RESUMO
In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.
Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas , Células Ganglionares da Retina , Humanos , Animais , Camundongos , Células-Tronco Embrionárias Humanas/citologia , Células Ganglionares da Retina/citologia , Transplante de Células-Tronco/métodos , Organoides/citologia , Organoides/transplante , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Retina/citologia , Células-Tronco Embrionárias/citologiaRESUMO
Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.
Assuntos
Fascia Lata , Antígenos HLA , Engenharia Tecidual , Humanos , Animais , Engenharia Tecidual/métodos , Antígenos HLA/imunologia , Ratos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Masculino , Matriz Extracelular Descelularizada/química , Matriz Extracelular/química , Matriz Extracelular/metabolismoRESUMO
Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.
Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Feminino , Biomarcadores Tumorais/análiseRESUMO
BACKGROUND: Helicobacter pylori (H. pylori) infects over 50% of the global population and is a significant risk factor for gastric cancer. The pathogenicity of H. pylori is primarily attributed to virulence factors such as vacA. Timely and accurate identification, along with genotyping of H. pylori virulence genes, are essential for effective clinical management and controlling its prevalence. METHODS: In this study, we developed a dual-target RAA-LFD assay for the rapid, visual detection of H. pylori genes (16s rRNA, ureA, vacA m1/m2), using recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD) methods. Both 16s rRNA and ureA were selected as identification genes to ensure reliable detection accuracy. RESULTS: A RAA-LFD assay was developed to achieve dual-target amplification at a stable 37 °C within 20 min, followed by visualization using the lateral flow dipstick (LFD). The whole process, from amplification to results, took less than 30 min. The 95 % limit of detection (LOD) for 16 s rRNA and ureA, vacA m1, vacA m2 were determined as 3.8 × 10-2 ng/µL, 5.8 × 10-2 ng/µL and 1.4 × 10-2 ng/µL, respectively. No cross-reaction was observed in the detection of common pathogens including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, showing the assay's high specificity. In the evaluation of the clinical performance of the RAA-LFD assay. A total of 44 gastric juice samples were analyzed, immunofluorescence staining (IFS) and quantitative polymerase chain reaction (qPCR) were used as reference methods. The RAA-LFD results for the 16s rRNA and ureA genes showed complete agreement with qPCR findings, accurately identifying H. pylori infection as confirmed by IFS in 10 out of the 44 patients. Furthermore, the assay successfully genotyped vacA m1/m2 among the positive samples, showing complete agreement with qPCR results and achieving a kappa (κ) value of 1.00. CONCLUSION: The dual-target RAA-LFD assay developed in this study provides a rapid and reliable method for detecting and genotyping H. pylori within 30 min, minimizing dependency on sophisticated laboratory equipment and specialized personnel. Clinical validation confirms its efficacy as a promising tool for effectively control of its prevalence and aiding in the precise treatment of H. pylori-associated diseases.
Assuntos
Proteínas de Bactérias , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Proteínas de Bactérias/genética , Humanos , RNA Ribossômico 16S/genética , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.
Assuntos
Imagem Óptica , Glândulas Paratireoides , Espectroscopia de Luz Próxima ao Infravermelho , Tireoidectomia , Humanos , Glândulas Paratireoides/cirurgia , Glândulas Paratireoides/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Imagem Óptica/métodos , Adulto , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Inclusão em Parafina/métodos , Idoso , Câncer Papilífero da Tireoide/cirurgia , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/análiseRESUMO
Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to â¼ 35 dB (SNR), â¼ 8.65 a . u . (contrast), and â¼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.
Assuntos
Benchmarking , Imagem Molecular , Imagem Óptica , Imagens de Fantasmas , Razão Sinal-Ruído , Imagem Molecular/métodos , Imagem Molecular/normas , Imagem Óptica/métodos , Imagem Óptica/normas , Processamento de Imagem Assistida por Computador/métodosRESUMO
In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and mesotetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.
Assuntos
Carbono , Corantes Fluorescentes , Mercúrio , Pontos Quânticos , Poluentes Químicos da Água , Mercúrio/análise , Carbono/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Pontos Quânticos/química , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos , Limite de Detecção , FluorescênciaRESUMO
Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.
Assuntos
Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Nanopartículas Metálicas , Paraquat , Grafite/química , Paraquat/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Carbono/química , Poluentes Químicos da Água/análise , Herbicidas/análiseRESUMO
The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.
Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Nitrogênio/metabolismo , Anaerobiose , OxirreduçãoRESUMO
Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.
Assuntos
Cobalto , Colorimetria , Norfloxacino , Smartphone , Poluentes Químicos da Água , Norfloxacino/análise , Colorimetria/métodos , Cobalto/análise , Cobalto/química , Poluentes Químicos da Água/análise , Antibacterianos/análise , Peroxidase , Limite de DetecçãoRESUMO
Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Bactérias , Desinfecção/métodos , Farmacorresistência Bacteriana/genética , Raios Ultravioleta , Purificação da Água/métodosRESUMO
The adsorption of pollutants can not only promote the direct surface reaction, but also modify the catalyst itself to improve its photoelectric characteristics, which is rarely studied for water treatment with inorganic photocatalyst. A highly crystalline BiOBr (c-BiOBr) was synthesized by a two-step preparation process. Owing to the calcination, the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr. The complex of organic pollutant and [Bi2O2]2+ could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes (h+). Moreover, the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons, which would coupling with the photoexcitation to promote generate more O2â¢-. The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants. This work strongly deepens the understanding of the molecular modification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.
Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Catálise , Bismuto/química , Purificação da Água/métodosRESUMO
Ultrasonic humidifiers are commonly used in households to maintain indoor humidity and generate a large number of droplets or spray aerosols. However, there have been various health concerns associated with humidifier use, largely due to aerosols generated during operation. Here, we investigated the size distribution, chemical composition, and charged fraction of aerosol particles emitted from commercial ultrasonic humidifiers. Heavy metals in water used for humidifiers were found to be highly enriched in the ultrasonic humidifier aerosols (UHA), with the enrichment factors ranging from 102 to 107. This enrichment may pose health concerns for the building occupants, as UHA concentrations of up to 106 particles/cm3 or 3 mg/m3 were observed. Furthermore, approximately 90% of UHA were observed to be electrically charged, for the first time according to our knowledge. Based on this discovery, we proposed and tested a new method to remove UHA by using a simple electrical field. The designed electrical field in this work can efficiently remove 81.4% of UHA. Therefore, applying this electrical field could be an effective method to significantly reduce the health risks by UHA.
Assuntos
Aerossóis , Umidificadores , Metais Pesados , Aerossóis/análise , Metais Pesados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Ultrassom , Monitoramento Ambiental/métodosRESUMO
Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Reatores Biológicos/microbiologia , Metano/metabolismo , Metano/análise , Carbono/metabolismo , Carbono/análise , China , BiocombustíveisRESUMO
In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.
Assuntos
Recuperação e Remediação Ambiental , Recuperação e Remediação Ambiental/métodos , Catálise , Energia Solar , Luz Solar , Semicondutores , Energia Renovável , Processos FotoquímicosRESUMO
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value. However, no standardized methods are available to diagnose the extent of soil degradation at antimony smelting sites. This study developed a standardized framework for assessing soil quality by considering microbial-induced resilience and heavy metal contamination at Xikuangshan antimony smelting site. The soil resilience index (SRI) and soil contamination index (SCI) were calculated by Minimum Data Set and geo-accumulation model, respectively. After standardized by a multi-criteria quantitative procedure of modified Nemerow's pollution index (NPI), the integrated assessment of soil quality index (SQI), which is the minimum of SRINPI and SCINPI, was achieved. The results showed that Sb and As were the prominent metal(loid) pollutants, and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience. The primary limiting factors of SRI were Fungi in high and middle contaminated areas, and Skermanella in low contaminated area, suggesting that the weak soil resilience was caused by low specific microbial abundances. Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement. This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.
Assuntos
Antimônio , Monitoramento Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Antimônio/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Solo/química , Metalurgia , Biodegradação Ambiental , ChinaRESUMO
A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO⢠and Cl⢠were the main active species, while when NaClO was the main oxidant, ClO⢠played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.
Assuntos
Carbamazepina , Compostos Clorados , Óxidos , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Carbamazepina/química , Poluentes Químicos da Água/química , Compostos Clorados/química , Purificação da Água/métodos , Óxidos/química , Cinética , Hipoclorito de Sódio/química , Modelos QuímicosRESUMO
Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment. The levels of most water quality parameters were generally comparable between SSW and FBW. During the pre-sedimentation of SSW, significant removal of turbidity, bacterial counts, and dissolved organic matter (DOM) was observed. The characterization of DOM components, molecular weight distributions, and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed. The characterization of particulates indicated that high surface energy, zeta potential, and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW, underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes. The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW ([turbidity]0 < 15 NTU). These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process, facilitating the development of SSW quality management and enhancing its reuse rate.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Material Particulado/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Substâncias Húmicas/análise , Qualidade da ÁguaRESUMO
Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.
Assuntos
Eletrodos , Ferro , Nitratos , Fosfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Nitratos/química , Ferro/química , Fosfatos/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas/métodosRESUMO
Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.