Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
1.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112814

RESUMO

Canine distemper virus (CDV), belonging to the genus Morbillivirus, is a highly contagious pathogen. It is infectious in a wide range of host species, including domestic and wildlife carnivores, and causes severe systemic disease with involvement of the respiratory tract. In the present study, canine precision-cut lung slices (PCLSs) were infected with CDV (strain R252) to investigate temporospatial viral loads, cell tropism, ciliary activity, and local immune responses during early infection ex vivo. Progressive viral replication was observed during the infection period in histiocytic and, to a lesser extent, epithelial cells. CDV-infected cells were predominantly located within the bronchial subepithelial tissue. Ciliary activity was reduced in CDV-infected PCLSs, while viability remained unchanged when compared to controls. MHC-II expression was increased in the bronchial epithelium on day three postinfection. Elevated levels of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß) were observed in CDV-infected PCLSs on day one postinfection. In conclusion, the present study demonstrates that PCLSs are permissive for CDV. The model reveals an impaired ciliary function and an anti-inflammatory cytokine response, potentially fostering viral replication in the lung during the early phase of canine distemper.


Assuntos
Carnívoros , Vírus da Cinomose Canina , Cinomose , Morbillivirus , Pneumonia , Animais , Cães , Animais Selvagens , Citocinas
2.
Vet Res ; 54(1): 30, 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37009870

RESUMO

Canine distemper (CD) is a highly contagious and an acutely febrile disease caused by canine distemper virus (CDV), which greatly threatens the dog and fur industry in many countries. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control system for the degradation of misfolded proteins in the ER. In this study, a proteomic approach was performed, and results found the E3 ubiquitin ligase 3-hydroxy-3-methylglutaryl reductase degradation protein 1 (Hrd1), which is involved in ERAD, as one of the CDV H-interacting proteins. The interaction of Hrd1 with CDV H protein was further identified by Co-IP assay and confocal microscopy. Hrd1 degraded the CDV H protein via the proteasome pathway dependent on its E3 ubiquitin ligase activity. Hrd1 catalyzed the K63-linked polyubiquitination of CDV H protein at lysine residue 115 (K115). Hrd1 also exhibited a significant inhibitory effect on CDV replication. Together, the data demonstrate that the E3 ligase Hrd1 mediates the ubiquitination of CDV H protein for degradation via the proteasome pathway and inhibits CDV replication. Thus, targeting Hrd1 may represent a novel prevention and control strategy for CDV infection.


Assuntos
Vírus da Cinomose Canina , Animais , Cães , Vírus da Cinomose Canina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Proteínas , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral
3.
J Zoo Wildl Med ; 54(1): 131-136, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36971637

RESUMO

Fatalities have been associated with phocine and canine distemper viruses in marine mammals, including pinnipeds. No data are available regarding distemper disease or vaccination in walruses. This study evaluates seroconversion and clinical adverse effects following administration of a canarypox-vectored recombinant distemper vaccination (two 1-ml doses, 3 wk apart) in three adult aquarium-housed walruses. Serum antibodies to distemper were measured using seroneutralization on blood samples collected under operant conditioning prior to and for 12 mon after vaccination or until titers were <32. All walruses seroconverted. Medium positive titers (64-128) were detected for 4 to 9.5 mon in two of three individuals. Interindividual variability was noted, with one individual displaying only low positive titers. Major swelling at the site of injection and lameness for a week following injection occurred in all three walruses. Further studies on dosing amount and interval are needed to make vaccine recommendations in this species.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Vacinas Virais , Cães , Animais , Cinomose/prevenção & controle , Morsas , Vacinas Virais/efeitos adversos , Anticorpos Antivirais , Vacinas Sintéticas , Vacinação/efeitos adversos , Vacinação/veterinária
4.
BMC Vet Res ; 19(1): 60, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922800

RESUMO

BACKGROUND: Canine distemper virus (CDV) is one of the most contagious and lethal viruses known to the Canidae, with a very broad and expanding host range. Autophagy serves as a fundamental stabilizing response against pathogens, but some viruses have been able to evade or exploit it for their replication. However, the effect of autophagy mechanisms on CDV infection is still unclear. RESULTS: In the present study, autophagy was induced in CDV-infected Vero cells as demonstrated by elevated LC3-II levels and aggregation of green fluorescent protein (GFP)-LC3 spots. Furthermore, CDV promoted the complete autophagic process, which could be determined by the degradation of p62, co-localization of LC3 with lysosomes, GFP degradation, and accumulation of LC3-II and p62 due to the lysosomal protease inhibitor E64d. In addition, the use of Rapamycin to promote autophagy promoted CDV replication, and the inhibition of autophagy by Wortmannin, Chloroquine and siRNA-ATG5 inhibited CDV replication, revealing that CDV-induced autophagy facilitated virus replication. We also found that UV-inactivated CDV still induced autophagy, and that nucleocapsid (N) protein was able to induce complete autophagy in an mTOR-dependent manner. CONCLUSIONS: This study for the first time revealed that CDV N protein induced complete autophagy to facilitate viral replication.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Proteínas do Nucleocapsídeo , Replicação Viral , Animais , Cães , Autofagia , Chlorocebus aethiops , Vírus da Cinomose Canina/fisiologia , Doenças do Cão/virologia , Células Vero , Proteínas do Nucleocapsídeo/metabolismo
5.
PLoS One ; 18(2): e0281542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36848365

RESUMO

Canine distemper virus (CDV) is a global multi-host pathogen that is capable of causing considerable mortality in a range of species and is important in the field of conservation medicine. Nepal's Chitwan National Park is a protected area providing habitat for 32% of the country's mammal species including endangered carnivores such as the Bengal tiger (Panthera tigris tigris) that are susceptible to CDV. The presence of free-roaming dogs around protected areas could represent a source of infectious disease for transmission to local wildlife. A cross-sectional demographic and canine distemper virus seroprevalence study of 100 free-roaming dogs from the Chitwan National Park buffer zone and surrounding area was conducted in November 2019. The overall seroprevalence indicating past exposure to canine distemper virus was 80.0% (95% CI: 70.8-87.3). Of the host variables assessed, sex and age were positively associated with seroprevalence at the univariable level, with male dogs demonstrating lower seroprevalence than females (OR = 0.32, 95% CI: 0.11-0.91) and adult dogs demonstrating higher seroprevalence than juveniles (OR = 13.94, 95% CI: 1.37-142.29). The effect of sex was no longer significant at the multivariable level, but the direction of the effect remained the same. The effect of age remained significant after multivariable analysis (OR = 9.00, 95% CI: 1.03-192.75). No spatial associations were demonstrated in relation to the buffer zone area or boundary of Chitwan National Park. Free-roaming dog neutering and vaccination programmes can provide a useful baseline for future CDV studies in the region, and a proxy to monitor disease threats to susceptible wildlife.


Assuntos
Canidae , Vírus da Cinomose Canina , Masculino , Feminino , Animais , Cães , Nepal/epidemiologia , Estudos Transversais , Parques Recreativos , Estudos Soroepidemiológicos , Animais Selvagens
6.
J Immunol Methods ; 514: 113438, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738767

RESUMO

Canine distemper is an emerging disease, caused by the Canine morbillivirus (CDV) of the Paramyxoviridae family. The virus has evolved as a multi-host pathogen as it affects many wildlife animal species. The development of specific and sensitive diagnostic tests is the need for a control program. Several diagnostic tests are available for the detection of CDV antigen and antibody. Lateral flow assay (LFA) is the most promising point of care diagnostic test because of its specificity, easy use, and instant result. This study was designed to develop a lateral flow assay using the in-house developed monoclonal antibody (mAb) against the nucleocapsid protein (N) of the 'CDV/dog/bly/Ind/2018' isolate, which represents the circulating strains of India. The two mAbs included in the study showed high binding affinity in indirect ELISA and dot blot assay. Out of two, one mAb was selected due to its comparatively higher binding affinity in LFA format, and less non-specific binding to the biological matrix and buffer components. The limit of detection was found to be 106.5 TCID50/ml with the assay run time of 5 min. The fresh clinical samples collected on the spot were distinctly detected by the LFA, whereas the stored samples with a reduced titre of the virus showed inconsistent results. Moreover, the blood samples showed a clear distinction of positive and negative than the swab and tissue homogenates. The RNA extraction from the strip was successful with the some modifications in the Trizol RNA extraction method and the N and H gene fragments were amplified. Therefore, the study concludes that the LFA is suitable for CDV antigen detection in the field conditions and the strips can be used as the sample substitute for molecular study.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Cinomose/diagnóstico , Proteínas do Nucleocapsídeo/genética , Anticorpos Antivirais , Anticorpos Monoclonais , RNA
7.
Braz J Microbiol ; 54(1): 587-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36749535

RESUMO

The present case is the first description of a co-infection with canine distemper virus (CDV) and canine adenovirus type 1 (CAdV-1) in a free-living hoary fox pup from Brazil. The animal was found and rescued with poor body condition, dehydration, incoordination, ataxia, excessive vocalization, and "blue eyes" phenomenon. Despite the efforts, euthanasia was elected due to worsening clinical signs and poor prognosis. Pathologic examination revealed a mild, acute, random, necrotizing hepatitis, acute bronchopneumonia, hydrocephalus, corneal edema with epithelium degeneration, and acidophilic intracytoplasmatic inclusion bodies in different epithelial cells types with rare syncytial. Through immunohistochemistry, CDV antigen was observed in the tongue, trachea, lungs, liver, spleen, stomach, intestine and urinary bladder. Adenovirus antigen was identified in the nucleus of scattered hepatocytes. Polymerase chain reaction and sequencing demonstrated high similarity with CAdV-1 and wild-type strain of CDV close related to Brazilian viral lineages isolated from domestic dogs. Disease surveillance in wildlife animals is essential to assess possible conservation threats and consider the implementation of mitigation or control measures.


Assuntos
Adenovirus Caninos , Coinfecção , Vírus da Cinomose Canina , Cinomose , Animais , Cães , Raposas , Brasil , Cinomose/patologia
8.
mBio ; 14(1): e0311422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36645301

RESUMO

Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Nectinas/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Furões , Receptores Virais/genética , Receptores Virais/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cinomose/prevenção & controle , Cinomose/genética , Cinomose/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(6): e2208866120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716368

RESUMO

Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Subunidades Proteicas , Glicoproteínas
10.
PLoS One ; 18(1): e0280186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662900

RESUMO

Canine distemper virus remains an important source of morbidity and mortality in animal shelters. RT-PCR is commonly used to aid diagnosis and has been used to monitor dogs testing positive over time to gauge the end of infectious potential. Many dogs excrete viral RNA for prolonged periods which has complicated disease management. The goal of this retrospective study was to describe the duration and characteristics of viral RNA excretion in shelter dogs with naturally occurring CDV and investigate the relationship between that viral RNA excretion and infectious potential using virus isolation data. Records from 98 different humane organizations with suspect CDV were reviewed. A total of 5,920 dogs were tested with 1,393; 4,452; and 75 found to be positive, negative, or suspect on RT-PCR respectively. The median duration of a positive test was 34 days (n = 325), and 25% (82/325) of the dogs still excreting viral RNA after 62 days of monitoring. Virus isolation was performed in six dogs who were RT-PCR positive for > 60 days. Infectious virus was isolated only within the first two weeks of monitoring at or around the peak viral RNA excretion (as detected by the lowest cycle threshold) reported for each dog. Our findings suggest that peak viral RNA excretion and the days surrounding it might be used as a functional marker to gauge the end of infectious risk. Clarifying the earliest point in time when dogs testing positive for canine distemper by RT-PCR can be considered non-contagious will improve welfare and lifesaving potential of shelters by enabling recovered dogs to be cleared more quickly for live release outcomes.


Assuntos
Vírus da Cinomose Canina , Cinomose , Cães , Animais , Vírus da Cinomose Canina/genética , Estudos Retrospectivos , RNA Viral/genética
11.
Arch Virol ; 168(2): 36, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609588

RESUMO

Viral pathogens are the primary cause of canine gastroenteritis. However, few structured comprehensive studies on the viral etiology of canine gastroenteritis have been conducted. In this study, 475 rectal swabs collected over three years (2018-2021) from clinical canine gastroenteritis cases were screened for the presence of six major enteric viruses - canine parvovirus 2 (CPV-2), canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), canine coronavirus (CCoV), canine astrovirus (CaAstV), and canine rotavirus (CRV) - by real-time PCR. The most frequently detected virus was CPV-2, which was present in 64.8% of the samples (subtype 2a, 21.1%; 2b, 77.4%; 2c, 1.5%), followed by CDV (8%), CaAstV (7.2%), CCoV (5.9%), and CAdV-2 (4.6%). Two to four of these viruses in different combinations were found in 16.8% of the samples, and CRV was not detected. The complete genome sequences of Indian isolates of CDV, CCoV, and CaAstV were determined for the first time, and phylogenetic analysis was performed. This study highlights the need for routine prophylactic vaccination with the appropriate vaccines. Notably, 70.3% of animals vaccinated with DHPPiL were found to be positive for at least one virus. Hence, regular molecular analysis of the prevalent viruses is crucial for addressing vaccination failures.


Assuntos
Coronavirus Canino , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Gastroenterite , Mamastrovirus , Infecções por Parvoviridae , Parvovirus Canino , Rotavirus , Animais , Cães , Filogenia , Doenças do Cão/epidemiologia , Gastroenterite/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus/genética , Coronavirus Canino/genética , Mamastrovirus/genética , Vírus da Cinomose Canina/genética
12.
Virus Res ; 325: 199043, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634899

RESUMO

Sequence analysis of the canine distemper virus (CDV) hemagglutinin (H) gene may provide important insights on virus-host interactions and has also been frequently used for CDV phylogenetic classification. Herein, we performed an in silico analysis of CDV complete genomes (CGs) available in GenBank in order to investigate the suitability of H for CDV classification into lineages/genotypes. In addition, we analyzed the other viral genes for their potential use in CDV classification. Initially, we collected 116 CDV CGs from GenBank and compared their phylogenetic classification with that of their respective H nucleotide (nt) and amino acid (aa) sequences. Subsequently, we calculated the geodesic distance between the CG and H phylogenetic trees. These analyses were later performed with other CDV genes. All CDV CGs were also evaluated for possible recombination events. Nucleotide and aa analyses of H misclassified some Vaccine/America 1/Asia 3 lineage sequences compared to CG analysis, finding supported by both Maximum Likelihood (ML) and Bayesian Markov Chain Monte Carlo (B-MCMC) methods. Moreover, aa-based H analysis showed additional disagreements with the classification obtained by CG. The geodesic distance between the H and CG trees was 0.0680. Strong recombination signals were identified in the H gene, including Vaccine/America 1/Asia 3 lineage sequences. In contrast, C and P were the only genes that fully reproduced the CG classification (by ML and/or B-MCMC) and that did not show strong recombination signals. Furthermore, the P phylogenetic tree showed the lowest geodesic distance from the CG tree (0.0369). These findings suggest C and P as potential targets for CDV phylogenetic classification, especially when full genome sequencing is not possible. Finally, since our results were obtained considering the CDV CGs available to date, future analyses performed as more CDV sequences become available will be useful to assess probable issues of H-based phylogeny and to consolidate the suitability of the C and P genes for CDV classification.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Filogenia , Vírus da Cinomose Canina/genética , Hemaglutininas , Teorema de Bayes , Nucleotídeos
13.
Am J Vet Res ; 84(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36662608

RESUMO

OBJECTIVE: To use proteomic analysis to identify qualitatively and quantitatively mammalian protein components of commercial veterinary vaccines against canine distemper, leptospirosis, borreliosis, and rabies. SAMPLE: 25 licensed veterinary vaccines (from 4 different manufacturers) against canine distemper and leptospirosis, borreliosis, and rabies (3-year and 1-year durations of immunity). PROCEDURES: Duplicate samples from a single-lot vial of each vaccine were prepared by acetone precipitation and proteolysis with trypsin and Lys-C protease mix. Peptides mixtures (1 µg) were analyzed by liquid chromatography-tandem mass spectrometry using an Orbitrap Fusion Lumos mass spectrometer. Liquid chromatography-tandem mass spectroscopy data were searched against a Bos taurus protein database using MaxQuant to identify and quantify mammalian proteins in the vaccines. Identified proteins were classified by function and network analysis to visualize interactions. RESULTS: The largest number of mammalian proteins was identified in 3-year rabies vaccines (median, 243 proteins; range, 184 to 339 proteins) and 1-year rabies vaccines (median, 193 proteins; range, 169 to 350 proteins). Borrelia and leptospirosis-distemper (L&D) vaccines had the lowest number of proteins. Rabies vaccines had the highest number of identified proteins in common (n = 316); 33 were unique to 1-year products and 44 were found in 3-year products. Borrelia and L&D vaccines had 16 and 22 uniquely identified proteins, respectively. The protein classifications were primarily modulators of protein-binding activity, enzymes, transfer-carrier proteins, cytoskeletal proteins, defense-immunity proteins, calcium-binding proteins, and extracellular matrix proteins. CLINICAL RELEVANCE: This study demonstrates proteomics application to evaluate quality differences among different vaccines, identifying potential stimulants of desirable and undesirable immune responses.


Assuntos
Doenças dos Bovinos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Leptospirose , Vacina Antirrábica , Vírus da Raiva , Raiva , Vacinas Virais , Animais , Cães , Bovinos , Raiva/prevenção & controle , Raiva/veterinária , Cinomose/prevenção & controle , Proteômica , Leptospirose/veterinária , Mamíferos
14.
Res Vet Sci ; 154: 97-101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521201

RESUMO

Canine distemper (CD), caused by the canine distemper virus (CDV), is a lethal systemic disease to a wide range of wild and domestic carnivorous hosts, including civets. In this study, a possible CD outbreak in a backyard farm with 32 diseased civets (Viverricula indica) in Hanoi, Vietnam, was investigated. The sick civets showed CD-like clinical signs such as anorexia, sedentary behavior, diarrhea, dermatitis, nasal, and footpad hyperkeratosis. Various tissue samples collected from the dead civets were utilized for molecular screening of CDV and histopathological examination. The genetic detection and characterization confirmed that samples collected from dead civets tested positive for CDV. The phylogenetic analysis based on the full-length H gene sequences indicated that all CDV strains isolated from civets belonged to the Asia-1 lineage and were closely related to the CDV strains previously reported from dogs in Thailand, China, and Vietnam. Histopathological examination showed severe interstitial pneumonia, hemorrhagic alveolar septa, necrotic alveolar epithelial cells, necrotic, degenerated, or lost Purkinje cells, eosinophilic intracytoplasmic inclusion bodies, edema, and perivascular cuff. This study confirmed the detection of CDV in civets for the first time in Vietnam.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Animais , Cães , Viverridae , Filogenia , Vírus da Cinomose Canina/genética , Vietnã/epidemiologia , Cinomose/epidemiologia
15.
J Biophotonics ; 16(4): e202200294, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527446

RESUMO

A novel optical fiber Vernier effect (VE) biosensor based on cascading Sagnac loops embedded with excessively tilted fiber grating (ExTFG) is proposed for the label free and specific detection of canine distemper virus (CDV). The VE was realized by cascading two different Sagnac loops with similar free spectrum range (FSR), one of which was integrated with panda-type polarization maintaining fiber (PMF) as the reference loop, and the other was embedded with ExTFG as the sensing loop. Owning to the amplified function of the VE, the refractive index (RI) sensitivity of the proposed sensing structure reached -1914.89 nm/RIU, which is approximately 12 times higher than that of the single ExTFG based RI sensor. Furthermore, the ExTFG in sensing loop was modified by graphene oxide (GO) and bio-functionalized by the CDV monoclonal antibodies (anti-CDV MAbs) for the specific detection of the CDV. Experimental results show that the proposed optical fiber Vernier sensor could detect the CDV in buffer solution with concentration as low as 1 pg/mL, and the sensitivity was about -1.18 nm/[log(mg/ml)] in the concentration range of 1 pg/mL ~ 50 ng/mL. The excellent specific and clinical properties of the biosensor were verified by immunoassays for fetal bovine serum, Toxoplasma gondii, rabies virus and CDV serum in sequence. Due to the sensitivity amplification function of VE, dense comb spectrum of the Sagnac loop and the stable interference spectra maintained by the polarized light, the proposed biosensor possesses the combined advantages of high sensitivity, high Q-factor and high stability, which may have potential applications in biosensing fields.


Assuntos
Técnicas Biossensoriais , Vírus da Cinomose Canina , Animais , Fibras Ópticas , Técnicas Biossensoriais/métodos , Imunoensaio , Refratometria
16.
Microbiol Spectr ; 11(1): e0406022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36533959

RESUMO

Measles virus and canine distemper virus (CDV) cause lethal infections in their respective hosts characterized by severe immunosuppression. To furtherly acknowledge the attenuated mechanisms of the regionally ongoing epidemic CDV isolates and provide novel perspectives for designing new vaccines and therapeutic drugs, a recombinant CDV rHBF-vacH was employed with a vaccine hemagglutinin (H) gene replacement by reverse genetics based on an infectious cDNA clone for the CDV wild-type HBF-1 strain. Interestingly, unlike previously published reports that a vaccine H protein completely changed a pathogenic wild-type CDV variant to be avirulent, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets with a prolonged period of disease. Further comparisons of pathogenic mechanisms proved that the weaker but necessary invasions into peripheral blood mononuclear cells (PBMCs) of rHBF-vacH, and subsequently persistent viral replications in PBMCs and multiple organs, together contributed to its 66.7% mortality. In addition, despite significantly higher titers than the parent viruses, rHBF-vacH would not be a suitable candidate for a live vaccine, with great invasion and infection potentials of PBMCs from 16 tested kinds of host species. Altogether, sustained and severe viral replication in PBMCs with moderate immunosuppression was first proven to be an alternative novel pathogenic mechanism for CDV, which might help us to understand possible reasons for CDV fatal infections among domestic dogs and the highly susceptible wild species during natural transmission. IMPORTANCE Despite widespread vaccine campaigns for domestic dogs, CDV remained an important infectious disease in vaccinated carnivores and wild species. In recent years, the regionally ongoing epidemic CDV isolates have emphasized conservation threats to, and potentially disastrous epidemics in, endangered species worldwide. However, little is known about how to deal with the CDV variants constantly regional epidemic. In this study, we employed a recombinant CDV rHBF-vacH with a vaccine H gene replacement in a CDV wild-type HBF-1 context to attenuate the epidemic CDV variant to design a new vaccine candidate. Interestingly, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets by weaker but necessary invasions into PBMCs, and subsequently persistent and severe viral replications in PBMCs. Significantly higher virus titers of rHBF-vacH in vitro might indicate the rapid cell-to-cell spreads in vivo that indirectly contribute to fatal infections of rHBF-vacH in ferrets.


Assuntos
Vírus da Cinomose Canina , Cinomose , Leucócitos Mononucleares , Replicação Viral , Animais , Cães , Cinomose/imunologia , Cinomose/metabolismo , Cinomose/virologia , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/patogenicidade , Furões , Terapia de Imunossupressão , Leucócitos Mononucleares/virologia
17.
BMC Vet Res ; 18(1): 450, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36564834

RESUMO

BACKGROUND: Canine morbillivirus (canine distemper virus, CDV) is a member of the Paramyxoviridae family. Canine distemper is a serious viral disease that affects many mammalian species, including members of the Mustelidae family. These animals have an elusive nature, which makes related virological studies extremely challenging. There is a significant knowledge gap about the evolution of their viruses and about the possible effects of these viruses to the population dynamics of the host animals. Spleen and lung tissue samples of 170 road-killed mustelids belonging to six species were collected between 1997 and 2022 throughout Hungary and tested for CDV with real-time RT-PCR. RESULTS: Three species were positive for viral RNA, 2 out of 64 Steppe polecats (Mustela eversmanii), 1 out of 36 European polecats (Mustela putorius) and 2 out of 36 stone martens (Martes foina); all 18 pine martens (Martes martes), 10 least weasels (Mustela nivalis) and 6 stoats (Mustela erminea) tested negative. The complete CDV genome was sequenced in five samples using pan-genotype CDV-specific, amplicon-based Nanopore sequencing. Based on the phylogenetic analysis, all five viral sequences were grouped to the Europe/South America 1 lineage and the distribution of one sequence among trees indicated recombination of the Hemagglutinin gene. We verified the recombination with SimPlot analysis. CONCLUSIONS: This paper provides the first CDV genome sequences from Steppe polecats and additional complete genomes from European polecats and stone martens. The infected specimens of various species originated from distinct parts of the country over a long time, indicating a wide circulation of CDV among mustelids throughout Hungary. Considering the high virulence of CDV and the presence of the virus in these animals, we highlight the importance of conservation efforts for wild mustelids. In addition, we emphasize the importance of full genomic data acquisition and analysis to better understand the evolution of the virus. Since CDV is prone to recombination, specific genomic segment analyses may provide less representative evolutionary traits than using complete genome sequences.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Mustelidae , Animais , Cães , Vírus da Cinomose Canina/genética , Animais Selvagens , Furões , Filogenia , Análise de Sequência/veterinária
18.
J Acupunct Meridian Stud ; 15(4): 238-246, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36521772

RESUMO

Background: Acupuncture (AP) has been empirically used to relieve post-canine distemper virus (CDV) infection neurological signs in veterinary clinics. Objectives: This clinical study aimed to investigate the effects of AP combined with electroacupuncture (EA) on neurological function in dogs infected by CDV. Methods: Twenty-four CDV-infected dogs with neurological sequelae were recruited to receive weekly AP/EA sections for 24 weeks. Neurological improvements were assessed before each AP/EA session using a modified scoring system. Data were analyzed using the McNemar test, Friedman test, Fisher's exact test, and Kaplan-Meier curves (p < 0.05). Results: Neurological scores improved from seven to 24 weeks after AP/EA treatment compared with pretreatment scores (p < 0.001). Significant improvements were recorded over time for functional limb recovery, cranial nerve deficits, mental status (p = 0.025 - 0.014), and urinary function (p < 0.001). Myoclonus was improved and entirely reversed in 75% and 25% of the dogs, respectively. At the end of treatment, the proportion of dogs with normal proprioception, posture, hopping (p < 0.001), and superficial pain sensation responses (p = 0.004) was greater than pretreatment values. Conclusion: AP/EA therapy promoted significant neurological recovery in CDV-infected dogs and may be considered within the chronic phase of the disease to improve motor and sensory rehabilitation. However, these results are preliminary and must be confirmed by further investigations.


Assuntos
Terapia por Acupuntura , Vírus da Cinomose Canina , Cinomose , Cães , Animais , Cinomose/terapia , Cinomose/diagnóstico , Terapia por Acupuntura/veterinária
19.
Viruses ; 14(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36366427

RESUMO

Canine distemper is caused by canine distemper virus (CDV), a multisystemic infectious disease with a high morbidity and mortality rate in dogs. Nanotechnology represents a development opportunity for new molecules with antiviral effects that may become effective treatments in veterinary medicine. This study evaluated the efficacy and safety of silver nanoparticles (AgNPs) in 207 CDV, naturally infected, mixed-breed dogs exhibiting clinical signs of the non-neurological and neurological phases of the disease. Group 1a included 52 dogs (experimental group) diagnosed with non-neurologic distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 1b included 46 dogs (control group) diagnosed with non-neurological distemper treated with supportive therapy only. Group 2a included 58 dogs with clinical signs of neurological distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 2b included 51 dogs (control group) diagnosed with clinical signs of neurological distemper treated with supportive therapy only. Efficacy was measured by the difference in survival rates: in Group 1a, the survival rate was 44/52 (84.6%), versus 7/46 in Group 1b (15.2%), while both showed clinical signs of non-neurological distemper. The survival rate of dogs with clinical signs of neurological distemper in Group 2a (38/58; 65.6%) was significantly higher than those in Control Group 2b (0/51; 0%). No adverse reactions were detected in experimental groups treated with AgNPs. AgNPs significantly improved survival in dogs with clinical signs of neurological and non-neurological distemper. The use of AgNPs in the treatment of neurological distemper led to a drastic increase in the proportion of dogs recovered without sequels compared to dogs treated without AgNPs. The evidence demonstrates that AgNP therapy can be considered as a targeted treatment in dogs severely affected by canine distemper virus.


Assuntos
Vírus da Cinomose Canina , Cinomose , Nanopartículas Metálicas , Cães , Animais , Prata/uso terapêutico , Nanopartículas Metálicas/uso terapêutico
20.
Front Cell Infect Microbiol ; 12: 1006273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211954

RESUMO

Canine distemper virus (CDV) is classified into the genus Morbillivirus in the family Paramyxoviridae. This virus has a single-stranded genomic RNA with negative polarity. The wild-type CDV genome is generally composed of 15 690 nucleotides. We previously rescued an enhanced green fluorescence protein (eGFP)-tagged recombinant CDV (rCDV-eGFP) using reverse genetics. In this study, the rCDV-eGFP at passage-7 was subjected to 38 serial plaque-to-plaque transfers (or bottleneck passages) and two extra common passages in cells. In theory, the effect of Muller's ratchet may fix deleterious mutations in a single viral population after consecutive plaque-to-plaque transfers. In order to uncover a mutated landscape of the rCDV-eGFP under the circumstances of bottleneck passages, the passage-47 progeny was collected for the in-depth analysis via next-generation sequencing. The result revealed a total of nine single-nucleotide mutations (SNMs) in the viral antigenome. Out of them, SNMs at nt 1832, 5022, 5536, 5580, 5746, 6913 and 8803 were identified as total single-nucleotide substitution, i.e., 100% of mutation frequency. The result suggested no notable formation of viral quasispecies in the rCDV-eGFP population after consecutive plaque-to-plaque transfers.


Assuntos
Vírus da Cinomose Canina , Animais , Vírus da Cinomose Canina/genética , Genômica , Nucleotídeos , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...