Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.119
Filtrar
1.
Folia Histochem Cytobiol ; 60(4): 335-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583336

RESUMO

INTRODUCTION: Aberrant fucosylation is closely related to malignant transformation, cancer detection, and evaluation of treatment efficacy. The fucosylation process requires GDP-L-fucose, fucosyltransferases, and fucosidases. In gastric cancer (GC), fucosylation alterations were associated with tumor formation, metastasis inhibition, and multi-drug resistance. It is not clear whether tissue-specific transplantation antigen P35B (TSTA3) and alpha-L-fucosidase 2 (FUCA2) have any effect on the development of GC. MATERIALS AND METHODS: We used immunohistochemistry to assess the expression of TSTA3 and FUCA2 in 71 gastric adenocarcinoma samples and their relationship with clinicopathological parameters. RESULTS: TSTA3 expression was associated with lower histological grade I and II (P = 0.0120) and intestinal type Lauren classification (P = 0.0120). TSTA3 immunopositivity could predict Lauren's classification. Analysis of mRNA expression in GC validation cohorts corroborates the significant TSTA3 association with histological grade observed in our study. However, no associations were found between TSTA3 staining and overall survival. FUCA2 expression was markedly increased in GC tissues compared with non-tumoral tissues (P < 0.0001) and was associated with surgical staging III and IV (P = 0.0417) and advanced histological grade tumor states (P = 0.0125). CONCLUSIONS: Alterations of FUCA2 and TSAT3 immunoexpression could lay the basis for future studies using cell glycosylation as a biomarker for the planning of therapeutic strategy in primary gastric cancer.


Assuntos
Adenocarcinoma , Cetona Oxirredutases , Neoplasias Gástricas , Humanos , alfa-L-Fucosidase/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Biomarcadores , Biomarcadores Tumorais , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo
2.
Structure ; 30(10): 1369-1371, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206736

RESUMO

In this issue of Structure, Armstrong and colleagues probe the structure of human fucosidase FucA1. Their work resolves an ongoing debate around the enzyme's catalytic mechanism and provides a valid structural template to guide the design of drugs alleviating the rare, yet severe, lysosomal storage disease fucosidosis.


Assuntos
Fucosidose , Humanos , alfa-L-Fucosidase
3.
Turk J Pediatr ; 64(4): 795-803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082656

RESUMO

BACKGROUND: Fucosidosis is a rare, autosomal recessive lysosomal storage disease caused by alpha L- fucosidase enzyme deficiency in all tissues. Here, we identify a patient with a novel homozygous pathogenic variant and atypical clinical findings and summarized the clinical and molecular features of Turkish patients reported in the literature and present. CASE: The patient was born to consangineous parents at the 28th week of gestation. He had developmental delay that was attributed to prematurity. At he age of 2.5 years, brain magnetic resonans imaging revealed hyperintensities of symmetrical periventricular, subcortical, centrum semiovale and corona radiata regions on T2 and FLAIR weighted images. He developed seizures and showed developmental regression at he age of 3,5 years. Beside, coarse facial features and hepatomegaly were detected on phsyical examination. Lysosomal enzyme analysis revelaed alfa fucosidase deficiency and molecular genetic analysis identified a novel homozygous pathogenic p. Lys431 fs variant in FUCA1 gene. CONCLUSIONS: In Turkish patients no distinguishable clinical and radiologic finding could be established. Molecular analysis was performed in few patients. Increasing of molecular and biochemical facilities might enable to make diagnosis and increase the prevalence of the disease in countries with high rate of consanguineous marriages. Moreover, it will provide genetic counseling, and enlighten the therapeutic effects of hematopoietic stem cell transplantation.


Assuntos
Fucosidose , Encéfalo/patologia , Pré-Escolar , Fucosidose/diagnóstico , Fucosidose/genética , Fucosidose/terapia , Homozigoto , Humanos , Masculino , alfa-L-Fucosidase/genética
4.
Cell Host Microbe ; 30(10): 1417-1434.e8, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150396

RESUMO

Interactions between the enteric nervous system (ENS) and intestinal epithelium are thought to play a vital role in intestinal homeostasis. How the ENS monitors the frontier with commensal and pathogenic microbes while maintaining epithelial function remains unclear. Here, by combining subdiaphragmatic vagotomy with transcriptomics, chemogenetic strategy, and coculture of enteric neuron-intestinal organoid, we show that enteric neurons expressing VIP shape the α1,2-fucosylation of intestinal epithelial cells (IECs). Mechanistically, neuropeptide VIP activates fut2 expression via the Erk1/2-c-Fos pathway through the VIPR1 receptor on IECs. We further demonstrate that perturbation of enteric neurons leads to gut dysbiosis through α1,2-fucosylation in the steady state and results in increased susceptibility to alcohol-associated liver disease (ALD). This was attributed to an imbalance between beneficial Bifidobacterium and opportunistic pathogenic Enterococcus faecalis in ALD. In addition, Bifidobacterium α1,2-fucosidase may promote Bifidobacterium adhesion to the mucosal surface, which restricts Enterococcus faecalis overgrowth and prevents ALD progression.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Bifidobacterium , Enterococcus faecalis , Epitélio , Homeostase , Neurônios , alfa-L-Fucosidase
5.
Arch Biochem Biophys ; 728: 109373, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940339

RESUMO

In present work we provide the bioinformatic and biochemical characterization of six α-L-fucosidases that belong to the 29 and 95 families of glycoside hydrolases (GH) from the fucoidan-degrading locus of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The fucosidases FucWf1GH29, FucWf2GH29, FucWf3GH29 and FucWf6GH29 are relegated to the subfamily A of the GH29 family. The fucosidase FucWf4GH29 bears a distant resemblance to the GH29 and does not belong to either the GH29A or the GH29B subfamilies. Apparently, FucWf4GH29 is the first representative of a new subfamily within the GH29 family of α-L-fucosidases. For the first time the specificity of fucosidases has been studied using a series of fucoidan-related sulfated oligosaccharides. Studied α-L-fucosidases are able to cleave l-fucose from sulfated fucooligosacchrides after their treatment with exo-sulfatases. All studied α-L-fucosidases are cleaving the α-1→3- and α-1→4-linked terminal l-fucose in sulfated fucooligosaccharides. However, only FucWf3GH29 is able to cleave off an α-1→2-linked l-fucose. The fucosidase FucWf5GH95 of the GH95 family is shown to have higher activity on fucoidans than fucosidases of the GH29 family. Supposedly, the α-l-fucosidase FucWf5GH95 participates in fucoidan debranching. The obtained data indicate different roles of fucosidases of the GH29 and GH95 families in the process of fucoidan degradation by the marine bacteria W. fucanilytica CZ1127T.


Assuntos
Flavobacteriaceae , alfa-L-Fucosidase , Fucose , Polissacarídeos , Especificidade por Substrato
6.
Microbiol Spectr ; 10(4): e0177522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943155

RESUMO

The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Animais , Antígenos de Grupos Sanguíneos/análise , Antígenos de Grupos Sanguíneos/metabolismo , Fucose/análise , Fucose/química , Fucose/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo , Humanos , Lactente , Recém-Nascido , Mamíferos/genética , Mamíferos/metabolismo , Metagenoma , Leite Humano/química , Leite Humano/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
7.
Structure ; 30(10): 1443-1451.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35907402

RESUMO

Enzymatic hydrolysis of α-L-fucose from fucosylated glycoconjugates is consequential in bacterial infections and the neurodegenerative lysosomal storage disorder fucosidosis. Understanding human α-L-fucosidase catalysis, in an effort toward drug design, has been hindered by the absence of three-dimensional structural data for any animal fucosidase. Here, we have used cryoelectron microscopy (cryo-EM) to determine the structure of human lysosomal α-L-fucosidase (FucA1) in both an unliganded state and in complex with the inhibitor deoxyfuconojirimycin. These structures, determined at 2.49 Å resolution, reveal the homotetrameric structure of FucA1, the architecture of the catalytic center, and the location of both natural population variations and disease-causing mutations. Furthermore, this work has conclusively identified the hitherto contentious identity of the catalytic acid/base as aspartate-276, representing a shift from both the canonical glutamate acid/base residue and a previously proposed glutamate residue. These findings have furthered our understanding of how FucA1 functions in both health and disease.


Assuntos
Fucose , alfa-L-Fucosidase , Ácido Aspártico , Catálise , Microscopia Crioeletrônica , Glutamatos , Glicoconjugados , Humanos , alfa-L-Fucosidase/genética
8.
Biosci Biotechnol Biochem ; 86(10): 1413-1416, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867865

RESUMO

Deletion of α-1,3/4-fucosidase activity in Arabidopsis thaliana resulted in the accumulation of GN1-type free N-glycans with the Lewis a epitope (GN1-FNG). This suggests that the release of α-fucose residue(s) may trigger rapid degradation of the plant complex-type (PCT) GN1-FNG. The fact that PCT-GN1-FNG has rarely been detected to date is probably due to its easier degradation compared with PCT-GN2-FNG.


Assuntos
Arabidopsis , alfa-L-Fucosidase , Arabidopsis/genética , Arabidopsis/metabolismo , Epitopos , Fucose/química , Polissacarídeos/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
9.
BMC Pediatr ; 22(1): 403, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820891

RESUMO

BACKGROUND: Fucosidosis is one of the rare autosomal recessive lysosomal storage diseases (LSDs) attributed to FUCA1 variants causing the deficiency of α-L-fucosidase in vivo. Α-L-fucosidase deficiency will cause excessive accumulation of fucosylated glycoproteins and glycolipids, which eventually leads to dysfunction in all tissue systems and presents with multiple symptoms. Fucosidosis is a rare disease which is approximately 120 cases have been reported worldwide (Wang, L. et al., J Int Med Res 48, 1-6, 2020). The number of reported cases in China is no more than 10 (Zhang, X. et al., J Int Med Res 49:3000605211005975, 2021). CASE PRESENTATION: The patient was an 8-year-old Chinese boy who presented with postnatal motor retardation, intellectual disability, short stature, language development retardation, coarse facial features, hepatomegaly, and diffuse angiokeratoma of both palms. His genetic testing showed the presence of a homozygous pathogenic variant (c.671delC) in the FUCA1 gene. In addition, the enzymatic activity of α-L-fucosidase was low. Ultimately, the patient was diagnosed with fucosidosis. CONCLUSIONS: Fucosidosis is a rare lysosomal storage disease because of FUCA1 variants that cause the deficiency of α-L-fucosidase in vivo. An explicit diagnosis requires a combination of clinical manifestations, imaging examination, genetic testing and enzyme activity analysis. Early diagnosis plays an important role in fucosidosis.


Assuntos
Fucosidose , Criança , Fucosidose/diagnóstico , Fucosidose/genética , Homozigoto , Humanos , Masculino , Mutação , alfa-L-Fucosidase/genética
10.
Appl Microbiol Biotechnol ; 106(12): 4539-4551, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35723691

RESUMO

Metagenomic MeBglD2 is a glycoside hydrolase family 1 (GH1) ß-glycosidase that has ß-glucosidase, ß-fucosidase, and ß-galactosidase activities, and is highly activated in the presence of monosaccharides and disaccharides. The ß-glucosidase activity of MeBglD2 increases in a cellobiose concentration-dependent manner and is not inhibited by a high concentration of D-glucose or cellobiose. Previously, we solved the crystal structure of MeBglD2 and designed a thermostable mutant; however, the mechanism of substrate recognition of MeBglD2 remains poorly understood. In this paper, we report the X-ray crystal structures of MeBglD2 complexed with various saccharides, such as D-glucose, D-xylose, cellobiose, and maltose. The results showed that subsite - 1 of MeBglD2, which contained two catalytic glutamate residues (a nucleophilic Glu356 and an acid/base Glu170) was common to other GH1 enzymes, but the positive subsites (+ 1 and + 2) had different binding modes depending on the type of sugar. Three residues (Glu183, Asn227, and Asn229), located at the positive subsites of MeBglD2, were involved in substrate specificity toward cellobiose and/or chromogenic substrates in the presence of additive sugars. The docking simulation of MeBglD2-cellobiose indicated that Asn229 and Trp329 play important roles in the recognition of + 1 D-glucose in cellobiose. Our findings provide insights into the unique substrate recognition mechanism of GH1, which can incorporate a variety of saccharides into its positive subsites. KEY POINTS: • Metagenomic glycosidase, MeBglD2, recognizes various saccharides • Structures of metagenomic MeBglD2 complexed with various saccharides are determined • MeBglD2 has a unique substrate recognition mechanism at the positive subsites.


Assuntos
Celobiose , Metagenoma , Celobiose/metabolismo , Cristalografia por Raios X , Glucose/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/metabolismo , beta-Glucosidase/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(26): e2111506119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737835

RESUMO

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.


Assuntos
Fucosidose , Macroautofagia , Polissacarídeos , Animais , Fucosidose/genética , Fucosidose/metabolismo , Lisossomos/metabolismo , Macroautofagia/fisiologia , Camundongos , Polissacarídeos/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35703609

RESUMO

Blastocystis sp. is a common intestinal microorganism. The α-L-fucosidase (ALFuc) is an enzyme long associated with the colonization of the gut microbiota. However, this enzyme has not been experimentally identified in Blastocystis cultures. The objective of the present study was to identify ALFuc in supernatants of axenic cultures of Blastocystis subtype (ST)1 ATCC-50177 and ATCC-50610 and to compare predicted ALFuc proteins of alfuc genes in sequenced STs1-3 isolates in human Blastocystis carriers. Excretion/secretion (Es/p) and cell lysate proteins were obtained by processing Blastocystis ATCC cultures and submitting them to SDS-PAGE and immunoblotting. In addition, 18 fecal samples from symptomatic Blastocystis human carriers were analyzed by sequencing of amplification products for subtyping. A complete identification of the alfuc gene and phylogenetic analysis were performed. Immunoblotting showed that the amplified band corresponding to ALFuc (~51 kDa) was recognized only in the ES/p. Furthermore, prediction analysis of ALFuc 3D structures revealed that the domain α-L-fucosidase and the GH29 family's catalytic sites were conserved; interestingly, the galactose-binding domain was recognized only in ST1 and ST2. The phylogenetic inferences of ALFuc showed that STs1-3 were clearly identifiable and grouped into specific clusters. Our results show, for the first time through experimental data that ALFuc is a secretion product of Blastocystis sp., which could have a relevant role during intestinal colonization; however, further studies are required to clarify this condition. Furthermore, the alfuc gene is a promising candidate for a phylogenetic marker, as it shows a conserved classification with the SSU-rDNA gene.


Assuntos
Infecções por Blastocystis , Blastocystis , Blastocystis/genética , DNA de Protozoário/genética , Fezes , Variação Genética , Humanos , Filogenia , alfa-L-Fucosidase/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-35608970

RESUMO

A novel bifidobacteria (designated S053-2T) was isolated from the gut of honeybee (Apis mellifera). Strain S053-2T was characterized using a polyphasic taxonomic approach. The result of 16S rRNA gene sequence analysis indicated that strain S053-2T was phylogenetically related to the type strains of Bifidobacterium asteroides, Bifidobacterium indicum, Bifidobacterium actinocoloniiforme, Bifidobacterium xylocopae, Bifidobacterium coryneforme, Bifidobacterium apousia, Bifidobacterium choladohabitans and Bifidobacterium polysaccharolyticum, and had 95.5-99.7 % 16S rRNA gene sequence similarities. Based on the 16S rRNA gene sequence analysis, strain S053-2T was most closely related to the type strain of B. asteroides, having 99.7 % 16S rRNA gene sequence similarity. Strain S053-2T had relatively low (91.6-95.7 %) pheS, atpA, clpC, dnaG, fusA, glnA, glyS, hsp60, argS, pyrG and recA sequence similarities to the type strain of B. asteroides. Strain S053-2T had 94.5-95.3% atpA, clpC, dnaG, dnaK and pyrG sequence similarities to the type strain of B. apousia. The phylogenomic tree indicated that strain S053-2T belonged to the B. asteroides group, and was most closely related to the type strains of B. asteroides, B. apousia, B. choladohabitans and B. polysaccharolyticum, and distantly related to type strains of other phylogenetically related species in the B. asteroides group. Strain S053-2T shared the highest average nucleotide identity (ANI, 93.8 %), digital DNA-DNA hybridization (dDDH, 52.4 %) and average amino acid identity (AAI, 95.6%) values with B. apousia W8102T. Strain S053-2T shared 91.1 % ANI, 41.9 % dDDH and 92.5 % AAI values with B. asteroides DSM 20089T. Acid production from l-arabinose, d-xylose, d-mannose, amygdalin, cellobiose, maltose, melibiose, sucrose, raffinose, gentiobiose and l-fucose, and activity of esterase lipase (C8) and α-fucosidase could differentiate strain S053-2T from B. asteroides DSM 20089T. Acid production from d-mannose, maltose, sucrose, melezitose and gentiobiose, and activity of α-fucosidase could differentiate strain S053-2T from B. apousia W8102T. Based upon the data obtained in the present study, a novel species, Bifidobacterium mizhiense sp. nov., is proposed, and the type strain is S053-2T (=JCM 34710T=CCTCC AB 2021129T).


Assuntos
Manose , alfa-L-Fucosidase , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , Bifidobacterium , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Maltose , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sacarose , alfa-L-Fucosidase/genética
14.
J Obstet Gynaecol ; 42(6): 1889-1896, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35634766

RESUMO

To identify maternal laboratory markers to predict the risk of preeclampsia (PE) in different stages of pregnancy, we analysed 67, 25, and 73, pregnancies developing PE at 11-13, 16-20, and 24-28 wks, respectively. Routine laboratory markers were measured in whole blood or serum and binary logistic regression analysis was used to identify predictive models. At 11-13 wks of gestation, patients who went on to develop PE showed significantly higher concentrations of alanine aminotransferase, aspartate aminotransferase, α-L-fucosidase, 5'-nucleotidase, glutamyl transpeptidase, cholinesterase, and uric acid; plateletcrit was also higher. At 16-20 wks, inhibin A concentration and plateletcrit were significantly elevated. At 24-28 wks, platelets, plateletcrit, and glucose concentration were significantly elevated. Logistic regression analysis showed that an elevation in 5'-nucleotidase was independently associated with PE at 11-13 wks. The combination of inhibin A, diastolic blood pressure, and body mass index was a significant predictor for PE at 16-20 wks, while the combination of glucose and systolic blood pressure was a significant predictor for PE at 24-28 wks. In conclusion, when combined with maternal characteristics, the measurement of 5'-nucleotidase, inhibin A, and glucose levels, represents a potentially valuable risk assessment for PE.Impact statementWhat is already known on this subject? Preeclampsia (PE) may be viewed as a spectrum of disorders with a severity that is reflected in the levels of specific biomarkers. Consequently, there is a clear need for additional biomarkers that can be used to stratify pregnancies as high or low risk soon after conception.What do the results of this study add? At 11-13 wks of gestation, maternal assays for platelets, plateletcrit, alanine aminotransferase, aspartate aminotransferase, α-L-fucosidase, 5'-nucleotidase, glutamyl transpeptidase, cholinesterase, and uric acid, demonstrated significantly higher values in patients with PE when compared with normal controls. Furthermore, assay results for inhibin A and platelets showed increased values at 16-20 wks of gestation. Assays performed at 24-28 wks of gestation revealed elevated levels of platelets, plateletcrit, and glucose. Our analysis indicated that increases in the levels of 5'-nucleotidase, inhibin A, and glucose, are effective and significant biomarkers that could be used in combination with maternal characteristics to screen for PE at 11-13, 16-20, and 24-28 wks of gestation, respectively. These findings provide a new basis for our understanding of the aetiology underlying PE.What are the implications of these findings for clinical practice and/or further research? Further studies that consider the entire population are now needed and should include the investigation of laboratory markers across different stages of pregnancy. Long-term follow up would also be necessary if we are to explore the full role of laboratory markers in the pathophysiology of PE.


Assuntos
Pré-Eclâmpsia , 5'-Nucleotidase , Alanina , Aspartato Aminotransferases , Biomarcadores , Estudos de Casos e Controles , Colinesterases , Feminino , Glucose , Humanos , Pré-Eclâmpsia/diagnóstico , Gravidez , Ácido Úrico , alfa-L-Fucosidase , gama-Glutamiltransferase
15.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268716

RESUMO

Fucosidases are associated with several pathological conditions and play an important role in the health of the human gut. For example, fucosidases have been shown to be indicators and/or involved in hepatocellular carcinoma, breast cancer, and helicobacter pylori infections. A prerequisite for the detection and profiling of fucosidases is the formation of a specific covalent linkage between the enzyme of interest and the activity-based probe (ABP). The most commonly used fucosidase ABPs are limited to only one of the classes of fucosidases, the retaining fucosidases. New approaches are needed that allow for the detection of the second class of fucosidases, the inverting type. Here, we report an ortho-quinone methide-based probe with an azide mini-tag that selectively labels both retaining and inverting bacterial α-l-fucosidases. Mass spectrometry-based intact protein and sequence analysis of a probe-labeled bacterial fucosidase revealed almost exclusive single labeling at two specific tryptophan residues outside of the active site. Furthermore, the probe could detect and image extracellular fucosidase activity on the surface of live bacteria.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Indolquinonas , Helicobacter pylori/metabolismo , Humanos , alfa-L-Fucosidase/metabolismo
16.
FEBS J ; 289(16): 4998-5020, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113503

RESUMO

Fucosylated compounds are abundantly present in nature and are associated with many biological processes, therefore carrying great potential for use in medicine and biotechnology. Efficient ways to modify fucosylated compounds are still being developed. Promising results are provided by glycosyl hydrolases with transglycosylating activities, such as α-l-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus (family GH151 of Carbohydrate-Active enZYmes). Currently, there is no 3D structure representing this glycoside hydrolase family and only a few members have been investigated. Here, we present the first structure-function study of a GH151 member, providing the key insights into its specific oligomerization and active site properties. According to the crystal structure, small-angle X-ray scattering data and catalytic investigation, this enzyme functions as a tetramer of a new type and represents the second known case of active site complementation among all α-l-fucosidases. Mutation of the active site-complementing residue histidine 503 to alanine confirmed its influence on α-l-fucosidase activity and, specifically, on substrate binding. Several unique features of GH151 family α-l-fucosidases were revealed, including the oligomerization pattern, active site accessibility and complementation, and substrate selectivity. Some common properties of GH151 glycosyl hydrolases then would be the overall three-domain structure and conservation of the central domain loop 2 function, including its complementation role and the formation of the carbohydrate-binding platform in the active site vicinity.


Assuntos
Carboidratos , alfa-L-Fucosidase , Catálise , Domínio Catalítico , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
17.
Glycobiology ; 32(6): 529-539, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35137077

RESUMO

$\text{L} $ -Fucose is the most widely distributed $\text{L} $-hexose in marine and terrestrial environments and presents a variety of functional roles. $\text{L} $-Fucose is the major monosaccharide in the polysaccharide fucoidan from cell walls of brown algae and is found in human milk oligosaccharides (HMOs) and the Lewis blood group system, where it is important in cell signaling and immune response stimulation. Removal of fucose from these biomolecules is catalyzed by fucosidases belonging to different carbohydrate-active enzyme (CAZy) families. Fucosidases of glycoside hydrolase family 29 (GH29) release α-$\text{L} $-fucose from non-reducing ends of glycans and display activities targeting different substrate compositions and linkage types. While several GH29 fucosidases from terrestrial environments have been characterized, much less is known about marine members of GH29 and their substrate specificities, as only four marine GH29 enzymes were previously characterized. Here, five GH29 fucosidases originating from an uncultured fucoidan-degrading marine bacterium (Paraglaciecola sp.) were cloned and produced recombinantly in Escherichia coli. All five enzymes (Fp231, Fp239, Fp240, Fp251 and Fp284) hydrolyzed the synthetic substrate CNP-α-$\text{L} $-fucose. Assayed against up to 17 fucose-containing oligosaccharides, Fp239 showed activity against the Lewis Y antigen, 2'- and 3-fucosyllactose, while Fp284 degraded 2'-fucosyllactose and Fuc(α1,6)GlcNAc. Furthermore, Fp231 displayed strict specificity against Fuc(α1,4)GlcNAc, a previously unreported specificity in GH29. Fp231 is a monomeric enzyme with pH and temperature optima at pH 5.6-6.0 and 25°C, hydrolyzing Fuc(α1,4)GlcNAc with kcat = 1.3 s-1 and Km = 660 µM. Altogether, the findings extend our knowledge about GH29 family members from the marine environment, which are so far largely unexplored.


Assuntos
Glicosídeo Hidrolases , alfa-L-Fucosidase , Escherichia coli/metabolismo , Fucose/metabolismo , Glicosídeo Hidrolases/química , Humanos , Leite Humano/química , Oligossacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética
18.
Food Chem ; 369: 130942, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479010

RESUMO

2'-Fucosyllactose (2'-FL) is one of the nutrient ingredients in human milk, which has various beneficial health effects. α-l-fucosidase is a biotechnological tool for 2'-FL preparation. Here, a novel and efficient α-l-fucosidase OUC-Jdch16 from the fucoidan-digesting strain Flavobacterium algicola 12076 was heterologously expressed and applied to produce 2'-FL in vitro. OUC-Jdch16 belongs to glycoside hydrolases (GH) family 29 and exhibits the highest 4-nitrophenyl-α-l-fucopyranoside-hydrolyzing activity at 25 °C and pH 6.0. OUC-Jdch16 could catalyze the synthesis of 2'-FL via transferring the fucosyl residue from pNP-α-fucose to lactose. Under the optimal transfucosylation conditions, the yield of the transfucosylation product reached 84.82% and 92.15% (mol/mol) from pNP-α-fucose within 48 h and 120 h, respectively. Moreover, OUC-Jdch16 was capable of transferring the fucosyl residue to other glycosyl receptors with the generation of novel fucosylated compounds. This study demonstrated that OUC-Jdch16 could be a promising tool to prepare 2'-FL and other novel glycosides.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Flavobacterium , Fucose , Humanos , Especificidade por Substrato , Trissacarídeos , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
19.
Theriogenology ; 177: 133-139, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34700070

RESUMO

This study aimed to compare the activity of selected glycosidases (ß-galactosidase, α-l-fucosidase, ß-N-acetyl-hexosaminidase, and sialidase) in homogenates of uterine tissues obtained from female dogs with and without pyometra. In addition, it examined the availability of substrates for these glycosidases in the homogenates. The study was carried out on female dogs undergoing ovariohysterectomy for pyometra (n = 10) and clinically healthy dogs (n = 10) undergoing elective spaying. The activity of ß-galactosidase, α-l-fucosidase, and ß-N-acetyl-hexosaminidase was analyzed using a spectrofluorometer and that of sialidase using a colorimetric method. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis with Alcian Blue (AB) and Periodic Acid-Schiff (PAS) staining was performed to determine the presence of substrates for these glycosidases in the homogenates of uterine tissues. The results revealed that the activity of all the examined glycosidases was significantly higher (P < 0.05) in the uterine tissues isolated from dogs with pyometra in comparison to healthy dogs. The electrophoretic patterns of the selected samples showed several proteins, which contained different sugar moieties stained by AB and PAS and the profiles differed significantly between the pyometra group and the healthy group. Densitometric analysis of AB staining showed patterns between 233 and 148, 86 and 55, and 43 and 20 kDa, which differed markedly in sugar content between the examined groups of animals. Similarly, PAS staining analysis revealed patterns of different molecular weights, between 233 and 117 and between 55 and 32 kDa, which also differed in sugar content. These findings suggest that canine pyometra is accompanied by the increase in the activity of selected glycosidases in the uterus. This could potentially modify the glycan structures of uterine glycoproteins and in result their biological functions. Further studies are needed to elucidate the potential role of the increased activity of glycosidases in the pathogenesis of this disease.


Assuntos
Doenças do Cão , Piometra , Animais , Diestro , Cães , Feminino , Glicoproteínas , Neuraminidase , Piometra/veterinária , alfa-L-Fucosidase , beta-Galactosidase , beta-N-Acetil-Hexosaminidases
20.
Endocr Relat Cancer ; 29(3): 139-149, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935631

RESUMO

Cancer-associated adipocytes (CAAs) have been suggested to promote tumor progression. Yet, the role of CAAs in triple-negative breast cancer (TNBC) is poorly investigated. We compared the expression of secretory protein-encoding genes in CAAs and control adipocytes. The effect of key secretory protein(s) on TNBC cell behaviors was explored. CAAs expressed and secreted FUCA2 at greater levels than control adipocytes. When FUCA2 activity was blocked with a neutralizing antibody, TNBC cell proliferation and migration induced by CAA-conditioned medium was impaired. In contrast, supplement of exogenous FUCA2 protein reinforced the proliferation, colony formation, and migration of TNBC cells. In vivo studies confirmed that FUCA2 exposure enhanced tumorigenesis and metastasis of TNBC cells. Mechanistic investigation revealed that FUCA2 induced TNBC aggressiveness through TM9SF3-dependent signaling. Depletion of TM9SF3 blocked CAA- and FUCA2-induced TNBC cell proliferation and migration. Compared to adjacent breast tissues, TNBC tissues had increased expression of TM9SF3. Moreover, high TM9SF3 expression was associated with advanced TNM stage, lymph node metastasis, and shorter overall survival of TNBC patients. Altogether, CAAs secrete FUCA2 to promote TNBC growth and metastasis through interaction with TM9SF3. Inhibition of TM9SF3 may represent a potential therapeutic strategy in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Adipócitos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...