Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.441
Filtrar
1.
Nat Commun ; 15(1): 6630, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103337

RESUMO

Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , NADP , Peroxissomos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/genética , Peroxissomos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Glicosilação , Ácido Abscísico/metabolismo , NADP/metabolismo , Peróxido de Hidrogênio/metabolismo , Retículo Endoplasmático/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Complexo de Golgi/metabolismo , Via de Pentose Fosfato , Reguladores de Crescimento de Plantas/metabolismo
2.
J Agric Food Chem ; 72(33): 18552-18560, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39129495

RESUMO

Developing microorganisms with a high ribonucleic acid (RNA) content is crucial for the RNA industry. Numerous studies have been conducted to enhance RNA production in yeast cells through genetic engineering, yet precise mechanisms remain elusive. Previously, upregulation of TAL1 or PGM2 and deleting PRS5 or DBP8 individually could increase the RNA content in Saccharomyces pastorianus. In this study, within these genetically modified strains, the intracellular nucleotide levels notably increased following cell fragmentation. Deletion of PRS5 and DBP8 within the strain prompted the upregulation of genes sharing similar functions, consequently augmenting the flow of the gene pathway. Furthermore, the upregulation of genes encoding cell-cycle-dependent protein kinases (CDK) was observed in the G03-△PRS5 strain. The influence of TAL1 and PGM2 on RNA content was attributed to the pentose phosphate pathway (PPP). The RNA content of polygenic recombinant strains, G03-△PRS5+△DBP8 and G03-△PRS5+△DBP8+PGM2, displayed the most significant improvement, increasing by 71.8 and 80.1% when compared to the parental strain. Additionally, the maximum specific growth rate of cells increased in these strains. This study contributes valuable insights into the genetic mechanisms underlying high nucleic acid synthesis in S. pastorianus.


Assuntos
Saccharomyces , Saccharomyces/genética , Saccharomyces/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA/genética , RNA/metabolismo , Engenharia Genética , Via de Pentose Fosfato/genética , Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 15(1): 5857, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997257

RESUMO

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.


Assuntos
Glucosefosfato Desidrogenase , Homeostase , Neoplasias Pulmonares , NADP , Oxirredução , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras) , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NADP/metabolismo , Camundongos , Humanos , Linhagem Celular Tumoral , Lipogênese/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Quinases Proteína-Quinases Ativadas por AMP/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Via de Pentose Fosfato/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Camundongos Knockout , Feminino , Mutação
4.
J Biol Chem ; 300(8): 107524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960035

RESUMO

Previous studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain. In the absence of XOR, hypoxanthine will be preserved and available for incorporation into the purine salvage pathway. To clarify the importance of salvage in the brain, we tested using human-induced pluripotent stem cell-derived neuronal cells. Stable isotope analyses showed that the purine salvage pathway was more effective for ATP synthesis than purine de novo synthesis. Blood uric acid levels were related to the intracellular adenylate pool (ATP + ADP + AMP), and reduced levels of this pool result in lower uric acid levels. XOR inhibitors are related to extracellular hypoxanthine levels available for uptake into the purine salvage pathway by inhibiting the oxidation of hypoxanthine to xanthine and uric acid in various organs where XOR is present and can prevent further decreases in the intracellular adenylate pool under stress. Furthermore, adding precursors of the pentose phosphate pathway enhanced hypoxanthine uptake, indicating that purine salvage is activated by phosphoribosyl pyrophosphate replenishment. These findings resolve previous contradictions regarding XOR products and provide new insights into clinical studies. It is suggested that therapeutic strategies maximizing maintenance of intracellular adenylate levels may effectively treat pathological conditions associated with ischemia and energy depletion.


Assuntos
Encéfalo , Purinas , Ácido Úrico , Xantina Desidrogenase , Humanos , Purinas/metabolismo , Encéfalo/metabolismo , Xantina Desidrogenase/metabolismo , Ácido Úrico/metabolismo , Hipoxantina/metabolismo , Masculino , Neurônios/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Via de Pentose Fosfato , Pessoa de Meia-Idade , Trifosfato de Adenosina/metabolismo , Idoso , Adulto
5.
Cell Death Dis ; 15(7): 541, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080260

RESUMO

Esophageal squamous cell carcinoma (ESCC) possesses a poor prognosis and treatment outcome. Dysregulated metabolism contributes to unrestricted growth of multiple cancers. However, abnormal metabolism, such as highly activated pentose phosphate pathway (PPP) in the progression of ESCC remains largely unknown. Herein, we report that high-mobility group AT-hook 1 (HMGA1), a structural transcriptional factor involved in chromatin remodeling, promoted the development of ESCC by upregulating the PPP. We found that HMGA1 was highly expressed in ESCC. Elevated HMGA1 promoted the malignant phenotype of ESCC cells. Conditional knockout of HMGA1 markedly reduced 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumorigenesis in mice. Through the metabolomic analysis and the validation assay, we found that HMGA1 upregulated the non-oxidative PPP. With the transcriptome sequencing, we identified that HMGA1 upregulated the expression of transketolase (TKT), which catalyzes the reversible reaction in non-oxidative PPP to exchange metabolites with glycolytic pathway. HMGA1 knockdown suppressed the PPP by downregulating TKT, resulting in the reduction of nucleotides in ESCC cells. Overexpression of HMGA1 upregulated PPP and promoted the survival of ESCC cells by activating TKT. We further characterized that HMGA1 promoted the transcription of TKT by interacting with and enhancing the binding of transcription factor SP1 to the promoter of TKT. Therapeutics targeting TKT with an inhibitor, oxythiamine, reduced HMGA1-induced ESCC cell proliferation and tumor growth. Together, in this study, we identified a new role of HMGA1 in ESCCs by upregulating TKT-mediated activation of PPP. Our results provided a new insight into the role of HMGA1/TKT/PPP in ESCC tumorigenesis and targeted therapy.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Via de Pentose Fosfato , Transcetolase , Regulação para Cima , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Transcetolase/metabolismo , Transcetolase/genética , Regulação para Cima/genética
6.
Photosynth Res ; 161(3): 177-189, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38874662

RESUMO

Balancing the ATP: NADPH demand from plant metabolism with supply from photosynthesis is essential for preventing photodamage and operating efficiently, so understanding its drivers is important for integrating metabolism with the light reactions of photosynthesis and for bioengineering efforts that may radically change this demand. It is often assumed that the C3 cycle and photorespiration consume the largest amount of ATP and reductant in illuminated leaves and as a result mostly determine the ATP: NADPH demand. However, the quantitative extent to which other energy consuming metabolic processes contribute in large ways to overall ATP: NADPH demand remains unknown. Here, we used the metabolic flux networks of numerous recently published isotopically non-stationary metabolic flux analyses (INST-MFA) to evaluate flux through the C3 cycle, photorespiration, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and starch/sucrose synthesis and characterize broad trends in the demand of energy across different pathways and compartments as well as in the overall ATP:NADPH demand. These data sets include a variety of species including Arabidopsis thaliana, Nicotiana tabacum, and Camelina sativa as well as varying environmental factors including high/low light, day length, and photorespiratory levels. Examining these datasets in aggregate reveals that ultimately the bulk of the energy flux occurred in the C3 cycle and photorespiration, however, the energy demand from these pathways did not determine the ATP: NADPH demand alone. Instead, a notable contribution was revealed from starch and sucrose synthesis which might counterbalance photorespiratory demand and result in fewer adjustments in mechanisms which balance the ATP deficit.


Assuntos
Trifosfato de Adenosina , Arabidopsis , Luz , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , NADP , NADP/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas/metabolismo , Plantas/efeitos da radiação , Nicotiana/metabolismo , Via de Pentose Fosfato
7.
J Proteome Res ; 23(8): 3383-3392, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38943617

RESUMO

Tumor necrosis factor (TNF) has well-established roles in neuroinflammatory disorders, but the effect of TNF on the biochemistry of brain cells remains poorly understood. Here, we microinjected TNF into the brain to study its impact on glial and neuronal metabolism (glycolysis, pentose phosphate pathway, citric acid cycle, pyruvate dehydrogenase, and pyruvate carboxylase pathways) using 13C NMR spectroscopy on brain extracts following intravenous [1,2-13C]-glucose (to probe glia and neuron metabolism), [2-13C]-acetate (probing astrocyte-specific metabolites), or [3-13C]-lactate. An increase in [4,5-13C]-glutamine and [2,3-13C]-lactate coupled with a decrease in [4,5-13C]-glutamate was observed in the [1,2-13C]-glucose-infused animals treated with TNF. As glutamine is produced from glutamate by astrocyte-specific glutamine synthetase the increase in [4,5-13C]-glutamine reflects increased production of glutamine by astrocytes. This was confirmed by infusion with astrocyte substrate [2-13C]-acetate. As lactate is metabolized in the brain to produce glutamate, the simultaneous increase in [2,3-13C]-lactate and decrease in [4,5-13C]-glutamate suggests decreased lactate utilization, which was confirmed using [3-13C]-lactate as a metabolic precursor. These results suggest that TNF rearranges the metabolic network, disrupting the energy supply chain perturbing the glutamine-glutamate shuttle between astrocytes and the neurons. These insights pave the way for developing astrocyte-targeted therapeutic strategies aimed at modulating effects of TNF to restore metabolic homeostasis in neuroinflammatory disorders.


Assuntos
Astrócitos , Encéfalo , Ácido Glutâmico , Glutamina , Neurônios , Fator de Necrose Tumoral alfa , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Ácido Láctico/metabolismo , Glucose/metabolismo , Masculino , Ciclo do Ácido Cítrico/efeitos dos fármacos , Isótopos de Carbono , Glicólise/efeitos dos fármacos , Acetatos/farmacologia , Acetatos/metabolismo , Piruvato Carboxilase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos
8.
J Clin Invest ; 134(15)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869951

RESUMO

Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.


Assuntos
Síndrome Antifosfolipídica , Armadilhas Extracelulares , Glucose , Glicólise , Neutrófilos , Via de Pentose Fosfato , Neutrófilos/metabolismo , Neutrófilos/imunologia , Humanos , Animais , Camundongos , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/metabolismo , Síndrome Antifosfolipídica/tratamento farmacológico , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Masculino , Feminino , Glucose/metabolismo , Trombose/metabolismo , Trombose/imunologia , Trombose/patologia , Trombose/genética , Adulto , Espécies Reativas de Oxigênio/metabolismo , Pessoa de Meia-Idade
9.
Free Radic Biol Med ; 222: 505-518, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38848786

RESUMO

The oxidative phase of the pentose phosphate pathway (PPP) involving the enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), and 6-phosphogluconate dehydrogenase (6PGDH), is critical to NADPH generation within cells, with these enzymes catalyzing the conversion of glucose-6-phosphate (G6P) into ribulose-5-phosphate (Ribu5-P). We have previously studied peroxyl radical (ROO•) mediated oxidative inactivation of E. coli G6PDH, 6PGL, and 6PGDH. However, these data were obtained from experiments where each enzyme was independently exposed to ROO•, a condition not reflecting biological reality. In this work we investigated how NADPH production is modulated when these enzymes are jointly exposed to ROO•. Enzyme mixtures (1:1:1 ratio) were exposed to ROO• produced from thermolysis of 100 mM 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). NADPH was quantified at 340 nm, and protein oxidation analyzed by liquid chromatography with mass spectrometric detection (LC-MS). The data obtained were rationalized using a mathematical model. The mixture of non-oxidized enzymes, G6P and NADP+ generated ∼175 µM NADPH. Computational simulations showed a constant decrease of G6P associated with NADPH formation, consistent with experimental data. When the enzyme mixture was exposed to AAPH (3 h, 37 °C), lower levels of NADPH were detected (∼100 µM) which also fitted with computational simulations. LC-MS analyses indicated modifications at Tyr, Trp, and Met residues but at lower concentrations than detected for the isolated enzymes. Quantification of NADPH generation showed that the pathway activity was not altered during the initial stages of the oxidations, consistent with a buffering role of G6PDH towards inactivation of the oxidative phase of the pathway.


Assuntos
Escherichia coli , Glucosefosfato Desidrogenase , NADP , Oxirredução , Via de Pentose Fosfato , Fosfogluconato Desidrogenase , Glucosefosfato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/metabolismo , NADP/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Ribulosefosfatos/metabolismo , Glucose-6-Fosfato/metabolismo , Peróxidos/metabolismo , Hidrolases de Éster Carboxílico
10.
J Biol Chem ; 300(8): 107500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944124

RESUMO

In eukaryotes, the D-enantiomer of arabinose (D-Ara) is an intermediate in the biosynthesis of D-erythroascorbate in yeast and fungi and in the biosynthesis of the nucleotide sugar GDP-α-D-arabinopyranose (GDP-D-Arap) and complex α-D-Arap-containing surface glycoconjugates in certain trypanosomatid parasites. Whereas the biosynthesis of D-Ara in prokaryotes is well understood, the route from D-glucose (D-Glc) to D-Ara in eukaryotes is unknown. In this paper, we study the conversion of D-Glc to D-Ara in the trypanosomatid Crithidia fasciculata using positionally labeled [13C]-D-Glc and [13C]-D-ribose ([13C]-D-Rib) precursors and a novel derivatization and gas chromatography-mass spectrometry procedure applied to a terminal metabolite, lipoarabinogalactan. These data implicate the both arms of pentose phosphate pathway and a likely role for D-ribulose-5-phosphate (D-Ru-5P) isomerization to D-Ara-5P. We tested all C. fasciculata putative sugar and polyol phosphate isomerase genes for their ability to complement a D-Ara-5P isomerase-deficient mutant of Escherichia coli and found that one, the glutamine fructose-6-phosphate aminotransferase (GFAT) of glucosamine biosynthesis, was able to rescue the E. coli mutant. We also found that GFAT genes of other trypanosomatid parasites, and those of yeast and human origin, could complement the E. coli mutant. Finally, we demonstrated biochemically that recombinant human GFAT can isomerize D-Ru-5P to D-Ara5P. From these data, we postulate a general eukaryotic pathway from D-Glc to D-Ara and discuss its possible significance. With respect to C. fasciculata, we propose that D-Ara is used not only for the synthesis of GDP-D-Arap and complex surface glycoconjugates but also in the synthesis of D-erythroascorbate.


Assuntos
Arabinose , Glucose , Arabinose/metabolismo , Glucose/metabolismo , Via de Pentose Fosfato , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
11.
Front Immunol ; 15: 1393213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938571

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/imunologia , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Imunidade , Infecções/imunologia , Inflamação/imunologia , Inflamação/metabolismo
12.
Cell Metab ; 36(7): 1504-1520.e9, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38876105

RESUMO

Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.


Assuntos
Mitocôndrias , Purinas , Humanos , Purinas/metabolismo , Purinas/farmacologia , Mitocôndrias/metabolismo , Transporte de Elétrons , Hipoxantina Fosforribosiltransferase/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Via de Pentose Fosfato , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Animais , Transporte Biológico
13.
Int J Biol Macromol ; 273(Pt 2): 132867, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838892

RESUMO

Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.


Assuntos
Glucosefosfato Desidrogenase , Insetos , Oxirredução , Animais , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato , Estresse Oxidativo
14.
Biomed Pharmacother ; 176: 116935, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876050

RESUMO

Breast cancer is one of the most common malignant tumors in women and is a serious threat to women's health. The pentose phosphate pathway (PPP) is a mode of oxidative breakdown of glucose that can be divided into oxidative (oxPPP) and non-oxidative (non-oxPPP) stages and is necessary for cell and body survival. However, abnormal activation of PPP often leads to proliferation, migration, invasion, and chemotherapy resistance in breast cancer. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in PPP oxidation. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced by G6PD is the raw material for cholesterol and lipid synthesis and can resist the production of oxygen species (ROS) and reduce oxidative stress damage to tumor cells. Transketolase (TKT) is a key enzyme in non-oxPPP. Ribose 5-phosphate (R5P), produced by TKT, is a raw material for DNA and RNA synthesis, and is essential for tumor cell proliferation and DNA damage repair. In this review, we describe the role and specific mechanism of the PPP and the two most important enzymes of the PPP, G6PD and TKT, in the malignant progression of breast cancer, providing strategies for future clinical treatment of breast cancer and a theoretical basis for breast cancer research.


Assuntos
Neoplasias da Mama , Progressão da Doença , Glucosefosfato Desidrogenase , Via de Pentose Fosfato , Transcetolase , Transcetolase/metabolismo , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Animais
15.
Sci Rep ; 14(1): 13670, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871968

RESUMO

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicogênio , Células-Tronco Neoplásicas , Fosfoenolpiruvato Carboxiquinase (GTP) , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Glicogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicogenólise , Via de Pentose Fosfato/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
16.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849759

RESUMO

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Assuntos
Luz , Phaseolus , Phaseolus/fisiologia , Phaseolus/metabolismo , Phaseolus/enzimologia , Fosforilação , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Temperatura Baixa , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Via de Pentose Fosfato/fisiologia , Ativação Enzimática , Fotossíntese/fisiologia , Estresse Fisiológico , Proteínas Serina-Treonina Quinases/metabolismo
17.
PLoS Biol ; 22(5): e3002299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713712

RESUMO

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Assuntos
Glucose , Hemócitos , Via de Pentose Fosfato , Trealose , Animais , Trealose/metabolismo , Glucose/metabolismo , Hemócitos/metabolismo , Larva/metabolismo , Larva/parasitologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Resistência à Doença , Glicólise , Interações Hospedeiro-Parasita , Vespas/metabolismo , Vespas/fisiologia , Diferenciação Celular , Drosophila/metabolismo , Drosophila/parasitologia
18.
J Agric Food Chem ; 72(21): 12219-12228, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747135

RESUMO

Phycocyanobilin, an algae-originated light-harvesting pigment known for its antioxidant properties, has gained attention as it plays important roles in the food and medication industries and has surged in demand owing to its low-yield extraction from natural resources. In this study, engineered Corynebacterium glutamicum was developed to achieve high PCB production, and three strategies were proposed: reinforcement of the heme biosynthesis pathway with the introduction of two PCB-related enzymes, strengthening of the pentose phosphate pathway to generate an efficient cycle of NADPH, and fed-batch fermentation to maximize PCB production. Each approach increased PCB synthesis, and the final engineered strain successfully produced 78.19 mg/L in a flask and 259.63 mg/L in a 5 L bioreactor, representing the highest bacterial production of PCB reported to date, to our knowledge. The strategies applied in this study will be useful for the synthesis of PCB derivatives and can be applied in the food and pharmaceutical industries.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Ficobilinas , Ficocianina , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ficocianina/metabolismo , Ficocianina/genética , Ficobilinas/metabolismo , Ficobilinas/genética , Fermentação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Via de Pentose Fosfato/genética , Reatores Biológicos/microbiologia
19.
Phytomedicine ; 129: 155657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692076

RESUMO

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Assuntos
Neoplasias Pulmonares , Via de Pentose Fosfato , Xantonas , Xantonas/farmacologia , Animais , Via de Pentose Fosfato/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Humanos , Fosfogluconato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças
20.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725068

RESUMO

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Assuntos
Aminoácidos , Glicólise , Via de Pentose Fosfato , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Engenharia Metabólica/métodos , Nostoc/metabolismo , Nostoc/genética , Fosfatos Açúcares/metabolismo , Glicina/metabolismo , Glicina/análogos & derivados , Cicloexilaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA