RESUMO
Sulfidated nano zero-valent iron particles were immobilized on ZSM-5 zeolite (Z/S-nZVI) and used for hexavalent chromium (Cr(VI)) remediation. The performance of Z/S-nZVI improved with the increase in Cr(VI) concentration (< 60 mg/L), while the performance significantly decreased for a Cr(VI) concentration of more than 60 mg/L. The adsorption behavior for Cr(VI) was different from that reported in previous studies. The improved performance can be tailored for increasing efficiency of nano zero-valent iron (nZVI) corrosion, while the degree of corrosion of nZVI was affected by the concentration of the pollutant as discussed by kinetics, X-ray diffraction (XRD) and X-ray photoelectron spectrometer (XPS) analyses. The experiments for the dissolution of ferrous ions and the dosage of adsorbent demonstrated that the critical layer in the liquid-solid system changed with the increase in the concentration of Cr(VI) (Cr(VI): Z/S-nZVI > 0.6). Moreover, the removal mechanisms of Cr(VI) were elucidated through XRD, transmission electron microscopy (TEM) and XPS techniques. This results demonstrate that the species of chromium in the critical layer changed from Cr(III) to Cr(VI) as the concentration of chromium increased from low to high. Furthermore, the critical layer was composed of Cr(VI), Fe(II), O and H elements. Additionally, the experiments of coexisting ions and aging time confirmed that Z/S-nZVI possessed high selectivity and stability to ensure efficiency and cost-effectiveness in practical applications.
Assuntos
Poluentes Químicos da Água , Zeolitas , Ferro , Poluentes Químicos da Água/análise , Cromo/análise , Adsorção , ÍonsRESUMO
Greenhouse gases (GHGs) emitted or absorbed by lakes are an important component of the global carbon cycle. However, few studies have focused on the GHG dynamics of eutrophic saline lakes, thus preventing a comprehensive understanding of the carbon cycle. Here, we conducted four sampling analyses using a floating chamber in Daihai Lake, a eutrophication saline lake in Inner Mongolia Autonomous Region, China, to explore its carbon dioxide (CO2) and methane (CH4) emissions. The mean CO2 emission flux (FCO2) and CH4 emission flux (FCH4) were 17.54 ± 14.54 mmol/m2/day and 0.50 ± 0.50 mmol/m2/day, respectively. The results indicated that Daihai Lake was a source of CO2 and CH4, and GHG emissions exhibited temporal variability. The mean CO2 partial pressure (pCO2) and CH4 partial pressure (pCH4) were 561.35 ± 109.59 µatm and 17.02 ± 13.45 µatm, which were supersaturated relative to the atmosphere. The regression and correlation analysis showed that the main influencing factors of pCO2 were wind speed, dissolved oxygen (DO), total nitrogen (TN) and Chlorophyll a (Chl.a), whereas the main influencing factors of pCH4 were water temperature (WT), Chl.a, nitrate nitrogen (NO3--N), TN, dissolved organic carbon (DOC) and water depth. Salinity regulated carbon mineralization and organic matter decomposition, and it was an important influencing factor of pCO2 and pCH4. Additionally, the trophic level index (TLI) significantly increased pCH4. Our study elucidated that salinity and eutrophication play an important role in the dynamic changes of GHG emissions. However, research on eutrophic saline lakes needs to be strengthened.
Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Lagos/análise , Salinidade , Clorofila A , China , Eutrofização , Metano/análise , Nitrogênio/análise , Água/análiseRESUMO
Fouling of landfill leachate, a biofilm formation process on the surface of the collection system, migration pipeline and treatment system causes low efficiency of leachate transportation and treatment and increases cost for maintenance of those facilities. In addition, landfill leachate fouling might accumulate pathogens and antibiotic resistance genes (ARGs), posing threats to the environment. Characterization of the landfill leachate fouling and its associated environmental behavior is essential for the management of fouling. In this study, physicochemical and biological properties of landfill leachate fouling and the possible accumulation capacity of pathogens and ARGs were investigated in nitrification (aerobic condition) and denitrification (anaerobic condition) process during landfill leachate biological treatment, respectively. Results show that microbial (bacterial, archaeal, eukaryotic, and viral) community structure and function (carbon fixation, methanogenesis, nitrification and denitrification) differed in fouling under aerobic and anaerobic conditions, driven by the supplemental leachate water quality. Aerobic fouling had a higher abundance of nitrification and denitrification functional genes, while anaerobic fouling harbored a higher abundance of carbon fixation and methanogenesis genes. Both forms of leachate fouling had a higher abundance of pathogens and ARGs than the associated leachate, suggesting the accumulation capacity of fouling on biotic pollutants. Specifically, aerobic fouling harbored three orders of magnitude higher multidrug resistance genes mexD than its associated leachate. This finding provides fundamental knowledge on the biological properties of leachate fouling and suggests that leachate fouling might harbor significant pathogens and ARGs.
Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Nitrogênio , Reatores Biológicos , Nitrificação , Bactérias/genética , Antibacterianos , DesnitrificaçãoRESUMO
This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide (SO2), Nitrogen dioxide (NO2), Formaldehyde (HCHO), Particulate Matter PM; PM10: diameter ≤ 10 µm, and PM2.5: diameter ≤ 2.5 µm), and Ozone (O3), over Dongying (Shandong Province) from March-April 2018 and September-October 2019 by employing ground-based Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations along with the in-situ measurements attained by the national air quality monitoring platform. The concentrations of SO2 and NO2 were under the acceptable level, while both PM2.5, and PM10 were higher than the safe levels as prescribed by national and international air quality standards. The results depict that 21% of the total observation days were found to be complex polluted days (PM2.5 > 35 µg/m3 and O3 > 160 µg/m3). The secondary HCHO was used for accurate analysis of O3 sensitivity. A difference of 11.40% and 10% during March-April 2018 and September-October 2019 respectively in O3 sensitivity was found between HCHOtotal/NO2 and HCHOsec/NO2. The results indicate that primary HCHO have significant contribution in HCHO. O3 formation predominantly remained to be in VOC-limited and transitional regime during March-April 2018 and September-October 2019 in Dongying. These results imply that concurrent control of both NOx and VOCs would benefit in ozone reductions. Additionally, the criteria pollutants (PM, SO2, and NO2) depicted strong correlations with each other except for O3 for which weak correlation coefficient was obtained with all the species. This study will prove to be baseline for designing of air pollution control strategies.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , China , Análise Espectral , Aerossóis/análiseRESUMO
Due to the non-linearity in ozone (O3) formation, reducing the emission of nitrogen oxides (NOx) may increase O3 concentration. Given the counteractive O3 response to NOx reduction, overall impact of air pollution controls can be ambiguous when the assessments focus on the changes in pollutant concentrations. In this study, a risk-based method was used to gauge the net effect of air pollution controls on mortality risk in the Beijing-Tianjin-Hebei (BTH) region during the 2022 Winter Olympics and Paralympics (WOP). This mega-event presents a unique opportunity to investigate the efficacy of deep cuts in pollutant emissions. Results show that O3 concentrations greatly increased as nitrogen dioxide (NO2) concentrations decreased in the BTH. Due to the active photochemical formations, O3 became the dominant pollutant that affected human health during the WOP. Despite the substantial O3 increases, the health benefits of NO2 reductions overwhelmed the adverse health effects of O3 increases in most regions of the BTH (at 81 out of 112 stations). After considering the impacts of particulate matter, the integrated health risk of air pollution mixtures declined almost everywhere in the BTH. Our results underscore the great necessity of changing the assessment paradigm of pollution control from using concentration-based methods to using risk-based methods. Together with the carbon neutrality policy, stringent control of NOx emission from combustion sources is a promising way to achieve synergistic control solutions for air pollution and climate change.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Pequim , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , ChinaRESUMO
A survey was conducted of the volatile organic compounds (VOCs) released from sources of solvent use, industry activities and vehicle emissions in Guiyang, a capital city of China. Samples were collected by canisters and analyzed by GC-MS-FID. The species profiles of VOCs emitted from sources were obtained. Results showed that xylenes, ethylbenzene, acetone and dichloromethane were the characteristics species for painting, 2-propanol and ethyl acetate for printing, α-pinene for solid wood furniture manufacturing, and 2-butanone for biscuit baking. These characteristics species could be as tracers for the sources respectively. In most of samples from the solvent use, the benzene/toluene (B/T) ratio was less than 0.3, indicating that the ratio could be as the indicator for tracing the solvent use related sources. The results also suggested that the toluene/xylene (T/X) ratio be as the indicator to distinguish the VOCs sources of painting (<2) from the printing (>2). Aromatics contributed the most to ozone formation potential (OFP) of most painting and non-paper printing sources, and oxygen-containing VOCs (OVOCs) were major species contributing to OFP of the sources from food production and paper printing. The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes. The α-pinene could explain 56.94% and 32.54% of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing, which was rarely been involved in previous studies of VOCs source profiles, indicating that the species of concern for VOCs sources are still insufficient at present.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Solventes , Compostos Orgânicos Voláteis/análise , China , Ozônio/análise , Tolueno , Xilenos , Monitoramento AmbientalRESUMO
In the suburbs of Kitakyushu, Japan, the inorganic aerosol mass concentration (IAM) was about 32.7 µg/m3, with the aerosol pH of 3.3. To study the thermodynamics of aerosol when its individual components' concentration is reduced, sensitive tests were performed using the ISORROPIA II model, in which the seven control species-TNaCl, TNH4+, TSO42-, TNO3-, TMg2+, TK+, and TCa2+-were taken into account. IAM and inorganic aerosol pH after reducing TNaCl, TNO3-, TMg2+, TK+, and TCa2+ responded linearly (0% ≤ concentration reduction ratio (CRR) ≤ 100%, with the exception of 100% in TNaCl); the nonlinear variations of these two parameters could be observed by controlling TNH4+ and TSO42-. Unexpected aerosol behavior occurred at 100% reduction of TNaCl, which was caused by the sudden increase of NO3-, NH4+, and aerosol liquid water content (ALWC); the increase of IAM was also observed after controlling TSO42- (60% ≤ CRR ≤ 100%) and TCa2+ (0% ≤ CRR ≤ 100%), which was mainly related to the variation of ALWC driven by the response of CaSO4. Multiple regression analysis showed that ALWC was statistically and strongly related to the variations of NO3-, Cl-, SO42-, HSO4-, HNO3, and NH3 (P < 0.05), with regression coefficients of 1.68, 5.23, 1.83, 2.81, 0.34, and 0.57, respectively. The highest coefficient (5.23) was found for Cl-, revealing that sea salts significantly influenced particle responses. Overall, this study comprehensively investigated aerosol characteristics and inner responses for the reduction of components, which is of great significance for a better understanding of atmospheric chemistry in Kitakyushu, Japan.
Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Japão , Monitoramento Ambiental , Água/química , Aerossóis/análiseRESUMO
Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.
Assuntos
Lignina , Lipídeos , Lignina/análise , Lipídeos/análise , Plantas , Xilema/química , Parede CelularRESUMO
Fourier transform infrared spectroscopy (FTIR) is a simple nondestructive technique that allows the user to obtain quick and accurate information about the structure of the constituents of wood. Spectra deconvolution is a computational technique, complementary to FTIR analysis, which improves the resolution of overlapped or unobserved bands in the raw spectra. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques. Additionally, the deconvolution process of FTIR spectra for the determination of the S/G ratio, in lignin isolated by this or other methods, is explained in detail.
Assuntos
Lignina , Madeira , Lignina/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromatografia Líquida de Alta Pressão/métodos , Madeira/química , Cromatografia GasosaRESUMO
Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil. However, the potential risk of sulfur into the soil remediation by persulfate remains ignored. In this study, glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants (aniline). The results found sulfate to be the main end-product (83.0%â99.5%) of persulfate remediation after 10 days. Moreover, H2S accounted for 93.4%â99.4% of sulfur reduction end-products, suggesting that H2S was the final fate of sulfur. H2S was released rapidly after one to three days at a maximum concentration of 33.0 ppm, which is sufficient to make a person uncomfortable. According to the fitted curve results, H2S concentration decreased to a safe concentration (0.15 ppm) after 20â85 days. Meanwhile, the maximum concentration of methanethiol reached 0.6 ppm. These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time. Therefore, persulfate should be used more carefully as a remediation agent for soil contamination.
Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Humanos , Oxirredução , Poluição Ambiental , Solo , Enxofre , Poluentes do Solo/análise , SulfatosRESUMO
The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/análise , População do Leste Asiático , Monitoramento Ambiental , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Material Particulado/análise , Radicais Livres , China/epidemiologiaRESUMO
Ecological studies suggested a link between air pollution and severe COVID-19 outcomes, while studies accounting for individual-level characteristics are limited. In the present study, we aimed to investigate the impact of short-term ambient air pollution exposure on disease severity among a cohort of 569 laboratory confirmed COVID-19 patients admitted to designated hospitals in Zhejiang province, China, from January 17 to March 3, 2020, and elucidate the possible biological processes involved using transcriptomics. Compared with mild cases, severe cases had higher proportion of medical conditions as well as unfavorable results in most of the laboratory tests, and manifested higher air pollution exposure levels. Higher exposure to air pollutants was associated with increased risk of severe COVID-19 with odds ratio (OR) of 1.89 (95% confidence interval (CI): 1.01, 3.53), 2.35 (95% CI: 1.20, 4.61), 2.87 (95% CI: 1.68, 4.91), and 2.01 (95% CI: 1.10, 3.69) for PM2.5, PM10, NO2 and CO, respectively. OR for NO2 remained significant in two-pollutant models after adjusting for other pollutants. Transcriptional analysis showed 884 differentially expressed genes which mainly were enriched in virus clearance related biological processes between patients with high and low NO2 exposure levels, indicating that compromised immune response might be a potential underlying mechanistic pathway. These findings highlight the impact of short-term air pollution exposure, particularly for NO2, on COVID-19 severity, and emphasize the significance in mitigating the COVID-19 burden of commitments to improve air quality.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , China/epidemiologia , Exposição Ambiental/análiseRESUMO
It is crucial to achieve accurate and rapid detection of tert-butylhydroquinone (TBHQ) in the field of food safety, for the excessive addition of TBHQ in food is harmful to human health and evil to the environment and aquatic life. Therefore, researchers have done a lot of work on signal amplification through nanomaterials to achieve TBHQ detection, but the conventional single-signal detection strategy results in limited accuracy. In this work, an innovative and facile ratiometric electrochemical sensor for TBHQ detection was built based on advanced nanomaterial complexes carbon nanotube-encapsulated Co/nitrogen-doped carbon (Co NC/CNT) and selected internal reference signal methylene blue (MB) enhancing the accuracy by offering effective self-calibration. A linear relationship between the net peak current ratio between TBHQ and MB (ΔI (TBHQ)/ΔI (MB)) and the TBHQ concentration was obtained under the optimal experimental conditions, with two linear ranges of 0.1-20 µM and 20-100 µM and a limit of detection (LOD) of 0.054 µM (S/N = 3). Benefiting from the synergistic effects between Co NC and CNT and the ratiometric sensing strategy, the as-designed sensor for TBHQ detection showcased excellent selectivity, repeatability, reproducibility, stability, and satisfactory applicability in real edible oil samples.
Assuntos
Aditivos Alimentares , Azul de Metileno , Humanos , Aditivos Alimentares/análise , Reprodutibilidade dos Testes , Hidroquinonas/química , Limite de Detecção , Técnicas Eletroquímicas/métodosRESUMO
The valorization of co-products may be a promising way to meet the dual challenge of increasing global food resources and sustainability of food systems. In particular, meat co-products may be nutritionally interesting protein resources, if they offer functional properties in accordance with food applications. In that aim, two bovine co-products, resulting from the fat rendering process, have been characterized, regarding the protein solubility, gelling, and emulsifying properties. The effect of protein concentration, pH variation and NaCl addition on these properties was tested. Despite an effect of the ionic strength on the protein solubility of the two ingredients, a little or no significant impact was observed on the functionalities. Similarly, the functional properties were scarcely affected by pH. In the end, the protein concentration has proven to be the only important parameter, which points to an easy utilization of these ingredients in many food conditions.
Assuntos
Produtos da Carne , Proteínas , Bovinos , Animais , Produtos da Carne/análise , Solubilidade , Concentração OsmolarRESUMO
A new dummy template-based molecularly imprinted dispersive micro solid-phase extraction (MI-d-µSPE) coupled with HPLC-FLD developed for the simultaneous determination of four aflatoxins (B1, B2, G1, G2) in various food matrices. The synthesized MIP was used as a dispersive solid-phase extraction (dSPE) sorbent for aflatoxins extraction. The chemometric approach was used to identify the optimum conditions of dSPE. The results showed the amount of MIP sorbent (55 mg), adsorption time (12.5 min), and %ACN (75%) were significant extraction parameters. The method has a detection limit in the range of 0.059-0.208 µg kg-1 and a quantification limit in the range of 0.197-0.694 µg kg-1 for aflatoxins. The intra- and inter-day precision was less than 5%, and recoveries were 79.1-109.4%. The expanded uncertainty of the developed method was found to be 2.9-22.8%. The new MI-d-µSPE with HPLC-FLD method was applied for 37 food matrices.
Assuntos
Aflatoxinas , Impressão Molecular , Cromatografia Líquida de Alta Pressão/métodos , Aflatoxinas/análise , Extração em Fase Sólida/métodos , AlimentosRESUMO
Thiabendazole (TBZ), a highly toxic phosphorothioate insecticide commonly used in postharvest fruit management, has the potential to cause detrimental effects on human health as an endocrine disruptor. In this study, an electrochemical sensor was developed to detect TBZ by modifying MoS2 on silver nanowires (Ag NWs@MoS2) and integrating them onto a glassy carbon surface. Cyclic voltammetry revealed that TBZ underwent an irreversible, diffusion-controlled process on Ag NWs@MoS2, leading to a two-fold increase in peak current compared to unmodified MoS2. Square wave voltammetry facilitated TBZ detection, and the sensor exhibited a linear range of 0.05-10 µM with a high coefficient of determination (R2 = 0.9958) and a limit of detection (LOD) of 1.75 nM (signal-to-noise ratio = 3). The sensor's applicability for food safety monitoring was verified through TBZ analysis in pear and apple samples, achieving recoveries of 95.5-103.6% with RSDs in the range of 1.98-3.25%.
Assuntos
Nanofios , Tiabendazol , Humanos , Tiabendazol/análise , Molibdênio/química , Prata/análise , Frutas/química , Técnicas EletroquímicasRESUMO
The aim of this study was to investigate effects of cholesterol removal treatment (CRT) on the flavor, taste, texture, color, and nutritional value of hot gel egg yolk (EY). The off-odor, volatile components and taste of EY treated with CRT were studied by electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS) and electronic tongue (E-tongue). The effect of CRT on the nutritional value of EY was studied by amino acid and fatty acid analysis. The CRT significantly reduced the content of hexanal, 2-amyl-furan, 1-octene-3-ol, styrene and heptanal in EY1-EY4, also decreased its bitter taste without affecting other taste and elasticity. In addition, the CRT did not affect the essential amino acids (EAA) content and L*, a* and b* values of EY1-EY4, but it led to the reduction in polyunsaturated fatty acids (PUFA) content. In general, the CRT is an effective way to reduce the off-odor of EY without affecting consumer acceptance.
Assuntos
Gema de Ovo , Compostos Orgânicos Voláteis , Gema de Ovo/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nariz Eletrônico , Paladar , Compostos Orgânicos Voláteis/análiseRESUMO
This study aimed to analyze the key aroma compounds and core functional microorganisms of Monascus-fermented cheese (MC). 36 key aroma compounds were identified according to gas chromatograph-mass spectrometer (GC-MS), aroma extract dilution analysis (AEDA), and odor activity values (OAV) analysis. And internal standard curves were used to clarify the changes in their concentration of them during cheese ripening. Furthermore, High-throughput sequencing was used to investigate the composition and dynamic changes of bacteria and fungi in MC, respectively. Lactococcus lactis was found to be the dominant bacterium while Monascus was confirmed to be the dominant fungus. In addition, Pearson correlation analysis showed that Lactococcus lactis, Staphylococcus, Trichococcus, and Monascus were strongly associated with the 36 key aroma compounds (r > 0.80, p < 0.05). Finally, a metabolic network containing biosynthetic pathways of the key aroma compounds was constructed. This study provides deeper insights into the unique aroma of MC and the contribution of cheese microbiota.
Assuntos
Queijo , Monascus , Compostos Orgânicos Voláteis , Odorantes/análise , Monascus/metabolismo , Queijo/análise , Fermentação , Compostos Orgânicos Voláteis/análise , OlfatometriaRESUMO
Metabolomics is widely established in the field of food authenticity to address demanding issues, such as adulteration cases. Trapped ion mobility spectrometry (TIMS) coupled to liquid chromatography (LC) and high-resolution mass spectrometry (HRMS) provides an additional analytical dimension, introducing mobility-enhanced metabolomics in four dimensions (4D). In the present work, the potential of LC-TIMS-HRMS as a reliable analytical platform for authenticity studies is being explored, applied in extra virgin olive oil (EVOO) adulteration study. An integrated untargeted 4D-metabolomics approach is being implemented to investigate adulteration, with refined olive oils (ROOs) and olive pomace oils (OPOs) set as adulterants. Robust prediction models are built, successfully discriminating authentic EVOOs from adulterated ones and highlighting markers in each group. Noteworthy outcomes are retrieved regarding TIMS added value in LC-HRMS workflows, resulting in a significant increase of metabolic coverage, while, thanks to platform's enhanced sensitivity, detection of adulteration is being achieved down to 1%.
Assuntos
Contaminação de Alimentos , Óleos de Plantas , Azeite de Oliva/química , Espectrometria de Massas , Cromatografia Líquida , Óleos de Plantas/análise , Contaminação de Alimentos/análiseRESUMO
Herein, we propose a method for detecting thiram based on the fluorescence inner filter effect using upconversion nanoparticles and dithizone-cadmium complexes (DZ-Cd2+). The ultraviolet absorption of DZ-Cd2+ was in the range of 480-600 nm under alkaline conditions, resulting in fluorescence quenching of the nanoparticles at 540 nm. Thiram had a stronger coordination effect with Cd2+ than dithizone; thus, more thiram-cadmium complex (T-Cd2+) formed when thiram was added, leading to fluorescence recovery at 540 nm. The standard thiram curve was found to have a detection limit of 6.75 ng/mL in the linear range of 0.01-1000 µg/mL. In addition, high-performance liquid chromatography results for detecting thiram in apple samples revealed good application performance. The results demonstrate that the developed method has great potential to detect thiram residues in food.