Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.991
Filtrar
1.
Xenotransplantation ; 31(5): e12883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39276074

RESUMO

This updated report highlights significant developments in the field of xenotransplantation since December 2023. Over the past 6 months, there has been a notable increase in discussions regarding the feasibility of clinical trials, with particular emphasis on their progression and associated ethical considerations. This review presents the most pertinent findings from December 2023 to June 2024.


Assuntos
Xenoenxertos , Transplante Heterólogo , Transplante Heterólogo/métodos , Animais , Humanos
2.
Elife ; 122024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312285

RESUMO

Uveal melanoma (UM) is a rare melanoma originating in the eye's uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.


Assuntos
Linfócitos do Interstício Tumoral , Melanoma , Análise de Célula Única , Neoplasias Uveais , Neoplasias Uveais/imunologia , Neoplasias Uveais/patologia , Neoplasias Uveais/genética , Humanos , Melanoma/imunologia , Melanoma/patologia , Melanoma/secundário , Melanoma/genética , Linfócitos do Interstício Tumoral/imunologia , Animais , Camundongos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Feminino , Masculino , Xenoenxertos
3.
J Breath Res ; 18(4)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39163890

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM is often diagnosed late, at a point where limited treatment options are available, but early intervention could improve the chances of successful treatment for MPM patients. Biomarkers to detect MPM in at-risk individuals are needed to implement early diagnosis technologies. Volatile organic compounds (VOCs) have previously shown diagnostic potential as biomarkers when analysed in MPM patient breath. In this study, chorioallantoic membrane (CAM) xenografts of MPM cell lines were used as models of MPM tumour development for VOC biomarker discovery with the aim of generating targets for investigation in breath, biopsies or other complex matrices. VOC headspace analysis of biphasic or epithelioid MPM CAM xenografts was performed using solid-phase microextraction and gas chromatography-mass spectrometry. We successfully demonstrated the capture, analysis and separation of VOC signatures from CAM xenografts and controls. A panel of VOCs was identified that showed discrimination between MPM xenografts generated from biphasic and epithelioid cells and CAM controls. This is the first application of the CAM xenograft model for the discovery of VOC biomarkers associated with MPM histological subtypes. These findings support the potential utility of non-invasive VOC profiling from breath or headspace analysis of tissues for detection and monitoring of MPM.


Assuntos
Membrana Corioalantoide , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Pulmonares , Mesotelioma Maligno , Neoplasias Pleurais , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Animais , Humanos , Mesotelioma Maligno/patologia , Neoplasias Pleurais/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Biomarcadores Tumorais/análise , Mesotelioma/patologia , Linhagem Celular Tumoral , Xenoenxertos , Testes Respiratórios/métodos , Microextração em Fase Sólida/métodos
4.
In Vivo ; 38(5): 2122-2125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187316

RESUMO

BACKGROUND/AIM: In vivo imaging with luciferase-luciferin has been limited by the inability to visualize the low emitted light, with the signal quantified only by photon counting using a cumbersome highly-cooled CCD camera in a dark room. In the present study, we demonstrate direct visualization of the luciferase-luciferin signal from an orthotopic lung cancer in a nude-mouse xenograft model with a sensitive low-light camera and optics. MATERIALS AND METHODS: Mouse Lewis-lung carcinoma cells expressing luciferase (LL/2-Luc2) were injected transcutaneously into the lung of a nude mouse. One week later after cell injection, luciferase imaging for emission at 560 nm was performed using the UVP Biospectrum Advanced system after i.v. injection of D-luciferin potassium salt. The intensity of the visualized light was measured and quantified with the instrument. RESULTS: A week following the implantation of LL/2-Luc2 cells in nude mice, the luciferase-luciferin signal from LL/2-Luc2 tumors in the lung was sufficiently visible through the skin to produce true images. At fifteen minutes, the intensity peaked and then progressively dropped due to clearance of luciferin from the tumor. CONCLUSION: Using the UVP Biospectrum Advanced system we demonstrated non-invasive visualization of true images from luciferase-luciferin signals from an orthotopic lung-cancer mouse model. The luciferase-luciferin emitted light was directly visible through the skin which is a major improvement over previous photon counting to detect the luciferase-luciferin signal.


Assuntos
Luciferases , Medições Luminescentes , Neoplasias Pulmonares , Camundongos Nus , Animais , Camundongos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Luciferases/metabolismo , Luciferases/genética , Linhagem Celular Tumoral , Medições Luminescentes/métodos , Modelos Animais de Doenças , Humanos , Xenoenxertos , Benzotiazóis , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Exp Dent Res ; 10(4): e937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104130

RESUMO

BACKGROUND: Xenogenic collagen matrices (XCMs) are gaining popularity for soft tissue augmentation in dental implants; yet, gaps exist in our understanding of their comparative effectiveness. OBJECTIVE: This systematic review and meta-analysis focuses on studies that utilize soft tissue augmentation techniques for dental implants to improve keratinized mucosa width (KMW), soft tissue thickness (STT), and soft tissue volume (STV). We compared porcine collagen matrices with autogenous grafts when no bone grafts were utilized. MATERIALS AND METHODS: We searched databases such as PubMed, Scopus, and the Cochrane Central Register of Controlled Trials for randomized controlled trials and controlled clinical trials published between January 2013 and July 2023 that assessed the efficacy of XCM in peri-implant soft tissue augmentation. The primary outcome included KMW changes while the secondary outcome was STT/STV changes. Statistical analyses were conducted using a random- or fixed-effects model, and heterogeneity was assessed using I2 statistics. RESULTS: Nine studies were included in the qualitative analysis, and six were included in the meta-analysis. No significant intergroup differences were observed (p > 0.05), but a significant difference was observed in favor of KMW ≥ 2 mm. Heterogeneity among the studies varied at the 6- and 12-month follow-ups, with I2 values of 78% and 0%, respectively. The pooled mean difference between the XCM and autograft groups was -0.96 (-1.71 to -0.21), which shows that there was a larger increase in KMW in the autograft group compared with the XCM group (p < 0.05). CONCLUSIONS: Collagen matrices are less effective than autogenous grafts at increasing keratinized tissue and STT/STV, but the two techniques yield comparable aesthetic outcomes. Additional studies are necessary to better guide clinical practice and improve patient outcomes.


Assuntos
Colágeno , Implantes Dentários , Colágeno/uso terapêutico , Humanos , Animais , Suínos , Xenoenxertos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Xenotransplantation ; 31(4): e12879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166818

RESUMO

Transplantation remains the preferred treatment for end-stage kidney disease but is critically limited by the number of available organs. Xenografts from genetically modified pigs have become a promising solution to the loss of life while waiting for transplantation. However, the current clinical model for xenotransplantation will require off-site procurement, leading to a period of ischemia during transportation. As of today, there is limited understanding regarding the preservation of these organs, including the duration of viability, and the associated molecular changes. Thus, our aim was to evaluate the effects of static cold storage (SCS) on α1,3-galactosyltransferase knockout (GGTA1 KO) kidney. After SCS, viability was further assessed using acellular sub-normothermic ex vivo perfusion and simulated transplantation with human blood. Compared to baseline, tubular and glomerular interstitium was preserved after 2 days of SCS in both WT and GGTA1 KO kidneys. Bulk RNA-sequencing demonstrated that only eight genes were differentially expressed after SCS in GGTA1 KO kidneys. During sub-normothermic perfusion, kidney function, reflected by oxygen consumption, urine output, and lactate production was adequate in GGTA1 KO grafts. During a simulated transplant with human blood, macroscopic and histological assessment revealed minimal kidney injury. However, GGTA1 KO kidneys exhibited higher arterial resistance, increased lactate production, and reduced oxygen consumption during the simulated transplant. In summary, our study suggests that SCS is feasible for the preservation of porcine GGTA1 KO kidneys. However, alternative preservation methods should be evaluated for extended preservation of porcine grafts.


Assuntos
Galactosiltransferases , Transplante de Rim , Rim , Preservação de Órgãos , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Rim/métodos , Galactosiltransferases/genética , Galactosiltransferases/deficiência , Suínos , Preservação de Órgãos/métodos , Humanos , Animais Geneticamente Modificados , Perfusão/métodos , Xenoenxertos , Criopreservação/métodos , Técnicas de Inativação de Genes/métodos , Camundongos
7.
Cancer Biol Ther ; 25(1): 2382531, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39206791

RESUMO

Mouse orthotopic xenograft tumor models are commonly employed in studies investigating the mechanisms underlying the development and progression of tumors and their preclinical treatment. However, the unavailability of mature and visualized orthotopic xenograft models of nasopharyngeal carcinoma limits the development of treatment strategies for this cancer. The aim of this study was to provide a simple and reliable method for building an orthotopic xenograft model of nasopharyngeal carcinoma. Human nasopharyngeal carcinoma (C666-1-luc) cells, stably expressing the firefly luciferase gene, were injected subcutaneously into the right axilla of BALB/C nude mice. Four weeks later, the resulting subcutaneous tumors were cut into small blocks and grafted into the nasopharynx of immunodeficient BALB/C nude mice to induce tumor formation. Tumor growth was monitored by bioluminescence imaging and small animal magnetic resonance imaging (MRI). The expression of histological and immunological antigens associated with orthotopic xenograft nasopharyngeal carcinoma was analyzed by tissue section analysis and immunohistochemistry (IHC). A visualized orthotopic xenograft nasopharyngeal carcinoma model was successfully developed in this study. Luminescence signal detection, micro-MRI, and hematoxylin and eosin staining revealed the successful growth of tumors in the nasopharynx of the nude mice. Moreover, IHC analysis detected cytokeratin (CK), CK5/6, P40, and P63 expression in the orthotopic tumors, consistent with the reported expression of these antigens in human nasopharyngeal tumors. This study established a reproducible, visual, and less lethal orthotopic xenograft model of nasopharyngeal carcinoma, providing a platform for preclinical research.


Assuntos
Modelos Animais de Doenças , Camundongos Nus , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animais , Humanos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/diagnóstico por imagem , Camundongos , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Carcinoma/patologia , Carcinoma/genética , Carcinoma/metabolismo , Imageamento por Ressonância Magnética/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Medições Luminescentes/métodos
8.
PLoS One ; 19(8): e0309415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39213296

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Microambiente Tumoral , Peixe-Zebra , Animais , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Humanos , Modelos Animais de Doenças , Comunicação Celular , Xenoenxertos , Nicho de Células-Tronco , Linhagem Celular Tumoral , Células Endoteliais/patologia , Macrófagos/patologia , Macrófagos/metabolismo , Transplante Heterólogo
9.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201296

RESUMO

Luminescent technology based on the luciferin-luciferase reaction has been extensively employed across various disciplines as a quantitative imaging modality. Owing to its non-invasive imaging capacity, it has evolved as a valuable in vivo bioimaging tool, particularly in small animal models in fields such as gene and cell therapies. We have previously successfully generated rats with a systemic expression of the luciferase gene at the Rosa26 locus. In this study, we transplanted bone marrow from these rats into micro-mini pigs and used in vivo imaging to non-invasively analyze the dynamics of the transplanted cells. In addition, we established that the rat-to-pig transplantation system is a discordant system, similar to the pig-to-human transplantation system. Thus, rat-to-pig transplantation may provide a clinically appropriate large animal model for pig-to-human xenotransplantation.


Assuntos
Transplante de Medula Óssea , Luciferases , Porco Miniatura , Transplante Heterólogo , Animais , Suínos , Ratos , Transplante de Medula Óssea/métodos , Transplante Heterólogo/métodos , Luciferases/metabolismo , Luciferases/genética , Humanos , Medições Luminescentes/métodos , Xenoenxertos , Luciferina de Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/química
10.
Xenotransplantation ; 31(4): e12880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185772

RESUMO

OBJECTIVE: To evaluate the clinically relevant anti-CD40 antibody iscalimab for baseline immunosuppression in a preclinical pig-to-rhesus renal xenograft model. SUMMARY BACKGROUND DATA: CD40/CD40L co-stimulation blockade-based immunosuppression has been more successful than calcineurin-based protocols in prolonging xenograft survival in preclinical models. METHODS: GGTA1 knockout/CD55 transgenic pig kidneys were transplanted into rhesus monkeys (n = 6) receiving an iscalimab-based immunosuppressive regimen. RESULTS: Two grafts were lost early (22 and 26 days) because of ectatic donor ureters with otherwise normal histology. The other recipients survived 171, 315, 422, and 439 days with good renal function throughout the posttransplant course. None of the recipients experienced serious infectious morbidity. CONCLUSIONS: It may be reasonable to evaluate an iscalimab-based immunosuppressive regimen in clinical renal xenotransplantation.


Assuntos
Sobrevivência de Enxerto , Xenoenxertos , Imunossupressores , Transplante de Rim , Macaca mulatta , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Suínos , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Rim/métodos , Imunossupressores/farmacologia , Xenoenxertos/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Animais Geneticamente Modificados , Anticorpos Monoclonais/farmacologia , Humanos , Galactosiltransferases/genética
11.
Xenotransplantation ; 31(4): e12881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185796

RESUMO

BACKGROUND: The number of multigene-modified donor pigs for xenotransplantation is increasing with the advent of gene-editing technologies. However, it remains unclear which gene combination is suitable for specific organ transplantation. METHODS: In this study, we utilized CRISPR/Cas9 gene editing technology, piggyBac transposon system, and somatic cell cloning to construct GTKO/hCD55/hTBM/hCD39 four-gene-edited cloned (GEC) pigs and performed kidney transplantation from pig to rhesus monkey to evaluate the effectiveness of these GEC pigs. RESULTS: First, 107 cell colonies were obtained through drug selection, of which seven were 4-GE colonies. Two colonies were selected for somatic cell nuclear transfer (SCNT), resulting in seven fetuses, of which four were GGTA1 biallelic knockout. Out of these four, two fetuses had higher expression of hCD55, hTBM, and hCD39. Therefore, these two fetuses were selected for two consecutive rounds of cloning, resulting in 97 live piglets. After phenotype identification, the GGTA1 gene of these pigs was inactivated, and hCD55, hTBM, and hCD39 were expressed in cells and multiple tissues. Furthermore, the numbers of monkey IgM and IgG binding to the peripheral blood mononuclear cells (PBMCs) of the 4-GEC pigs were markedly reduced. Moreover, 4-GEC porcine PBMCs had greater survival rates than those from wild-type pigs through complement-mediated cytolysis assays. In pig-to-monkey kidney xenotransplantation, the kidney xenograft successfully survived for 11 days. All physiological and biochemical indicators were normal, and no hyperacute rejection or coagulation abnormalities were found after transplantation. CONCLUSION: These results indicate that the GTKO/hCD55/hTBM/hCD39 four-gene modification effectively alleviates immune rejection, and the pig kidney can functionally support the recipient monkey's life.


Assuntos
Animais Geneticamente Modificados , Galactosiltransferases , Edição de Genes , Transplante de Rim , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Rim/métodos , Suínos , Edição de Genes/métodos , Galactosiltransferases/genética , Sistemas CRISPR-Cas , Macaca mulatta , Técnicas de Transferência Nuclear , Xenoenxertos , Humanos , Sobrevivência de Enxerto/imunologia , Rejeição de Enxerto/imunologia , Apirase , Antígenos CD
12.
Sci Transl Med ; 16(755): eadg3456, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985854

RESUMO

Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing ß cells are reduced in number in most people with diabetes, but most individuals still have some residual ß cells. However, none of the many diabetes drugs in common use increases human ß cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human ß cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on ß cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human ß cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human ß cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human ß cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human ß cell mass occurred through mechanisms that included enhanced human ß cell proliferation, function, and survival. The increase in human ß cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor-GLP1RA combination for diabetes treatment.


Assuntos
Quinases Dyrk , Exenatida , Harmina , Células Secretoras de Insulina , Peptídeos , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Exenatida/farmacologia , Exenatida/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Harmina/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Camundongos , Peptídeos/farmacologia , Peptídeos/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Quimioterapia Combinada , Proliferação de Células/efeitos dos fármacos , Xenoenxertos
13.
Cell Rep Methods ; 4(7): 100802, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964316

RESUMO

PAX3/7 fusion-negative rhabdomyosarcoma (FN-RMS) is a childhood mesodermal lineage malignancy with a poor prognosis for metastatic or relapsed cases. Limited understanding of advanced FN-RMS is partially attributed to the absence of sequential invasion and dissemination events and the challenge in studying cell behavior, using, for example, non-invasive intravital microscopy (IVM), in currently used xenograft models. Here, we developed an orthotopic tongue xenograft model of FN-RMS to study cell behavior and the molecular basis of invasion and metastasis using IVM. FN-RMS cells are retained in the tongue and invade locally into muscle mysial spaces and vascular lumen, with evidence of hematogenous dissemination to the lungs and lymphatic dissemination to lymph nodes. Using IVM of tongue xenografts reveals shifts in cellular phenotype, migration to blood and lymphatic vessels, and lymphatic intravasation. Insight from this model into tumor invasion and metastasis at the tissue, cellular, and subcellular level can guide new therapeutic avenues for advanced FN-RMS.


Assuntos
Invasividade Neoplásica , Rabdomiossarcoma , Neoplasias da Língua , Animais , Rabdomiossarcoma/patologia , Rabdomiossarcoma/secundário , Humanos , Camundongos , Neoplasias da Língua/patologia , Linhagem Celular Tumoral , Metástase Neoplásica/patologia , Xenoenxertos , Língua/patologia , Movimento Celular
14.
Artigo em Inglês | MEDLINE | ID: mdl-38971694

RESUMO

OBJECTIVE: Limited availability of authentic human adenoid cystic carcinoma (ACC) cell lines has hindered progress in understanding mechanisms underpinning the biology of this disease and the development of safe and effective therapies. STUDY DESIGN: Surgical human ACC specimens (UM-HACC-6, UM-HACC-14) were dissociated into single cell suspensions and cultured in fibronectin-coated flasks. Alternatively, tumor fragments were transplanted subcutaneously into female immunodeficient (SCID) mice to establish patient-derived xenograft tumors (PDX; UM-PDX-HACC-14). RESULTS: Both ACC cell lines showed continuous growth in monolayers for over 100 passages. Total RNA-Seq, RT-PCR, and FISH analysis revealed that both are MYB-NFIB fusion negative. Western blots revealed passage-dependent expression of E-Cadherin, PCNA, p63, phospho-c-MYB, and NFIB. Both, UM-HACC-14 and UM-HACC-6 cells exhibited tumorigenic potential when injected orthotopically into mouse submandibular glands. CONCLUSION: UM-HACC-14, patient-matching UM-PDX-HACC-14, and the UM-HACC-6 cell line are new, authenticated preclinical models of ACC that are well suited for mechanistic and developmental therapeutics studies.


Assuntos
Carcinoma Adenoide Cístico , Camundongos SCID , Neoplasias das Glândulas Salivares , Carcinoma Adenoide Cístico/patologia , Carcinoma Adenoide Cístico/metabolismo , Animais , Humanos , Neoplasias das Glândulas Salivares/patologia , Neoplasias das Glândulas Salivares/metabolismo , Camundongos , Feminino , Linhagem Celular Tumoral , Western Blotting , Xenoenxertos , Hibridização in Situ Fluorescente
15.
Xenotransplantation ; 31(4): e12877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077824

RESUMO

INTRODUCTION: Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs. Furthermore, there are several therapeutic strategies to prevent or reduce inflammatory responses and coagulation disorders following xenotransplantation. However, it is still unclear, which combination of drugs should be used in the clinical setting. To elucidate this, we present data from pig-to-baboon orthotopic cardiac xenotransplantation experiments using a combination of several anti-inflammatory drugs. METHODS: Genetically modified piglets (GGTA1-KO, hCD46/hTBM transgenic) were used for orthotopic cardiac xenotransplantation into captive-bred baboons (n = 14). All animals received an anti-inflammatory drug therapy including a C1 esterase inhibitor, an IL-6 receptor antagonist, a TNF-α inhibitor, and an IL-1 receptor antagonist. As an additive medication, acetylsalicylic acid and unfractionated heparin were administered. The immunosuppressive regimen was based on CD40/CD40L co-stimulation blockade. During the experiments, leukocyte counts, levels of C-reactive protein (CRP) as well as systemic cytokine and chemokine levels and coagulation parameters were assessed at multiple timepoints. Four animals were excluded from further data analyses due to porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) infections (n = 2) or technical failures (n = 2). RESULTS: Leukocyte counts showed a relevant perioperative decrease, CRP levels an increase. In the postoperative period, leukocyte counts remained consistently within normal ranges, CRP levels showed three further peaks after about 35, 50, and 80 postoperative days. Analyses of cytokines and chemokines revealed different patterns. Some cytokines, like IL-8, increased about 2-fold in the perioperative period, but then decreased to levels comparable to the preoperative values or even lower. Other cytokines, such as IL-12/IL-23, decreased in the perioperative period and stayed at these levels. Besides perioperative decreases, there were no relevant alterations observed in coagulation parameters. In summary, all parameters showed an unremarkable course with regard to inflammatory responses and coagulation disorders following cardiac xenotransplantation and thus showed the effectiveness of our approach. CONCLUSION: Our preclinical experience with the anti-inflammatory drug therapy proved that controlling of inflammation and coagulation disorders in xenotransplantation is possible and well-practicable under the condition that transmission of pathogens, especially of PCMV/PRV to the recipient is prevented because PCMV/PRV also induces inflammation and coagulation disorders. Our anti-inflammatory regimen should also be applicable and effective in the clinical setting of cardiac xenotransplantation.


Assuntos
Animais Geneticamente Modificados , Transplante de Coração , Inflamação , Papio , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Coração/métodos , Suínos , Inflamação/imunologia , Coagulação Sanguínea/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Xenoenxertos/imunologia , Galactosiltransferases/genética , Imunossupressores/farmacologia , Citocinas/metabolismo
16.
Transplantation ; 108(8): 1749-1759, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042769

RESUMO

BACKGROUND: Xenotransplantation using pig organs is now a clinical reality. However, the process for xenograft recipient screening lacks clarity and scientific rigor: no established thresholds exist to determine which levels of preformed antipig natural antibodies (Nabs) will be safe for clinical xenograft transplantation, and hyperacute rejection (HAR) or acute humoral xenograft rejection (AHXR), which still impacts pig-to-primate kidney xenograft survivals, may impede broader application of pig-to-human clinical xenograft transplantation. METHODS: We retrospectively examined 28 cases of pig-to-baboon kidney xenotransplantation using GalTKO±human complement regulatory protein (hCRP)-transgenic (Tg) pig donors, as well as 6 cases of triple-KO multi-Tg (10GE) pig donors, and developed screening algorithms to predict risk of HAR/AHXR based on recipient antipig Nab levels. Preformed Nabs were evaluated using both complement-dependent cytotoxicity and antibody (IgM and IgG) binding flow-cytometry assays. RESULTS: High complement-dependent cytotoxicity was associated with HAR/AHXR as expected. However, we also found that high levels of IgG were independently associated with HAR/AHXR, and we developed 2 indices to interpret and predict the risk of IgG-mediated HAR/AHXR. CONCLUSIONS: Based on the data in this study, we have established a new 2-step screening, which will be used for future clinical kidney xenotransplantation trials.


Assuntos
Animais Geneticamente Modificados , Rejeição de Enxerto , Sobrevivência de Enxerto , Transplante de Rim , Transplante Heterólogo , Animais , Transplante Heterólogo/efeitos adversos , Transplante de Rim/efeitos adversos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Estudos Retrospectivos , Suínos , Fatores de Risco , Imunoglobulina G/sangue , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Galactosiltransferases/deficiência , Xenoenxertos , Imunidade Humoral , Imunoglobulina M/sangue , Humanos , Masculino , Anticorpos Heterófilos/imunologia , Doença Aguda
17.
Hum Cell ; 37(5): 1578-1592, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39012569

RESUMO

In this study, a novel pancreatic cancer cell line, termed pancreatic ductal adenocarcinoma (PDAC)-X3 cell line, was successfully derived from the primary tumor. Comprehensive analyses of its malignant phenotype, molecular properties, specific biomarkers, and histological features confirmed that PDAC-X3 cells serve as a valuable model for investigating the underlying mechanisms driving pancreatic carcinogenesis and advancing potential therapeutic strategies. The newly established cell line was continuously cultured for over 12 months and was stably passaged through more than 50 generations. Morphologically, PDAC-X3 cells displayed characteristics typical of epithelial tumors. The population doubling time for PDAC-X3 cells was determined to be 50 h. Karyotype analysis revealed that 75% of PDAC-X3 cells presented as hypotriploid, while 25% were sub-tetraploid, with representative karyotypes being 53 and XY der (1) inv (9) der (22). In suspension culture, PDAC-X3 cells efficiently formed organoids. Upon inoculation into BALB/C nude mice, these cells initiated the development of xenograft tumors, achieving a tumor formation rate of 33%. Morphologically, these xenografted tumors closely resembled the primary tumor. Drug sensitivity assays indicated that PDAC-X3 cells exhibited resistance to oxaliplatin but demonstrated sensitivity to 5-Fluorouracil (5-FU), gemcitabine, and paclitaxel. Immunohistochemical analysis revealed that CK7, CK19, E-cadherin, Vimentin, CA19-9 were positively expressed in PDAC-X3 cells. Meanwhile, the expression rate for Ki-67 was 30%, and that for CEA was not detected. Our findings underscore that PDAC-X3 represents a novel pancreatic cancer cell line, positioning it as a valuable model for basic research and the advancement of therapeutic strategies against pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Fluoruracila , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Animais , Fluoruracila/farmacologia , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Xenoenxertos , Oxaliplatina/farmacologia , Transplante de Neoplasias , População do Leste Asiático
18.
Hum Cell ; 37(5): 1522-1534, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39078546

RESUMO

Pancreatic neuroendocrine tumors are the second most common tumors of the pancreas, and approximately half of patients are diagnosed with liver metastases. Currently, the improvement in the efficacy of relevant treatment methods is still limited. Therefore, there is an urgent need for in-depth research on the molecular biological mechanism of pancreatic neuroendocrine tumors. However, due to their relatively inert biology, preclinical models are extremely scarce. Here, the patient-derived organoid, and patient-derived xenograft were successfully constructed. These two models and the previously constructed cell line named SPNE1 all derived from the same patient with a grade 3 non-functional pancreatic neuroendocrine tumor, providing new tumor modeling platforms, and characterized using immunohistochemistry, whole-exome sequencing, and single-cell transcriptome sequencing. Combined with a tumor formation experiment in immunodeficient mice, we selected the model that most closely recapitulated the parental tumor. Overall, the patient-derived xenograft model most closely resembled human tumor tissue.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/terapia , Animais , Modelos Animais de Doenças , Camundongos , Xenoenxertos , Linhagem Celular Tumoral , Organoides , Sequenciamento do Exoma
19.
Methods Mol Biol ; 2811: 81-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39037651

RESUMO

Metastasis is a complex, multistep process. To study the molecular steps of the metastatic cascade, it is important to use an in vivo system that recapitulates the complex tumor microenvironment. The chicken embryo chorioallantoic membrane (CAM) is an in vivo system suitable for the implantation of xenograft tumor models. It allows the study of different aspects of the metastatic process, including the dormancy-awakening transition. The main advantages of this system are its high reproducibility, cost-effectiveness, and versatility. Here, by using two dormancy tumor models, one of head and neck squamous cell carcinoma and one of breast cancer, we described a detailed protocol for the use of the CAM model in metastasis assays and for the study of tumor growth and dormancy.


Assuntos
Membrana Corioalantoide , Metástase Neoplásica , Animais , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Embrião de Galinha , Humanos , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Xenoenxertos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA