Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.354.315
Filtrar
1.
Isr Med Assoc J ; 23(9): 563-568, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34472231

RESUMO

BACKGROUND: Infants born very prematurely have functionally and structurally immature gastrointestinal tracts. OBJECTIVES: To assess the safety and tolerability of administration of enteral recombinant human (rh) insulin on formula fed preterm infants and to assess whether enteral administration of rh-insulin enhances gastrointestinal tract maturation by reducing the time to reach full enteral feeding. METHODS: A phase 2, multicenter, double-blind, placebo-controlled, randomized study was conducted. Premature infants (26-33 weeks gestation) were randomized 1:1 to receive insulin 400 µU/ml mixed with enteral feeding or placebo added to their formula. The primary efficacy outcome measure was the number of days required to achieve full enteral feeding. Safety outcomes included adverse events and blood glucose levels. RESULTS: The study consisted of 33 infants randomized for the safety population and 31 for efficacy analysis. The mean time to full enteral feeding was 6.37 days (95% confidence interval [95%CI] 4.59-8.15) in the enteral rh-insulin treatment group (n=16) and 8.00 days (95%CI 6.20-9.80) in the placebo group (n=15), which represents a statistically significant reduction of 1.63 days (95%CI 0.29-2.97; P = 0.023). There was no difference in blood glucose levels between the groups and none of the participants experienced hypoglycemia. Adverse events occurred in 9/17 (53%) infants in the enteral rh-insulin group and 12/16 (75%) in the placebo group. CONCLUSIONS: Our trial demonstrated that administration of enteral rh-insulin as supplement to enteral nutrition significantly reduced time to achieve full enteral feeding in preterm infants with a gestational age of 26-33 weeks.


Assuntos
Nutrição Enteral/estatística & dados numéricos , Hipoglicemiantes/administração & dosagem , Recém-Nascido Prematuro , Insulina/administração & dosagem , Glicemia/efeitos dos fármacos , Método Duplo-Cego , Feminino , Idade Gestacional , Humanos , Hipoglicemiantes/efeitos adversos , Recém-Nascido , Insulina/efeitos adversos , Masculino , Fatores de Tempo
2.
Zool Res ; 42(5): 650-659, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472226

RESUMO

Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The ß subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null ( mdx) mice and BaCl 2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl 2-injection. Compared to the control mice, the cKO mice showed decreased Pax7 + and MYH3 + SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.


Assuntos
Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Proliferação de Células , Distrofina/genética , Distrofina/metabolismo , Antagonistas de Estrogênios/toxicidade , Regulação da Expressão Gênica/fisiologia , Genótipo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/genética , Tamoxifeno/toxicidade
3.
N Engl J Med ; 385(10): 921-929, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34469647

RESUMO

Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).


Assuntos
Mutação em Linhagem Germinativa , Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais/fisiologia , Infecções por Papillomavirus/terapia , Citotoxicidade Imunológica , Encefalite/virologia , Feminino , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Microbiota/efeitos dos fármacos , Células T Matadoras Naturais/fisiologia , Papillomaviridae , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/imunologia , Linhagem , Pele/microbiologia , Transplante Homólogo , Adulto Jovem
4.
J Clin Psychiatry ; 82(5)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496461

RESUMO

Treatment-resistant schizophrenia (TRS) represents a major clinical challenge. The broad definition of TRS requires nonresponse to at least 2 sequential antipsychotic trials of sufficient dose, duration, and adherence. Several demographic, clinical, and neurologic predictors are associated with TRS. Primary (or early) TRS is present from the beginning of therapy, while patients with secondary (or later-onset) TRS initially respond to antipsychotics but become resistant over time, often after relapses. Guidelines worldwide recognize clozapine as the most effective treatment option for TRS, but clozapine is underused due to various barriers. Importantly, studies indicate that response rates are higher when clozapine is initiated earlier in the treatment course. Side effects are common with clozapine, particularly in the first few weeks, but can mostly be managed without discontinuation; they do require proactive assessment, intervention, and reassurance for patients. Furthermore, plasma leucocyte and granulocyte levels must be monitored weekly during the first 18-26 weeks of treatment, and regularly thereafter, according to country regulations. Therapeutic drug monitoring of clozapine trough plasma levels is helpful to guide dosing, with greatest efficacy at plasma clozapine levels ≥350 µg/L, although this level is not universal. Notably, plasma clozapine levels are generally greater at lower doses in nonsmokers, patients with heavy caffeine consumption, in women, in obese people, in those with inflammation (including COVID-19 infection), and in older individuals. Earlier and broader use of clozapine in patients with TRS is an important measure to improve outcomes of patients with this most severe form of the illness.


Assuntos
Antipsicóticos/administração & dosagem , Clozapina/administração & dosagem , Esquizofrenia/tratamento farmacológico , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Resistência a Medicamentos/efeitos dos fármacos , Tolerância a Medicamentos , Feminino , Humanos , Masculino
6.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502335

RESUMO

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.


Assuntos
Antivirais/farmacologia , Simulação de Acoplamento Molecular , Oligopeptídeos/química , Peptídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/tratamento farmacológico , COVID-19/virologia , Domínio Catalítico , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Reposicionamento de Medicamentos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
7.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34502431

RESUMO

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Equipamento de Proteção Individual , Anti-Infecciosos/química , Bacteriófago phi 6/efeitos dos fármacos , Compostos de Benzalcônio/química , Compostos de Benzalcônio/farmacologia , COVID-19/patologia , COVID-19/virologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Polietilenotereftalatos/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Staphylococcus epidermidis/efeitos dos fármacos
8.
Front Immunol ; 12: 709861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475873

RESUMO

Background: Immune hyperactivity is an important contributing factor to the morbidity and mortality of COVID-19 infection. Nasal administration of anti-CD3 monoclonal antibody downregulates hyperactive immune responses in animal models of autoimmunity through its immunomodulatory properties. We performed a randomized pilot study of fully-human nasal anti-CD3 (Foralumab) in patients with mild to moderate COVID-19 to determine if its immunomodulatory properties had ameliorating effects on disease. Methods: Thirty-nine outpatients with mild to moderate COVID-19 were recruited at Santa Casa de Misericordia de Santos in Sao Paulo State, Brazil. Patients were randomized to three cohorts: 1) Control, no Foralumab (n=16); 2) Nasal Foralumab (100ug/day) given for 10 consecutive days with 6 mg dexamethasone given on days 1-3 (n=11); and 3) Nasal Foralumab alone (100ug/day) given for 10 consecutive days (n=12). Patients continued standard of care medication. Results: We observed reduction of serum IL-6 and C-reactive protein in Foralumab alone vs. untreated or Foralumab/Dexa treated patients. More rapid clearance of lung infiltrates as measured by chest CT was observed in Foralumab and Foralumab/Dexa treated subjects vs. those that did not receive Foralumab. Foralumab treatment was well-tolerated with no severe adverse events. Conclusions: This pilot study suggests that nasal Foralumab is well tolerated and may be of benefit in treatment of immune hyperactivity and lung involvement in COVID-19 disease and that further studies are warranted.


Assuntos
Anticorpos Monoclonais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , Pneumonia/terapia , Administração Intranasal , Adolescente , Adulto , Anticorpos Monoclonais/administração & dosagem , Biomarcadores , Proteína C-Reativa/análise , COVID-19/fisiopatologia , COVID-19/terapia , Estudos de Coortes , Feminino , Humanos , Imunidade/efeitos dos fármacos , Interleucina-6/sangue , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Projetos Piloto , Pneumonia/prevenção & controle , Adulto Jovem
9.
Front Immunol ; 12: 706186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484202

RESUMO

Background: Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. Objective: Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. Methods and Results: We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. Conclusions: Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.


Assuntos
COVID-19/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , COVID-19/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , SARS-CoV-2/efeitos dos fármacos
10.
Ann Clin Microbiol Antimicrob ; 20(1): 64, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493302

RESUMO

BACKGROUND: Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS: We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS: Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to ß-lactams and quinolones. CONCLUSIONS: Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.


Assuntos
Antibacterianos/farmacologia , COVID-19/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Sistema Respiratório/microbiologia , COVID-19/complicações , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Pneumonia Associada à Ventilação Mecânica/microbiologia , Estudos Prospectivos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Suíça
11.
Virulence ; 12(1): 2214-2227, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34494942

RESUMO

An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.


Assuntos
Antivirais/farmacologia , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Basigina/metabolismo , Citocinas/metabolismo , Células Epiteliais , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Inflamação , Interferons/metabolismo , Estresse Oxidativo/efeitos dos fármacos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
12.
Virol J ; 18(1): 182, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496903

RESUMO

BACKGROUND: Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS: The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS: Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS: Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.


Assuntos
Antivirais/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coronavirus Felino/efeitos dos fármacos , Coronavirus Felino/crescimento & desenvolvimento , Extratos Vegetais/química , SARS-CoV-2/crescimento & desenvolvimento , Ensaio de Placa Viral
13.
J Toxicol Sci ; 46(9): 425-435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470994

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 enters host cells by binding with the receptor angiotensin-converting enzyme 2 (ACE2). While ACE2 is expressed in multiple cell types, it has been implicated in the clinical progression of COVID-19 as an entry point for SARS-CoV-2 into respiratory cells. Human respiratory cells, such as airway and alveolar epithelial type II (ATII) cells, are considered essential for COVID-19 research; however, primary human respiratory cells are difficult to obtain. In the present study, we generated ATII and club cells from human induced pluripotent stem cells (hiPSCs) for SARS-CoV-2 infection and drug testing. The differentiated cells expressed ATII markers (SFTPB, SFTPC, ABCA3, SLC34A2) or club cell markers (SCGB1A1 and SCGB3A2). Differentiated cells, which express ACE2 and TMPRSS2, were infected with SARS-CoV-2. Remdesivir treatment decreased intracellular SARS-CoV-2 viral replication and, furthermore, treatment with bleomycin showed cytotoxicity in a concentration-dependent manner. These data suggest that hiPSC-derived AT2 and club cells provide a useful in vitro model for drug development.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Células Epiteliais Alveolares/efeitos dos fármacos , Antivirais/farmacologia , Bleomicina/toxicidade , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Testes de Toxicidade , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , COVID-19/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Fenótipo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Replicação Viral/efeitos dos fármacos
14.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3846-3852, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472258

RESUMO

The lignans in Urtica cannabina were isolated by preparative HPLC, silica, and ODS column chromatographies, and identified by NMR and HR-MS. The inhibitory activities on 5α-reductase were evaluated in vitro. As a result, ten secolignans,(2R,4S)-2,4-bis(3-methoxyl-4-hydroxyphenyl)-3-butoxypropanol(1), 3,4-trans-3-hydroxymethyl-4-[bis(3,4-dimethoxyphenyl)methyl] butyrolactone(2), 3,4-trans-3-hydroxymethyl-4-[(3,4-dimethoxyphenyl)(3-methoxyl-4-hydroxyphenyl)methyl] butyrolactone(3), 3,4-trans-3-hydroxymethyl-4-[bis(3-methoxyl-4-hydroxyphenyl)methyl] butyrolactone(trans urticol, 4), 3,4-trans-3-hydroxymethyl-4-[bis(3,4-dimethoxyphenyl)methyl] butyrolactone-3-O-ß-D-glucopyranoside(5), 3,4-trans-3-hydroxymethyl-4-[(3,4-dimethoxyphenyl)(3-methoxyl-4-hydroxyphenyl)methyl]butyrolactone-3-O-ß-D-glucopyranoside(6), 3,4-trans-3-hydroxymethyl-4-[bis(3-methoxyl-4-hydroxyphenyl)methyl]butyrolactone-3-O-ß-D-glucopyranoside(trans-urticol-7-O-ß-D-glucopyranoside, 7), cycloolivil-4-O-ß-D-glucopyranoside(8), isolariciresinol-4'-O-ß-D-glucopyranoside(9), and olivil-4'-O-ß-D-glucopyranoside(10), together with a polyphenol [α-viniferin(11)], were isolated from U. cannabina for the first time. Compound 1 was a new lignan. Compound 7 was potent in inhibiting 5α-reductase.


Assuntos
Colestenona 5 alfa-Redutase/farmacologia , Lignanas , Urticaceae , Inibidores de 5-alfa Redutase , Cromatografia Líquida de Alta Pressão , Lignanas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Urticaceae/efeitos dos fármacos , Urticaceae/enzimologia
15.
Ethiop J Health Sci ; 31(3): 663-672, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34483624

RESUMO

Background: This cross-sectional study was performed on isolates of Klebsiella pneumoniae, and E.coli from clinical specimens of patients admitted to Sayyad Shirazi Hospital by census sampling method in 2019. Antibiogram testing was performed using the disk diffusion method as defined by the Clinical and Laboratory Standards Organization for performing this test. Finally, the abundance of genes was evaluated by PCR using specific primers. Frequency, percentage, mean±SD were used to describe the data. Chi-square and Fisher's exact tests were used to compare the presence and absence of the studied genes alone and in the presence of each other. Result: This study was performed on 130 positive samples, isolated from 32 (24.6%) males and 98 (65.4%) females with a mean age of 43.78 ± 21.72. From the total number of 130 isolates, 84 (64.6%) consisted of E.coli, and 46 (35.4%) were Klebsiella. Most of the cultures were urine and vaginal (61.5%). The highest antibiotic resistance in isolates was cephalexin and cefazolin (67.9% in E.coli & 63% in Klebsiella). Colistin was identified as the most effective antibiotic (100%) in both. AMPC extendedspectrum ß-lactamase genes were present in 40 (30.8%) isolates. The highest frequency about the gene pattern of AMPC positive ß-lactamase bacteria was correlated to DHA, FOX, and CIT genes, while none of the samples contained the MOX ß-lactamase gene. E.coli and Klebsiella beta-lactamase-producing AMPC isolates were also significantly correlated with antibiotic resistance to the cephalosporin class (P <0.05). Conclusion: This study indicated a high percentage of resistance to third and fourth generation cephalosporins. Hence, careful antibiogram tests and prevention of antibiotic overuse in infections caused by AMPC-producing organisms and screening of clinical samples for the resistance mentioned above genes and providing effective strategies to help diagnose and apply appropriate treatments and change antibiotic usage strategies can partially prevent the transmission of this resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli , Klebsiella pneumoniae , Antibacterianos/farmacologia , Estudos Transversais , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Masculino , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
16.
Cancer Genomics Proteomics ; 18(5): 661-673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34479918

RESUMO

BACKGROUND/AIM: Coronavirus disease 2019 (COVID-19) poses a great challenge for the treatment of cancer patients. It presents as a severe respiratory infection in aged individuals, including some lung cancer patients. COVID-19 may be linked to the progression of aggressive lung cancer. In addition, the side effects of chemotherapy, such as chemotherapy resistance and the acceleration of cellular senescence, can worsen COVID-19. Given this situation, we investigated the role of paclitaxel (a chemotherapy drug) in the cell proliferation, apoptosis, and cellular senescence of gefitinib-resistant non-small-cell lung cancer (NSCLC) cells (PC9-MET) to clarify the underlying mechanisms. MATERIALS AND METHODS: PC9-MET cells were treated with paclitaxel for 72 h and then evaluated by a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, a reactive oxygen species (ROS) assay, SA-ß-Gal staining, a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS: Paclitaxel significantly reduced the viability of PC9-MET cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed by increased levels of cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214). In addition, paclitaxel increased ROS production, leading to DNA damage. Inhibition of ROS production by N-acetylcysteine attenuates paclitaxel-induced DNA damage. Importantly, paclitaxel eliminated cellular senescence, as observed by SA-ß-Gal staining. Cellular senescence elimination was associated with p53/p21 and p16/pRb signaling inactivation. CONCLUSION: Paclitaxel may be a promising anticancer drug and offer a new therapeutic strategy for managing gefitinib-resistant NSCLC during the COVID-19 pandemic.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Sci Rep ; 11(1): 17748, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493768

RESUMO

Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can't perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.


Assuntos
Antivirais/farmacologia , COVID-19/tratamento farmacológico , Fulerenos/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Protease de Coronavírus/uso terapêutico , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/ultraestrutura , Cristalografia por Raios X , Fulerenos/química , Fulerenos/uso terapêutico , Humanos , Simulação de Dinâmica Molecular , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pandemias/prevenção & controle , RNA Viral/biossíntese , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/ultraestrutura
18.
Oxid Med Cell Longev ; 2021: 7866992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497683

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is posing a great threat to the global economy and public health security. Together with the acknowledged angiotensin-converting enzyme 2, glucose-regulated protein 78, transferrin receptor, AXL, kidney injury molecule-1, and neuropilin 1 are also identified as potential receptors to mediate SARS-CoV-2 infection. Therefore, how to inhibit or delay the binding of SARS-CoV-2 with the abovementioned receptors is a key step for the prevention and treatment of COVID-19. As the third gasotransmitter, hydrogen sulfide (H2S) plays an important role in many physiological and pathophysiological processes. Recently, survivors were reported to have significantly higher H2S levels in COVID-19 patients, and mortality was significantly greater among patients with decreased H2S levels. Considering that the beneficial role of H2S against COVID-19 and COVID-19-induced comorbidities and multiorgan damage has been well-examined and reported in some excellent reviews, this review will discuss the recent findings on the potential receptors of SARS-CoV-2 and how H2S modulates the above receptors, in turn blocking SARS-CoV-2 entry into host cells.


Assuntos
Antivirais/farmacologia , Sulfeto de Hidrogênio/farmacologia , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/metabolismo , Animais , Humanos , Especificidade de Órgãos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , SARS-CoV-2/efeitos dos fármacos
19.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500592

RESUMO

Lippia graveolens is a traditional crop and a rich source of bioactive compounds with various properties (e.g., antioxidant, anti-inflammatory, antifungal, UV defense, anti-glycemic, and cytotoxicity) that is primarily cultivated for essential oil recovery. The isolated bioactive compounds could be useful as additives in the functional food, nutraceuticals, cosmetics, and pharmaceutical industries. Carvacrol, thymol, ß-caryophyllene, and p-cymene are terpene compounds contained in oregano essential oil (OEO); flavonoids such as quercetin O-hexoside, pinocembrin, and galangin are flavonoids found in oregano extracts. Furthermore, thermoresistant compounds that remain in the plant matrix following a thermal process can be priced in terms of the circular economy. By using better and more selective extraction conditions, the bioactive compounds present in Mexican oregano can be studied as potential inhibitors of COVID-19. Also, research on extraction technologies should continue to ensure a higher quality of bioactive compounds while preventing an undesired chemical shift (e.g., hydrolysis). The oregano fractions can be used in the food, health, and agricultural industries.


Assuntos
Lippia/química , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , COVID-19/tratamento farmacológico , Cosméticos , Suplementos Nutricionais , Alimento Funcional , Humanos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos
20.
Molecules ; 26(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500664

RESUMO

This study aims to identify and isolate the secondary metabolites of Zingiber officinale using GC-MS, preparative TLC, and LC-MS/MS methods, to evaluate the inhibitory potency on SARS-CoV-2 3 chymotrypsin-like protease enzyme, as well as to study the molecular interaction and stability by using docking and molecular dynamics simulations. GC-MS analysis suggested for the isolation of terpenoids compounds as major compounds on methanol extract of pseudostems and rhizomes. Isolation and LC-MS/MS analysis identified 5-hydro-7, 8, 2'-trimethoxyflavanone (9), (E)-hexadecyl-ferulate (1), isocyperol (2), N-isobutyl-(2E,4E)-octadecadienamide (3), and nootkatone (4) from the rhizome extract, as well as from the leaves extract with the absence of 9. Three known steroid compounds, i.e., spinasterone (7), spinasterol (8), and 24-methylcholesta-7-en-3ß-on (6), were further identified from the pseudostem extract. Molecular docking showed that steroids compounds 7, 8, and 6 have lower predictive binding energies (MMGBSA) than other metabolites with binding energy of -87.91, -78.11, and -68.80 kcal/mole, respectively. Further characterization on the single isolated compound by NMR showed that 6 was identified and possessed 75% inhibitory activity on SARS-CoV-2 3CL protease enzyme that was slightly different with the positive control GC376 (77%). MD simulations showed the complex stability with compound 6 during 100 ns simulation time.


Assuntos
COVID-19/tratamento farmacológico , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Gengibre/química , Extratos Vegetais/farmacologia , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/isolamento & purificação , Inibidores de Protease de Coronavírus/uso terapêutico , Cristalografia por Raios X , Ensaios Enzimáticos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Pirrolidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Ácidos Sulfônicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...