva/fisiologia , SARS-CoV-2/fisiologiaRESUMO
Virus infection is a process that requires combined contributions from both virus and host factors. For this process to be efficient within the crowded host environment, viruses have evolved ways to manipulate and reorganize host structures to produce cellular microenvironments. Positive-strand RNA virus replication and assembly occurs in association with cytoplasmic membranes, causing a reorganization of these membranes to create microenvironments that support viral processes. Similarities between virus-induced membrane domains and cellular organelles have led to the description of these structures as virus replication organelles (vRO). Electron microscopy analysis of vROs in positive-strand RNA virus infected cells has revealed surprising morphological similarities between genetically diverse virus species. For all positive-strand RNA viruses, vROs can be categorized into two groups: those that make invaginations into the cellular membranes (In-vRO), and those that cause the production of protrusions from cellular membranes (Pr-vRO), most often in the form of double membrane vesicles (DMVs). In this review, we will discuss the current knowledge on the structure and biogenesis of these two different vRO classes as well as comparing morphology and function of vROs between various positive-strand RNA viruses. Finally, we will discuss recent studies describing pharmaceutical intervention in vRO formation as an avenue to control virus infection.
Assuntos
Vírus de RNA de Cadeia Positiva , Replicação Viral , Membrana Celular , Hepacivirus/genética , Organelas , RNA Viral/genéticaRESUMO
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Assuntos
Vírus de RNA de Cadeia Positiva , Vírus de RNA , Retículo Endoplasmático/metabolismo , Humanos , Lipídeos , Lisossomos/metabolismo , RNA Viral/metabolismo , Replicação ViralRESUMO
A new positive-sense single-stranded RNA (+ssRNA) mycovirus, Verticillium dahliae magoulivirus 1 (VdMoV1), was isolated from two strains (2-19 and XLZ70) of Verticillium dahliae. The complete genome of VdMoV1 is 2303 nucleotides (nt) in length and has a large open reading frame (nt positions from 61 to 1938) encoding an RNA-dependent RNA polymerase (RdRp). A multiple sequence alignment indicated that the central region of the RdRp encoded by VdMoV1 contains eight typical viral RdRp motifs. BLASTp analysis demonstrated that VdMoV1 has the highest sequence identity (86.88%) to Bremia lactucae associated ourmia-like virus 2 (BlaOLV2). Phylogenetic analysis revealed that VdMoV1 is a new member of the genus Magoulivirus. As far as we know, VdMoV1 is the first reported member of the family Botourmiaviridae infecting V. dahliae.
Assuntos
Vírus de RNA de Cadeia Positiva , Verticillium , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Verticillium/virologia , Vírus de RNA de Cadeia Positiva/isolamento & purificaçãoRESUMO
Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.
Assuntos
Hepatite C , RNA Catalítico , Hepacivirus/genética , Humanos , Vírus de RNA de Cadeia Positiva , RNA Catalítico/genética , RNA Viral/genética , Replicação Viral/genéticaRESUMO
Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.
Assuntos
Flavivirus , Vírus de RNA , Flavivirus/genética , Genoma Viral , Vírus de RNA de Cadeia Positiva , Vírus de RNA/genética , Genética Reversa/métodos , Replicação Viral/genéticaRESUMO
Sclerotinia sclerotiorum is a well-known phytopathogenic fungus with a wide host range. Identifying novel mycoviruses in phytopathogenic fungi is necessary to develop novel strategies for plant health protection and contribute to understanding the origin of viruses. Six new mycoviruses with positive single-stranded RNA genomes co-infecting the hypovirulent strain SCH733 of S. sclerotiorum were identified using a metatranscriptomic approach, and their complete genome sequences were molecularly determined. These mycoviruses belong to the following five families: Narnaviridae, Mitoviridae, Deltaflexviridae, Botourmiaviridae, and Ambiguiviridae. Three of these mycoviruses belong to existing International Committee on Taxonomy of Viruses (ICTV)-recognized species. Two of these newly identified mycoviruses have unique genomic features that are significantly different from those of all known mycoviruses. Phylogenetic analysis revealed that these six mycoviruses included close as well as distant relatives of known mycoviruses, thereby providing new insight into virus evolution and classification. Mycovirus horizontal transmission and elimination experiments revealed that Sclerotinia sclerotiorum narnavirus 5 is associated with hypovirulence of S. sclerotiorum, although we have not shown that it is independently responsible for the hypovirulence phenotype. This study broadens the diversity of known mycoviruses infecting S. sclerotiorum and provides a clue toward limiting hypovirulence in S. sclerotiorum.
Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Vírus , Vírus de RNA de Cadeia Positiva , Filogenia , Doenças das Plantas/microbiologia , Micovírus/genética , Vírus de RNA/genéticaRESUMO
Positive-strand RNA viruses, the largest genetic class of eukaryotic viruses, include coronaviruses and many other established and emerging pathogens. A major target for understanding and controlling these viruses is their genome replication, which occurs in virus-induced membrane vesicles that organize replication steps and protect double-stranded RNA intermediates from innate immune recognition. The structure of these complexes has been greatly illuminated by recent cryo-electron microscope tomography studies with several viruses. One key finding in diverse systems is the organization of crucial viral RNA replication factors in multimeric rings or crowns that among other functions serve as exit channels gating release of progeny genomes to the cytosol for translation and encapsidation. Emerging results suggest that these crowns serve additional important purposes in replication complex assembly, function, and interaction with downstream processes such as encapsidation. The findings provide insights into viral function and evolution and new bases for understanding, controlling, and engineering positive-strand RNA viruses.
Assuntos
RNA Viral , Replicação Viral , Tomografia com Microscopia Eletrônica , Vírus de RNA de Cadeia Positiva , RNA de Cadeia Dupla/genética , RNA Viral/genéticaRESUMO
Coronavirus (CoV) genomes consist of positive-sense single-stranded RNA and are among the largest viral RNAs known to date (â¼30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3'-5' exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.
Assuntos
Genoma Viral , Vírus de RNA de Cadeia Positiva , SARS-CoV-2 , COVID-19/virologia , Genoma Viral/genética , Humanos , Mutação , Vírus de RNA de Cadeia Positiva/genética , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genéticaRESUMO
Free radical release due to oxidative stress is gaining importance in the field of viral pathogenesis. Recent studies suggest the involvement of oxidative stress and ROS levels in regulating disease virulence during RNA virus infection. Most of the RNA virus infections lead to vascular dysfunction and disease severity. However, the biology of free radicals in maintaining vascular endothelium integrity is not completely understood. In the present review, we discuss some of the common features in positive-strand RNA virus infections such as dengue and SARS-CoV-2 and suggest that anti-oxidant therapy could pave the way to develop therapeutic strategies in combating emerging and re-emerging RNA viruses.
Assuntos
COVID-19 , SARS-CoV-2 , Radicais Livres , Humanos , Vírus de RNA de Cadeia Positiva , Índice de Gravidade de DoençaRESUMO
Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Vírus de RNA de Sentido Negativo/efeitos dos fármacos , Vírus de RNA de Sentido Negativo/enzimologia , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/enzimologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Vírus de RNA de Cadeia Positiva/enzimologia , Vírus de RNA/efeitos dos fármacos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacosRESUMO
Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host's brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.
Assuntos
Vírus de Insetos/fisiologia , Vírus de RNA de Cadeia Positiva/fisiologia , Moscas Tsé-Tsé/virologia , Tropismo Viral , Animais , Encéfalo/virologia , Sistema Digestório/virologia , Corpo Adiposo/virologia , Feminino , Genitália/virologia , Genoma Viral , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Masculino , Filogenia , Vírus de RNA de Cadeia Positiva/classificação , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/isolamento & purificação , Glândulas Salivares/virologia , Replicação ViralRESUMO
Life cycle processes of positive-strand (+)RNA viruses are broadly conserved across families, yet they employ different strategies to grow in the cell. Using a generalized dynamical model for intracellular (+)RNA virus growth, we decipher these life cycle determinants and their dependencies for several viruses and parse the effects of viral mutations, drugs and host cell permissivity. We show that poliovirus employs rapid replication and virus assembly, whereas the Japanese encephalitis virus leverages its higher rate of translation and efficient cellular reorganization compared to the hepatitis C virus. Stochastic simulations demonstrate infection extinction if all seeding (inoculating) viral RNA degrade before establishing robust replication critical for infection. The probability of this productive cellular infection, 'cellular infectivity', is affected by virus-host processes and defined by early life cycle events and viral seeding. An increase in cytoplasmic RNA degradation and delay in vesicular compartment formation reduces infectivity, more so when combined. Synergy among these parameters in limiting (+)RNA virus infection as predicted by our model suggests new avenues for inhibiting infections by targeting the early life cycle bottlenecks.
Assuntos
Vírus de RNA de Cadeia Positiva , Vírus de RNA , Animais , Humanos , Estágios do Ciclo de Vida , RNA Viral/genética , Replicação ViralRESUMO
Nucleotidylylation is a post-transcriptional modification important for replication in the picornavirus supergroup of RNA viruses, including members of the Caliciviridae, Coronaviridae, Picornaviridae and Potyviridae virus families. This modification occurs when the RNA-dependent RNA polymerase (RdRp) attaches one or more nucleotides to a target protein through a nucleotidyl-transferase reaction. The most characterized nucleotidylylation target is VPg (viral protein genome-linked), a protein linked to the 5' end of the genome in Caliciviridae, Picornaviridae and Potyviridae. The nucleotidylylation of VPg by RdRp is a critical step for the VPg protein to act as a primer for genome replication and, in Caliciviridae and Potyviridae, for the initiation of translation. In contrast, Coronaviridae do not express a VPg protein, but the nucleotidylylation of proteins involved in replication initiation is critical for genome replication. Furthermore, the RdRp proteins of the viruses that perform nucleotidylylation are themselves nucleotidylylated, and in the case of coronavirus, this has been shown to be essential for viral replication. This review focuses on nucleotidylylation within the picornavirus supergroup of viruses, including the proteins that are modified, what is known about the nucleotidylylation process and the roles that these modifications have in the viral life cycle.
Assuntos
Nucleotídeos/metabolismo , Vírus de RNA de Cadeia Positiva/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Caliciviridae/genética , Caliciviridae/metabolismo , Coronaviridae/genética , Coronaviridae/metabolismo , Genoma Viral , Nidovirales/genética , Nidovirales/metabolismo , Picornaviridae/genética , Picornaviridae/metabolismo , Vírus de RNA de Cadeia Positiva/genética , Potyviridae/genética , Potyviridae/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação ViralRESUMO
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Assuntos
Antivirais/farmacologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Animais , Citocinas/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Glicosilação/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Poliaminas/metabolismo , Vírus de RNA de Cadeia Positiva/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologiaRESUMO
Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length. The single positive-stranded RNA genome was predicted to encode typical conserved domains of members of the genus Iflavirus in the family Iflaviridae. Phylogenetic analysis showed this virus to be closely related to the unclassified iflavirus tomato matilda associated virus (TMaV), with a maximum amino acid sequence identity of 59% in the RNA-dependent RNA polymerase domain. This low identity value justifies the recognition of the novel virus as a potential novel iflavirus. In addition to a lack of graft-transmissibility evidence, RT-PCR and HTS detection of this virus in the putative host plants were not consistent through different years and growing seasons, raising the possibility that rather than a plant virus, this was a virus infecting an organism associated with fruit tree leaves. Identification of Tetra pinnatifidae HTS-derived contigs in all fruit tree samples carrying the novel virus suggested this mite as the most likely host of the new virus (p-value < 1e-11), which is tentatively named "eriophyid mite-associated virus" (EMaV). This study highlights the importance of a careful biological study before assigning a new virus to a particular plant host when using metagenomics data.
Assuntos
Frutas/parasitologia , Ácaros/virologia , Vírus de RNA de Cadeia Positiva/classificação , Árvores/parasitologia , Sequência de Aminoácidos , Animais , Frutas/virologia , Genoma Viral/genética , Metagenômica , Filogenia , Extratos Vegetais , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Vírus de RNA de Cadeia Positiva/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA , Árvores/virologiaRESUMO
A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features.
Assuntos
Fusarium/virologia , Genoma Viral/genética , Vírus de RNA de Cadeia Positiva/genética , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Filogenia , Doenças das Plantas/microbiologia , Vírus de RNA de Cadeia Positiva/classificação , Vírus de RNA de Cadeia Positiva/isolamento & purificação , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , Ribonucleases/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Esporos Fúngicos/virologia , Proteínas Virais/genéticaRESUMO
Introduction: The SARS-CoV-2 virus is a positive-strand RNA virus. The virus can also be detected in many different specimens as throat swabs, nasal swabs, sputum, saliva, blood, etc. Objective: The aim of this paper is to compare the reliability of different types of specimen collection, saliva and swabs samples for the detection of SARS-CoV-2. Material and Methods: A sample of 22 COVID-19 positive patients was selected. Paired samples from saliva, nasopharyngeal, oropharyngeal and nasopharyngeal + oropharyngeal swabs were collected on the 7th day after diagnosis. The hyssops and medium employed was IMPROSWAB and IMPROVIRAL NAT Medium, Germany. The sample evaluation was conducted through RT-PCR. The results were compared using Fisher's exact test and ROC curve. The gold standard proposed in this paper was the nasopharyngeal + oropharyngeal swabs specimen. Results: The gold standard method detected 10 true positive cases, of which oropharyngeal swabs, nasopharyngeal swabs and saliva only detected three positive cases. Significant differences (Fisher's exact test p = 0.003) were detected in the comparison between saliva and the gold standart proposed. The ROC curve analysis showed that saliva had an area under the curve of 0.650, with a 30 percent of sensibility. However, the nasopharyngeal and nasopharyngeal + oropharyngeal samples had an area under curve of 0.950 and 1.000, respectively, with a sensibility of 90 percent and 100 percent, respectively. Conclusion: Saliva samples are not a reliable specimen for SARS-CoV-2 RNA detection. In turn, the most reliable specimens are nasopharyngeal and nasopharyngeal + oropharyngeal samples collected by swabbing(AU)
Introducción: El SARS-CoV-2 es un virus ARN positivo. Este virus puede ser detectado en diferentes tipos de secreción como hisopada bucal, nasal, esputo, saliva, sangre, etc. Objetivo: El objetivo de este estudio es comparar la confiabilidad de diferentes tipos de muestras, saliva y exudado, en la detección de SARS-CoV-2. Material y Métodos: Una muestra de 22 pacientes con diagnóstico de Covid-19 fue estudiada. Se tomaron muestras pareadas de saliva y exudado nasofaríngeo y orofaríngeo en cada paciente. Se emplearon los hisopos y medios de la firma alemana IMPROVE®. Los resultados de las determinaciones por RT-PCR se compararon mediante test de Fisher (test de la probabilidad exacta de Fisher) y cada sets de muestras fue evaluada individualmente y luego comparadas por curvas ROC. El estándar de oro propuesto fue el doble hisopado nasofaríngeo/orofaríngeo. Resultados: El método de oro propuesto detectó 10 casos positivos. La coincidencia de detección entre todos los sets de muestras fue de 3 casos (30 por ciento). Se obtuvieron diferencias significativas (Fisher p = 0.003) en la comparación de los casos detectados en saliva vs el estándar de oro. El análisis de curvas ROC mostró un área bajo la curva de 0.650 (30 por ciento de sensibilidad) para la saliva. En el caso del hisopado nasofaríngeo y el estándar de oro mostraron un área bajo la curva de 0.95 y 1.00, respectivamente, con una sensibilidad del 90 (AU) por ciento y 100 por ciento, respectivamente. Conclusiones: La saliva no es una muestra confiable para la detección de SARS-CoV-2. La muestra más confiable para el diagnóstico fue el hisopado nasofaríngeo y el doble hisopado(AU)
Assuntos
Humanos , Faringe/patologia , Saliva , Vírus de RNA de Cadeia Positiva/imunologia , SARS-CoV-2 , COVID-19/diagnóstico , Manejo de Espécimes/ética , Nasofaringe/virologiaRESUMO
Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.