Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.006
Filtrar
1.
Viruses ; 14(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35746625

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. In Korea, Fostera PRRS commercial modified live virus (MLV) vaccines have been used since 2014 to control the PRRSV infection. In this study, two PRRSV-2 strains (20D160-1 and 21R2-63-1) were successfully isolated, and their complete genomic sequences were determined. Genetic analysis showed that the two isolates have recombination events between the P129-like strain derived from the Fostera PRRS MLV vaccine and the strain of lineage 1. The 20D160-1 indicated that partial ORF2 to partial ORF4 of the minor parental KNU-1902-like strain, which belongs to Korean lineage C (Kor C) of lineage 1, was inserted into the major parental P129-like strain. The 21R2-63-1 revealed that partial ORF1b of the P129-like strain was inserted into the backbone of the NADC30-like strain. This study is the first to report natural recombinant strains between Fostera PRRS MLV-like strain and the field strain in Korea. These results may have significant implications for MLV evolution and the understanding of PRRSV genetic diversity, while highlighting the need for continuous surveillance of PRRSV.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Vírus não Classificados , Animais , Vírus de DNA , Filogenia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Suínos , Vacinas Atenuadas , Vacinas Virais/genética
2.
Viruses ; 14(6)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35746646

RESUMO

Knowledge of how congenital Zika syndrome (CZS) impacts motor development of children longitudinally is important to guide management. The objective of the present study was to describe the evolution of gross motor function in children with CZS in a Rio de Janeiro hospital. In children with CZS without arthrogryposis or other congenital osteoarticular malformations who were followed in a prospective cohort study, motor performance was evaluated at two timepoints using the Gross Motor Function Classification System (GMFCS) and the Gross Motor Function Measurement test (GMFM-88). Among 74 children, at the baseline evaluation, the median age was 13 (8-24) months, and on follow-up, 28 (24-48) months. According to GMFCS at the second timepoint, 6 children were classified as mild, 11 as moderate, and 57 as severe. In the GMFM-88 assessment, children in the severe group had a median score of 10.05 in the baseline evaluation and a follow-up score of 12.40, the moderate group had median scores of 25.60 and 29.60, and the mild group had median scores of 82.60 and 91.00, respectively. Although a small developmental improvement was observed, the motor impairment of children was mainly consistent with severe cerebral palsy. Baseline motor function assessments were predictive of prognosis.


Assuntos
Vírus não Classificados , Infecção por Zika virus , Zika virus , Adolescente , Brasil/epidemiologia , Criança , Estudos de Coortes , Vírus de DNA , Seguimentos , Humanos , Lactente , Estudos Prospectivos , Infecção por Zika virus/congênito
3.
Viruses ; 14(6)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35746655

RESUMO

Bunyaviruses cause diseases in vertebrates, arthropods, and plants. Here, we used high-throughput RNA-seq to identify a bunya-like virus in rice plants showing the dwarfing symptom, which was tentatively named rice dwarf-associated bunya-like virus (RDaBV). The RDaBV genome consists of L, M, and S segments. The L segment has 6562 nt, and encodes an RdRp with a conserved Bunya_RdRp super family domain. The M segment has 1667 nt and encodes a nonstructural protein (NS). The complementary strand of the 1120 nt S segment encodes a nucleocapsid protein (N), while its viral strand encodes a small nonstructural protein (NSs). The amino acid (aa) sequence identities of RdRp, NS, and N between RDaBV and viruses from the family Discoviridae were the highest. Surprisingly, the RDaBV NSs protein did not match any viral proteins. Phylogenetic analysis based on RdRp indicated that RDaBV is evolutionarily close to viruses in the family Discoviridae. The PVX-expressed system indicated that RDaBV N and NS may be symptom determinants of RDaBV. Our movement complementation and callose staining experiment results confirmed that RDaBV NSs is a viral movement protein in plants, while an agro-infiltration experiment found that RDaBV NS is an RNA silencing suppressor. Thus, we determined that RDaBV is a novel rice-infecting bunya-like virus.


Assuntos
Bunyaviridae , Oryza , Vírus não Classificados , Animais , Bunyaviridae/genética , Vírus de DNA/genética , Genoma Viral , Genômica , Oryza/genética , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA , Reoviridae , Proteínas Virais/química , Proteínas Virais/genética , Vírus não Classificados/genética
4.
Viruses ; 14(6)2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35746749

RESUMO

Ecological and experimental infection studies have identified Egyptian rousette bats (ERBs; Rousettus aegyptiacus: family Pteropodidae) as a reservoir host for the zoonotic rubula-like paramyxovirus Sosuga virus (SOSV). A serial sacrifice study of colony-bred ERBs inoculated with wild-type, recombinant SOSV identified small intestines and salivary gland as major sites of viral replication. In the current study, archived formalin-fixed paraffin-embedded (FFPE) tissues from the serial sacrifice study were analyzed in depth-histologically and immunohistochemically, for SOSV, mononuclear phagocytes and T cells. Histopathologic lesion scores increased over time and viral antigen persisted in a subset of tissues, indicating ongoing host responses and underscoring the possibility of chronic infection. Despite the presence of SOSV NP antigen and villus ulcerations in the small intestines, there were only mild increases in mononuclear phagocytes and T cells, a host response aligned with disease tolerance. In contrast, there was a statistically significant, robust and targeted mononuclear phagocyte cell responses in the salivary glands at 21 DPI, where viral antigen was sparse. These findings may have broader implications for chiropteran-paramyxovirus interactions, as bats are hypothesized to be the ancestral hosts of this diverse virus family and for ERB immunology in general, as this species is also the reservoir host for the marburgviruses Marburg virus (MARV) and Ravn virus (RAVV) (family Filoviridae).


Assuntos
Quirópteros , Marburgvirus , Paramyxovirinae , Vírus não Classificados , Animais , Antígenos Virais , Vírus de DNA , Marburgvirus/fisiologia , Tropismo
5.
Viruses ; 14(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746792

RESUMO

Alfalfa is an important perennial forage crop in Idaho supporting dairy and cattle industries that is typically grown in the same field for as many as 4 years. Alfalfa stands of different ages were subjected to screening for viruses using high-throughput sequencing and RT-PCR. The two most common viruses found were alfalfa mosaic virus and bean leafroll virus, along with Medicago sativa amalgavirus, two alphapartitiviruses, and one deltapartitivirus. Additionally, a new flavi-like virus with an unusual genome organization was discovered, dubbed Snake River alfalfa virus (SRAV). The 11,745 nt, positive-sense (+) RNA genome of SRAV encodes a single 3835 aa polyprotein with only two identifiable conserved domains, an RNA-dependent RNA polymerase (RdRP) and a predicted serine protease. Notably, unlike all +RNA virus genomes in the similar size range, the SRAV polyprotein contained no predicted helicase domain. In the RdRP phylogeny, SRAV was placed inside the flavi-like lineage as a sister clade to a branch consisting of hepaci-, and pegiviruses. To the best of our knowledge, SRAV is the first flavi-like virus identified in a plant host. Although commonly detected in alfalfa crops in southern Idaho, SRAV sequences were also amplified from thrips feeding in alfalfa stands in the area, suggesting a possible role of Frankliniella occidentalis in virus transmission.


Assuntos
Vírus de RNA , Vírus não Classificados , Animais , Bovinos , Produtos Agrícolas/genética , Vírus de DNA/genética , Medicago sativa , Poliproteínas , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA , Rios , Vírus não Classificados/genética
6.
Virus Res ; 317: 198817, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598773

RESUMO

A novel dsRNA mycovirus was found in Fusarium solani (F. solani) strain NW-FVA 2572. The fungus was originally isolated from a root, associated with stem collar necrosis of Fraxinus excelsior L. The viral genome is composed of four segments, which range from around 3.5 kbp to 1.7 kbp (RNA 1: 3522 bp; RNA 2: 2633 bp; RNA 3: 2403 bp; RNA 4: 1721 bp). The segments share a conserved and capped 5'-terminus and their 3'-termini are polyadenylated. Protein sequencing showed that the viral RdRP is encoded on segment 1. The virus clusters together with Aspergillus mycovirus 341 (AsV341), Aspergillus heteromorphus alternavirus 1 (AheAV1), Aspergillus foetidus virus-fast (AfV-F) and Cordyceps chanhua alternavirus 1 (CcAV1). As highest value, the RdRP showed 61.50% identical amino acids with P1 of the AfV-F. The capsid protein is encoded on segment 3, the proteins encoded on RNA 2 and RNA 4 are of unknown function. Segment 4 harbors large UTRs (186 nts at the 5'-terminus and 311 nts at the 3'-terminus). Based on its genome organization and phylogenetic position, the virus is suggested to be a new member of the proposed family Alternaviridae and was therefore named Fusarium solani alternavirus 1 (FsAV1). This is the first report of an Alternavirus infecting a fungus of the F. solani species complex (FSSC).


Assuntos
Micovírus , Fusarium , Vírus de RNA , Vírus não Classificados , Fusarium/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA , Vírus não Classificados/genética
7.
Viruses ; 14(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632605

RESUMO

As rivals over the long history of co-evolution, viruses and host plants have each developed specialized strategies and machineries to cope with the rivalry [...].


Assuntos
Vírus de Plantas , Vírus não Classificados , Vírus de DNA , Doenças das Plantas , Vírus de Plantas/genética , Plantas
9.
Viruses ; 14(5)2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632620

RESUMO

African swine fever (ASF) is causing a pandemic affecting swine in a large geographical area of the Eastern Hemisphere, from Central Europe to East and Southeast Asia, and recently in the Americas, the Dominican Republic and Haiti. The etiological agent, ASF virus (ASFV), infects both domestic and wild swine and produces a variety of clinical presentations depending on the virus strain and the genetics of the pigs infected. No commercial vaccines are currently available, although experimental recombinant live attenuated vaccine candidates have been shown to be efficacious in protecting animals against disease when challenged with homologous virulent strains. This review attempts to systematically provide an overview of all the live attenuated strains that have been shown to be experimental vaccine candidates. Moreover, it aims to analyze the development of these vaccine candidates, obtained by deleting specific genes or group of genes, and their efficacy in preventing virus infection and clinical disease after being challenged with virulent isolates. This report summarizes all the experimental vaccine strains that have shown promise against the contemporary pandemic strain of African swine fever.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Vírus não Classificados , Vírus da Febre Suína Africana/genética , Animais , Suínos , Vacinas Atenuadas/genética , Vacinas Sintéticas/genética , Vacinas Virais/genética
10.
Viruses ; 14(5)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35632646

RESUMO

A novel phlebovirus, Punique virus (PUNV), was discovered and isolated in 2008 from sandflies from Northern Tunisia. PUNV is now classified as a unique member of the Punique phlebovirus species within the Phlebovirus genus in the Phenuiviridae family (order bunyavirales). In this study, we aimed to investigate the transmission dynamics of PUNV in Tunisia. Sandflies were collected during two consecutive years, 2009 and 2010, by CDC light traps. In 2009, a total of 873 sandflies were collected and identified to the species level. Phlebotomus perniciosus was the most abundant species. One pool of P. perniciosus females collected in autumn contained PUNV RNA, yielding an infection rate of 0.11%. The population densities of circulating sandfly species were assessed during May-November 2010 in Northern Tunisia by using sticky traps. Phlebotomus (Larroussius) perniciosus (71.74%) was the most abundant species, followed by Phlebotumus (Larroussius) longicuspis (17.47%), and Phlebotumus (Larroussius) perfiliewi (8.82%). The densities of dominant sandfly species were found to peak in early spring and again in the autumn. In 2010, species identification was not performed, and sandflies were only discriminated on the basis of sex and collection date. Out of 249 pools, three contained PUNV RNA. Each positive pool allowed virus isolation. The three pools of female sandflies containing PUNV RNA were collected in autumn with an infection rate of 0.05%. These findings provide further evidence that P. perniciosus is the main vector of PUNV in Tunisia, and this phlebovirus is endemic in Tunisia. Our findings provided strong evidence of intensive circulation of PUNV in sandflies and hosts through a viral infection buildup process between sandfly vectors and hosts starting at the beginning of the activity of sandflies in spring to reach a maximum during the second main peak in autumn.


Assuntos
Phlebotomus , Phlebovirus , Psychodidae , Vírus não Classificados , Animais , Vírus de DNA/genética , Feminino , Phlebotomus/genética , Phlebovirus/genética , RNA Viral/genética , Tunísia/epidemiologia , Vírus não Classificados/genética
11.
Viruses ; 14(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35632651

RESUMO

The highly virulent Newcastle disease virus (NDV) isolates typically result in severe systemic pathological changes and high mortality in Newcastle disease (ND) illness, whereas avirulent or low-virulence NDV strains can cause subclinical disease with no morbidity and even asymptomatic infections in birds. However, understanding the host's innate immune responses to infection with either a highly virulent strain or an avirulent strain, and how this response may contribute to severe pathological damages and even mortality upon infection with the highly virulent strain, remain limited. Therefore, the differences in epigenetic and pathogenesis mechanisms between the highly virulent and avirulent strains were explored, by transcriptional profiling of chicken embryonic visceral tissues (CEVT), infected with either the highly virulent NA-1 strain or the avirulent vaccine LaSota strain using RNA-seq. In our current paper, severe systemic pathological changes and high mortality were only observed in chicken embryos infected with the highly virulent NA-1 strains, although the propagation of viruses exhibited no differences between NA-1 and LaSota. Furthermore, virulent NA-1 infection caused intense innate immune responses and severe metabolic disorders in chicken EVT at 36 h post-infection (hpi), instead of 24 hpi, based on the bioinformatics analysis results for the differentially expressed genes (DEGs) between NA-1 and LaSota groups. Notably, an acute hyperinflammatory response, characterized by upregulated inflammatory cytokines, an uncontrolled host immune defense with dysregulated innate immune response-related signaling pathways, as well as severe metabolic disorders with the reorganization of host-cell metabolism were involved in the host defense response to the CEVT infected with the highly virulent NA-1 strain compared to the avirulent vaccine LaSota strain. Taken together, these results indicate that not only the host's uncontrolled immune response itself, but also the metabolic disorders with viruses hijacking host cell metabolism, may contribute to the pathogenesis of the highly virulent strain in ovo.


Assuntos
Doenças Metabólicas , Vírus não Classificados , Animais , Embrião de Galinha , Galinhas , Biologia Computacional , Vírus de DNA , Imunidade Inata , Vírus da Doença de Newcastle/genética
12.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632662

RESUMO

Metagenomic approaches used for virus diagnostics allow for rapid and accurate detection of all viral pathogens in the plants. In order to investigate the occurrence of viruses and virus-like organisms infecting grapevine from the Ampelographic collection Kromberk in Slovenia, we used Ion Torrent small RNA sequencing (sRNA-seq) and the VirusDetect pipeline to analyze the sRNA-seq data. The used method revealed the presence of: Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine leafroll-associated virus 2 (GLRaV-2), Grapevine leafroll-associated virus 3 (GLRaV-3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine fanleaf virus (GFLV) and its satellite RNA (satGFLV), Grapevine fleck virus (GFkV), Grapevine rupestris vein feathering virus (GRVFV), Grapevine Pinot gris virus (GPGV), Grapevine satellite virus (GV-Sat), Hop stunt viroid (HSVd), and Grapevine yellow speckle viroid 1 (GYSVd-1). Multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for validation of sRNA-seq predicted infections, including various combinations of viruses or viroids and satellite RNA. mRT-PCR could further be used for rapid and cost-effective routine molecular diagnosis, including widespread, emerging, and seemingly rare viruses, as well as viroids which testing is usually overlooked.


Assuntos
Pequeno RNA não Traduzido , Viroides , Vírus não Classificados , Vitis , Vírus de DNA/genética , Doenças das Plantas , RNA Satélite/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Viroides/genética , Vírus não Classificados/genética
13.
Viruses ; 14(5)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35632687

RESUMO

Largemouth bass virus (LMBV) is a major viral pathogen in largemouth bass culture, usually causing high mortality and heavy economic losses. Accurate and early detection of LMBV is crucial for diagnosis and control of the diseases caused by LMBV. Previously, we selected the specific aptamers, LA38 and LA13, targeting LMBV by systematic evolution of ligands by exponential enrichment (SELEX). In this study, we further generated truncated LA38 and LA13 (named as LA38s and LA13s) with high specificity and affinities and developed an aptamer-based sandwich enzyme-linked apta-sorbent assay (ELASA) for LMBV diagnosis. The sandwich ELASA showed high specificity and sensitivity for the LMBV detection, without cross reaction with other viruses. The detection limit of the ELASA was as low as 1.25 × 102 LMBV-infected cells, and the incubation time of the lysate and biotin labeled aptamer was as short as 10 min. The ELASA could still detect LMBV infection in spleen lysates at dilutions of 1/25, with good consistency of qRT-PCR. For the fish samples collected from the field, the sensitivity of ELASA was 13.3% less than PCR, but the ELASA was much more convenient and less time consuming. The procedure of ELASA mainly requires washing and incubation, with completion in approximately 4 h. The sandwich ELASA offers a useful tool to rapidly detect LMBV rapidly, contributing to control and prevention of LMBV infection.


Assuntos
Bass , Doenças dos Peixes , Vírus não Classificados , Animais , Vírus de DNA , Doenças dos Peixes/diagnóstico
14.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632715

RESUMO

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Assuntos
COVID-19 , Vírus não Classificados , Vírus , Biologia Computacional , Vírus de DNA , Humanos , SARS-CoV-2
15.
Virus Res ; 316: 198801, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550390

RESUMO

NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV), which is highly homologous to the NADC30 strain isolated in the United States. The NADC30-like PRRSV was first reported in 2014 in China, where it spread and gradually caused an epidemic. Currently, growing research has shown that NADC30-like strains have greater propensity to recombine with other PRRSV strains, particularly the PPRSV vaccine virus used clinically, making the prevention and control of PRRSV highly complex. To carry out an in-depth molecular biology and virulence analysis, a full-length infectious clone of the NADC30-like strain was successfully constructed and rescued by reverse genetic manipulation. The rescued virus, rZJqz, was indistinguishable from its parental virus, ZJqz21, based on virological characteristics. Further animal experiments demonstrated that rZJqz retained similar pathogenicity and induced the typical clinical symptoms and viral shedding observed in the ZJqz21 challenge model. Together, these results provide a useful tool for further study of the biological characteristics and pathogenicity of NADC30-like strains. Moreover, these findings also provide a solid foundation for studying the recombination of different PRRSVs and developing new and effective universal vaccines in the future.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus não Classificados , Animais , China/epidemiologia , Vírus de DNA , Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Genética Reversa , Suínos , Virulência
16.
Lancet Microbe ; 3(1): e32-e40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544114

RESUMO

BACKGROUND: There is anecdotal evidence for Lassa virus persistence in body fluids. We aimed to investigate various body fluids after recovery from acute Lassa fever, describe the dynamics of Lassa virus RNA load in seminal fluid, and assess the infectivity of seminal fluid. METHODS: In this prospective, longitudinal, cohort study we collected plasma, urine, saliva, lacrimal fluid, vaginal fluid, and seminal fluid from Lassa fever survivors from Irrua Specialist Teaching Hospital in Edo State, Nigeria. Inclusion criteria for participants were RT-PCR-confirmed Lassa fever diagnosis and age 18 years or older. Samples were taken at discharge from hospital (month 0) and at months 0·5, 1, 3, 6, 9, 12, 18, and 24 after discharge. The primary objective of this study was to quantitatively describe virus persistence and clearance and assess the infectivity of seminal fluid. Lassa virus RNA was detected using real-time RT-PCR. Infectivity was tested in cell culture and immunosuppressed mice. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS: Between Jan 31, 2018, and Dec 11, 2019, 165 participants were enrolled in the study, of whom 159 were eligible for analysis (49 women and 110 men). Low amounts of Lassa virus RNA were detected at month 0 in plasma (49 [45%] of 110 participants), urine (37 [34%]), saliva (five [5%]), lacrimal fluid (ten [9%]), and vaginal fluid (seven [21%] of 33 female participants). Virus RNA was cleared from these body fluids by month 3. However, 35 (80%) of 44 male participants had viral RNA in seminal fluid at month 0 with a median cycle threshold of 26·5. Lassa virus RNA remained detectable up to month 12 in seminal fluid. Biostatistical modelling estimated a clearance rate of 1·19 log10 viral RNA copies per month and predicted that 50% of male survivors remain Lassa virus RNA-positive in seminal fluid for 83 days after hospital discharge and 10% remain positive in seminal fluid for 193 days after discharge. Viral RNA persistence in seminal fluid for 3 months or more was associated with higher viraemia (p=0·006), more severe disease (p=0·0075), and longer hospitalisation during the acute phase of Lassa fever (p=0·0014). Infectious virus was isolated from 48 (52%) of 93 virus RNA-positive seminal fluid samples collected between month 0 and 12. INTERPRETATION: Lassa virus RNA is shed in various body fluids after recovery from acute disease. The persistence of infectious virus in seminal fluid implies a risk of sexual transmission of Lassa fever. FUNDING: German Federal Ministry of Health, German Research Foundation, Leibniz Association.


Assuntos
Febre Lassa , Vírus não Classificados , Animais , Estudos de Coortes , Vírus de DNA/genética , Feminino , Humanos , Febre Lassa/diagnóstico , Estudos Longitudinais , Masculino , Camundongos , Nigéria/epidemiologia , Estudos Prospectivos , RNA Viral/genética , Vírus não Classificados/genética
17.
Viruses ; 14(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35632742

RESUMO

Recurrent respiratory papillomatosis (RRP), caused by laryngeal infection with low-risk human papillomaviruses, has devastating effects on vocal communication and quality of life. Factors in RRP onset, other than viral presence in the airway, are poorly understood. RRP research has been stalled by limited preclinical models. The only known papillomavirus able to infect laboratory mice, Mus musculus papillomavirus (MmuPV1), induces disease in a variety of tissues. We hypothesized that MmuPV1 could infect the larynx as a foundation for a preclinical model of RRP. We further hypothesized that epithelial injury would enhance the ability of MmuPV1 to cause laryngeal disease, because injury is a potential factor in RRP and promotes MmuPV1 infection in other tissues. In this report, we infected larynges of NOD scid gamma mice with MmuPV1 with and without vocal fold abrasion and measured infection and disease pathogenesis over 12 weeks. Laryngeal disease incidence and severity increased earlier in mice that underwent injury in addition to infection. However, laryngeal disease emerged in all infected mice by week 12, with or without injury. Secondary laryngeal infections and disease arose in nude mice after MmuPV1 skin infections, confirming that experimentally induced injury is dispensable for laryngeal MmuPV1 infection and disease in immunocompromised mice. Unlike RRP, lesions were relatively flat dysplasias and they could progress to cancer. Similar to RRP, MmuPV1 transcript was detected in all laryngeal disease and in clinically normal larynges. MmuPV1 capsid protein was largely absent from the larynx, but productive infection arose in a case of squamous metaplasia at the level of the cricoid cartilage. Similar to RRP, disease spread beyond the larynx to the trachea and bronchi. This first report of laryngeal MmuPV1 infection provides a foundation for a preclinical model of RRP.


Assuntos
Doenças da Laringe , Laringe , Vírus não Classificados , Animais , Camundongos , Camundongos Nus , Camundongos SCID , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus , Qualidade de Vida , Infecções Respiratórias
18.
Viruses ; 14(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632782

RESUMO

Jingmen tick virus (JMTV) is an arbovirus with a multisegmented genome related to those of unsegmented flaviviruses. The virus first described in Rhipicephalus microplus ticks collected in Jingmen city (Hubei Province, China) in 2010 is associated with febrile illness in humans. Since then, the geographic range has expanded to include Trinidad and Tobago, Brazil, and Uganda. However, the ecology of JMTV remains poorly described in Africa. We screened adult ticks (n = 4550, 718 pools) for JMTV infection by reverse transcription polymerase chain reaction (RT-PCR). Ticks were collected from cattle (n = 859, 18.88%), goats (n = 2070, 45.49%), sheep (n = 1574, 34.59%), and free-ranging tortoises (Leopard tortoise, Stigmochelys pardalis) (n = 47, 1.03%) in two Kenyan pastoralist-dominated areas (Baringo and Kajiado counties) with a history of undiagnosed febrile human illness. Surprisingly, ticks collected from goats (0.3%, 95% confidence interval (CI) 0.1-0.5), sheep (1.8%, 95% CI 1.2-2.5), and tortoise (74.5%, 95% CI 60.9-85.4, were found infected with JMTV, but ticks collected from cattle were all negative. JMTV ribonucleic acid (RNA) was also detected in blood from tortoises (66.7%, 95% CI 16.1-97.7). Intragenetic distance of JMTV sequences originating from tortoise-associated ticks was greater than that of sheep-associated ticks. Phylogenetic analyses of seven complete-coding genome sequences generated from tortoise-associated ticks formed a monophyletic clade within JMTV strains from other countries. In summary, our findings confirm the circulation of JMTV in ticks in Kenya. Further epidemiological surveys are needed to assess the potential public health impact of JMTV in Kenya.


Assuntos
Rhipicephalus , Vírus não Classificados , Animais , Bovinos , Vírus de DNA , Quênia/epidemiologia , Filogenia , Ovinos
19.
Viruses ; 14(5)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632798

RESUMO

Laryngeal infection with low-risk human papillomaviruses can cause recurrent respiratory papillomatosis (RRP), a disease with severe effects on vocal fold epithelium resulting in impaired voice function and communication. RRP research has been stymied by limited preclinical models. We recently reported a murine model of laryngeal MmuPV1 infection and disease in immunodeficient mice. In the current study, we compare quantitative and qualitative measures of epithelial proliferation, apoptosis, differentiation, and barrier between mice with MmuPV1-induced disease of the larynx and surrounding tissues and equal numbers of uninfected controls. Findings supported our hypothesis that laryngeal MmuPV1 infection recapitulates many features of RRP. Like RRP, MmuPV1 increased proliferation in infected vocal fold epithelium, expanded the basal compartment of cells, decreased differentiated cells, and altered cell-cell junctions and basement membrane. Effects of MmuPV1 on apoptosis were equivocal, as with RRP. Barrier markers resembled human neoplastic disease in severe MmuPV1-induced disease. We conclude that MmuPV1 infection of the mouse larynx provides a useful, if imperfect, preclinical model for RRP that will facilitate further study and treatment development for this intractable and devastating disease.


Assuntos
Infecções por Papillomavirus , Vírus não Classificados , Animais , Epitélio , Camundongos , Papillomaviridae , Infecções Respiratórias , Prega Vocal
20.
Viruses ; 14(5)2022 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632853

RESUMO

African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus não Classificados , Vírus da Febre Suína Africana/fisiologia , Animais , Georgia , Histonas , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...