RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is among the most prevalent and devastating parasitic diseases globally with most cases reported in Sub-Saharan Africa. One of the major reasons for the high malaria prevalence is the ever-increasing emergence of resistant strains of malaria-causing parasites to the currently used antimalarial drugs. This, therefore, calls for the search for antimalarial compounds with alternative modes of action. Plants used in traditional medicine for the treatment of malaria offer possible sources of such compounds. Caesalpinia decapetala has been used traditionally for the treatment of various diseases including malaria. However, the antiplasmodial activity of the plant has never been reported. AIM OF THE STUDY: To determine the ex vivo and in vitro antiplasmodial activities of the extracts of the roots, stem bark and leaves of Caesalpinia decapetala. METHODOLOGY: The roots, stem bark and leaves of Caesalpinia decapetala (Roth) Alston (Caesalpiniaceae) were collected and air-dried under a shade then extracted consecutively with dichloromethane and methanol (1:1 (v/v) (4 × 0.8 L). The extracts were tested for antiplasmodial activities against four strains of Plasmodium falciparum (W2, DD2, 3D7, and D6) and fresh P. falciparum field isolates using the SYBR green I assay. The mean fifty percent inhibition concentration (IC50) was determined for each assay. An acute oral toxicity test was done based on the Organization for Economic Cooperation and Development (OECD 425) guidelines using Swiss albino mice. RESULTS: The leaves and stem bark extracts showed good antiplasmodial activities with IC50 values of 4.54 and 4.86 µg/mL, respectively, when tested against the fresh field isolates ex vivo. Similarly, the roots extract showed an IC50 value of 6.49 µg/mL when tested against field isolates ex vivo. The roots extract showed the highest antiplasmodial activities among the samples when tested against W2 (IC50 = 6.12 µg/mL), DD2 (IC50 = 8.17 µg/mL), and D6 (IC50 = 16.02 µg/mL) strains of P. falciparum whereas the leaves showed the highest activity (IC50 = 9.3 µg/mL) when tested against the 3D7 strain of P. falciparum. No mortality was observed for the mice treated with 2000 mg/kg of the leaves and stem bark extracts. The mouse treated with 2000 mg/kg of the roots extracts regained weight by day 12 of the observation period. CONCLUSION: Caesalpinia decapetala has the potential to suppress the growth of P. falciparum thereby contributing to combating the recurrent emergence of antimalarial drug resistance.
Assuntos
Antimaláricos , Caesalpinia , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparumRESUMO
New data on the complete mitochondrial genome of Azygia robusta (Azygiidae) were obtained by the next-generation sequencing (NGS) approach. The mitochondrial DNA (mtDNA) of A. robusta had a length of 13 857 bp and included 12 protein-coding genes, two ribosomal genes, 22 transfer RNA genes, and two non-coding regions. The nucleotide sequences of the complete mitochondrial genomes of two A. robusta specimens differed from each other by 0.12 ± 0.03%. Six of 12 protein-coding genes demonstrated intraspecific variation. The difference between the nucleotide sequences of the complete mitochondrial genomes of A. robusta and Azygia hwangtsiyui was 26.95 ± 0.35%; the interspecific variation of protein-coding genes between A. robusta and A. hwangtsiyui ranged from 20.5 ± 0.9% (cox1) to 30.7 ± 1.2% (nad5). The observed gene arrangement in the mtDNA sequence of A. robusta was identical to that of A. hwangtsiyui. Codon usage and amino acid frequencies were highly similar between A. robusta and A. hwangtsiyui. The results of phylogenetic analyses based on mtDNA protein-coding regions showed that A. robusta is closely related to A. hwangtsiyui (belonging to the same suborder, Azygiida) that formed a distinct early-diverging branch relative to all other Digenea. A preliminary morphological analysis of paratypes of the two azygiid specimens studied showed visible morphological differences between them. The specimen extracted from Sakhalin taimen (Parahucho perryi) was most similar to A. robusta. Thus, we here provide the first record of a new definitive host, P. perryi, for A. robusta and also molecular characteristics of the trematode specimens.
Assuntos
Salmonidae , Trematódeos , Filogenia , Salmonidae/parasitologia , Animais , DNA Mitocondrial/química , Análise de Sequência de DNA , Federação Russa , Trematódeos/anatomia & histologia , Trematódeos/classificação , Trematódeos/genética , Trematódeos/isolamento & purificaçãoRESUMO
Cholangiocarcinoma (CCA) is a lethal cancer arising in the bile ducts within and just outside the liver. It occurs worldwide and falls into two etiologically defined groups, one related to chronic liver fluke infection and the other not. Liver fluke-related CCA is found in continental Southeast Asia (caused by Opisthorchis viverrini with infection leading to opisthorchiasis), East Asia (Clonorchis sinensis), and Eastern Europe and Russia (Opisthorchis felineus). Both O. viverrini and C. sinensis are classified as group one carcinogens, while recent data from O. felineus suggest the same. In Southeast Asia, an estimated 67.3 million people are at risk of O. viverrini infection and subsequently developing CCA. When the three liver fluke species are considered, an estimated 700 million people are at risk of infection and developing CCA globally. The northeast of Thailand (Isan) is the world's hot spot of liver fluke infection and CCA. Early detection, diagnosis, and surgical intervention/curative treatment of CCA are critical to increase life expectancy and quality of life of people in the region and globally. Despite concentrated recent efforts focusing on a multidisciplinary approach to understand the ecology, epidemiology, biology, public health, and social significance of infection by cancer causing liver flukes, it remains an underestimated and under-resourced public health problem. In addition, it is still believed to be a regional problem without global significance-this is not the case. This book focuses on O. viverrini as the main causative agent of CCA in Southeast Asia, but many aspects detailed in the following chapters also relate to the two other liver fluke species. Our aim is to produce a holistic framework including the basic biology of O. viverrini and its relation to the epidemiology of the disease through diagnosis to treatment, including palliative methods, pathology, and control.
Assuntos
Colangiocarcinoma , Humanos , Colangiocarcinoma/epidemiologia , Colangiocarcinoma/parasitologia , Opistorquíase/complicações , Clonorquíase/complicações , AnimaisRESUMO
Intestinal parasitic infections (IPIs) caused by protozoan and helminth parasites are among the most common infections in humans in low-and-middle-income countries. IPIs affect not only the health status of a country, but also the economic sector. Over the last decade, pattern recognition and image processing techniques have been developed to automatically identify parasitic eggs in microscopic images. Existing identification techniques are still suffering from diagnosis errors and low sensitivity. Therefore, more accurate and faster solution is still required to recognize parasitic eggs and classify them into several categories. A novel Chula-ParasiteEgg dataset including 11,000 microscopic images proposed in ICIP2022 was utilized to train various methods such as convolutional neural network (CNN) based models and convolution and attention (CoAtNet) based models. The experiments conducted show high recognition performance of the proposed CoAtNet that was tuned with microscopic images of parasitic eggs. The CoAtNet produced an average accuracy of 93%, and an average F1 score of 93%. The finding opens door to integrate the proposed solution in automated parasitological diagnosis.
Assuntos
Enteropatias Parasitárias , Redes Neurais de Computação , Parasitos , Parasitos/classificação , Parasitos/citologia , Parasitos/crescimento & desenvolvimento , Conjuntos de Dados como Assunto , Óvulo/classificação , Óvulo/citologia , Microscopia , Humanos , Enteropatias Parasitárias/diagnóstico , Enteropatias Parasitárias/parasitologia , AnimaisRESUMO
INTRODUCTION: Trichomoniasis is the most common non-viral sexually transmitted infection that increases the risk of cervical cancer. Trichomonas vaginalis (T. vaginalis) can regulate the pro-inflammatory cytokine production in the host cells. Toll-like receptors (TLRs) are a family of the pattern recognition receptors (PRRs) of mammalian cells, expressed in various host cells and have an important role in recognizing pathogens, and pro-inflammatory responses. The aim of the present study is to investigate the role of TLR5 in cervical cancer cells (HeLa) and human vaginal epithelial cells (HVECs) exposed to T. vaginalis. METHODOLOGY: First, the cells and parasites were cultured in RPMI and trypticase yeast extract maltose (TYM), respectively. After adaption of parasite and epithelial cells by RPMI-TYM medium co-culture (9:1 vol/vol), HVECs and HeLa cells were stimulated with T. vaginalis trophozoites (24-hour incubation at 37 °C, 5% CO2). Following RNA extraction and cDNA synthesis, the gene expression levels of TLR5, IRAK1, and NF-κB were assessed using real-time PCR. Besides, the protein levels were measured using western blotting. All tests and controls were normalized using ß-actin as a housekeeping control. RESULTS: Real-time PCR results showed an increased gene expression of TLR5, IRAK1, and NF-κB in T. vaginalis exposed HVECs and HeLa cells compared to the control group (p < 0.05). Additionally, western blot analysis showed a statistically significant increase in TLR5, and NF-κB proteins in both groups after exposure to the parasite (p < 0.05). CONCLUSIONS: These findings provide insight into the host-parasite interaction, and the results indicated that T. vaginalis could stimulate TLR5 and activate related pathways.
Assuntos
Trichomonas vaginalis , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Células Epiteliais , Células HeLa , Quinases Associadas a Receptores de Interleucina-1 , NF-kappa B , Receptor 5 Toll-Like , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/parasitologiaRESUMO
Lankesterella parasites are blood coccidians that have recently gained attention as their records in common passerine species emerge. To date, their occurrence has been molecularly confirmed in several passerine genera, mainly among members of the families Paridae and Acrocephalidae. Despite their relatively high prevalence in some host populations, their life cycles remain unclear, mosquitoes or mites being the proposed vectors. The aim of this study was to reveal Lankesterella host specificity, focusing mainly on parasites of tit and warbler species (families Paridae and Acrocephalidae). We have determined the 18S rRNA gene sequences of Lankesterella from 35 individuals belonging to eight different host species. Phylogenetic analysis revealed that passerine Lankesterella are host-specific, with specificity at the host genus or species level. Besides Lankesterella, Isospora sequences were obtained from avian blood as well, pointing out the need for barcoding.
Assuntos
Apicomplexa , Coccídios , Eucoccidiida , Passeriformes , Humanos , Animais , Coccídios/genética , Filogenia , Especificidade de Hospedeiro , Passeriformes/parasitologiaRESUMO
Gregarine apicomplexans, a group of single celled organisms, inhabit the extracellular spaces of most invertebrate species. The nature of the gregarine-host interactions is not yet fully resolved, mutualistic, commensal and parasitic life forms have been recorded. In the extreme arid environment of the Atacama Desert, only a few groups of invertebrates hosting gregarines such as darkling beetles (Tenebrionidae) were able to adapt, providing an unparalleled opportunity to study co-evolutionary diversification. Here, we describe one novel gregarine genus comprising one species, Atacamagregarina paposa gen. et sp. nov., and a new species, Xiphocephalus ovatus sp. nov. (Apicomplexa: Eugregarinoridea, Stylocephalidae), found in the tenebrionid beetle genera Scotobius (Tenebrioninae, Scotobiini) and Psectrascelis intricaticollis ovata (Pimeliinae, Nycteliini), respectively. In the phylogenetic analysis based on SSU rDNA, Atacamgregarina paposa representing the new genus is basal, forming a separate clade with terrestrial gregarines specific for North American darkling beetles.
Assuntos
Apicomplexa , Besouros , Animais , Besouros/genética , Besouros/parasitologia , Filogenia , Evolução Biológica , Apicomplexa/genética , DNA Ribossômico/genéticaRESUMO
Coccidiosis, a serious intestinal parasitic disease caused by Eimeria spp., can result in huge annual economic losses to the poultry industry worldwide. At present, coccidiosis is mainly controlled by anticoccidial drugs. However, drug resistance has developed in Eimeria because of the long-term and unreasonable use of the drugs currently available. In our previous study, RNA-seq showed that the expression of methionine aminopeptidase1 (EtMetAP1) was up-regulated in diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains compared to drug-sensitive (DS) strain of Eimeria tenella. In this study, EtMetAP1 was cloned and expressed, and the function and characteristics of the EtMetAP1 protein were analyzed. The transcription and translation levels of EtMetAP1 in DS strain of E. tenella at different developmental stages were analyzed by qPCR and western blotting. We found that the transcription and translation levels of EtMetAP1 in second-generation merozoites (SM) were higher than those of the other three stages (unsporulated oocyst, sporulated oocyst, and sporozoites). Simultaneously, qPCR was used to analyze the mRNA transcription levels of EtMetAP1 in DS, DZR, MRR, and salinomycin-resistant (SMR) strain. The results showed that compared to the sensitive strain, the transcription levels of EtMetAP1 in DZR and MRR were up-regulated. There was no significant difference in transcription level in SMR. Indirect immunofluorescence localization showed that the protein was mainly localised in the cell membrane and cytoplasm of sporozoites and SM. An invasion inhibition test showed that anti-rEtMetAP1 polyclonal antibody could effectively inhibit the sporozoite invasion of host cells. These results suggest that the protein may be involved in the growth and development of parasites in host cells, the generation of drug resistance, and host cell invasion.
Assuntos
Coccidiose , Eimeria tenella , Eimeria , Animais , Eimeria tenella/genética , Metionina/metabolismo , Metionina/farmacologia , Coccidiose/veterinária , Coccidiose/parasitologia , Esporozoítos/metabolismo , OocistosRESUMO
Most of the existing Leishmania-related research about TLR-2 agonists was focusing on their role as adjuvants in the vaccine, few studied its therapeutic effect. This paper aims to explore the therapeutic effect of TLR-2 agonist Pam3CSK4 on Leishmania-infected mice and the underlying immune molecular mechanisms. In L. donovani-infected BALB/c mice, one group was treated with Pam3CSK4 after infection and the other group was not treated. Normal uninfected mice treated with Pam3CSK4 or untreated were used as controls. Parasite load, hepatic pathology and serum antibodies were detected to assess the severity of the infection. The expression of immune-related genes, spleen lymphocyte subsets and liver RNA-seq were employed to reveal possible molecular mechanisms. The results showed that the liver and spleen parasite load of infected mice in Pam3CSK4 treated and untreated groups had no statistical difference, indicating Pam3CSK4 might have no therapeutic effect on visceral leishmaniasis. Infected mice treated with Pam3CSK4 possessed more hepatic inflammation focus, lower IgG and IgG2a antibody titers, and a lower proportion of spleen CD3+CD4+ T cells. Transcriptome analysis revealed that Th1/Th2 differentiation, NK cells, Th17 cell, complement system and calcium signaling pathways were down-regulated post-treatment of Pam3CSK4. In this study, TLR-2 agonist Pam3CSK4 showed no therapeutic effect on visceral leishmaniasis in BALB/c mice and might enhance the pathogenesis of the disease possibly due to the down-regulation of several immune-related pathways, which can improve our understanding of the role of TLR-2 in both treatment and vaccine development.
Assuntos
Leishmania donovani , Leishmania , Leishmaniose Visceral , Animais , Camundongos , Adjuvantes Imunológicos/efeitos adversos , Interferon gama/metabolismo , Leishmaniose Visceral/parasitologia , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/genéticaRESUMO
Sexual reproduction of the malaria parasites is critical for their transmission to a mosquito vector. Several signaling molecules, such as kinases and phosphatases, are known to regulate this process. We previously demonstrated that Plasmodium falciparum (Pf) Ca2+-dependent protein kinase 4 (CDPK4) and serine/arginine-rich protein kinase 1 (SRPK1) are critical for axoneme formation during male gametogenesis, with genetic deletion of either gene causing a complete block in parasite transmission to the mosquito. A comparative phospho-proteome analysis of Pfcdpk4- and RNA-seq analysis of Pfsrpk1- gametocytes showed that these kinases regulate similar biological processes linked to both microtubule (MT) dynamics and cell motility. One of these proteins was a nuclear MT-associated End Binding protein 1 (EB1), which was hypophosphorylated in Pfcdpk4- gametocytes. To study the functional relevance of EB1, we created gene deletion parasites for EB1. We further demonstrate that Pfeb1- parasites like WT NF54 parasites proliferate normally as asexuals and undergo gametocytogenesis and gametogenesis. Strikingly, these parasites suffer a severe defect in nuclear segregation and partitioning of nuclei into emerging microgametes. Further genetic crosses utilizing male- and female-sterile parasites revealed that Pfeb1- parasites only suffer a male fertility defect. Overall, our study reveals an essential function for PfEB1 in male gamete nuclear segregation and suggests a potential therapeutic avenue in the design of transmission-blocking drugs to prevent malaria transmission from humans to mosquito. IMPORTANCE Gametogenesis and subsequent gamete fusion are central to successful transmission of the malaria parasites to a female Anopheles mosquito vector and completion of the sexual phase of the parasite life cycle. Male gametogenesis involves the formation of axonemes inside male gametes from male gametocytes via active cytoskeleton remodeling. The tubulin and tubulin-binding proteins are, thus, attractive anti-malarial drug targets. In the present study, we demonstrate that a microtubule-binding protein PfEB1 is essential for male gamete fertility, specifically for the inheritance of nuclei from activated male gametocytes. Targeting PfEB1 function may provide new avenues into designing interventions to prevent malaria transmission and disease spread.
Assuntos
Fenômenos Biológicos , Malária , Parasitos , Plasmodium , Humanos , Animais , Masculino , Feminino , Proteínas de Transporte , Tubulina (Proteína)/metabolismo , Gametogênese/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
The assumed definitive host of the heartworm Acanthocheilonema spirocauda (Onchocerdidae; Filarioidea) is the harbour seal (Phoca vitulina). This filaroid nematode parasitizing in cardiac ventricles and blood vessel lumina of harbour seals (P. vitulina) has a low prevalence and seldom causes severe health impacts. The seal louse (Echinophthirius horridus) is the assumed intermediate host for transmission of A. spirocauda filariae between seals, comprising a unique parasite assembly conveyed from the terrestrial ancestors of pinnipeds. Although grey seals (Halichoerus grypus) are infected by seal lice, heartworm infection was not verified. Analysing a longterm dataset compiled over decades (19962021) of health monitoring seals along the German coasts comprising post mortem investigations and archived parasites, 2 cases of A. spirocauda infected male grey seals were detected. Tentative morphological identification was confirmed with molecular tools by sequencing a section of mtDNA COI and comparing nucleotide data with available heartworm sequence. This is the first record of heartworm individuals collected from the heart of grey seals at necropsy. It remains puzzling why heartworm infection occur much less frequently in grey than in harbour seals, although both species use the same habitat, share mixed haul-outs and consume similar prey species. If transmission occurs directly via seal louse vectors on haul-outs, increasing seal populations in the North- and Baltic Sea could have density dependent effects on prevalence of heartworm and seal louse infections. It remains to be shown how species-specificity of filarial nematodes as well as immune system traits of grey seals influence infection patterns of A. spirocauda.
Assuntos
Acanthocheilonema , Dirofilaria immitis , Filarioidea , Nematoides , Phoca , Animais , Masculino , Phoca/parasitologia , Mar do NorteRESUMO
The tapeworms of Moniezia spp. are heteroxenous parasites and their adult forms occur in ruminants' alimentary tract. They steal a significant portion of hosts' nourishment initiating monieziasis, thereby inflicting economic losses in animal rearing. Despite their high economic importance, the molecular characterization and taxonomic status of these parasites have remained poorly understood. In the present study, cestodes were isolated from the sheep and goats' intestines and were stained with Gower's carmine. Upon careful evaluation of morphological characters, 2 species Moniezia denticulata and Moniezia expansa were identified. The genomic DNA was extracted and polymerase chain reaction (PCR) amplified targeting regions of mitochondrial cytochrome c oxidase subunit 1 (cox1), small subunit ribosomal RNA (SSU rRNA) and internal transcribed spacer 15.8S rRNA (ITS15.8S rRNA) genes followed by sequencing. The partial sequences of cox1, SSU rRNA and ITS15.8S rRNA genes of M. denticulata generated in the present study revealed that even though they share high similarities with M. benedeni (93.2% cox1; 92.6% SSU rRNA; 84.70% ITS15.8S rRNA) and M. expansa (88.85% cox1; 92.27% SSU rRNA; 81.70% ITS15.8S rRNA), they are not identical to them. In the maximum likelihood phylogenetic trees, M. denticulata and M. expansa consistently appeared as distinct species from each other. The high values of pairwise divergence between these 2 species collected in the present study confirmed their separate identity. The present study reports the first molecular characterization of M. denticulata with reference to M. expansa infecting sheep and goats in India.
Assuntos
Cestoides , Infecções por Cestoides , Animais , Ovinos , Cabras , RNA Ribossômico 5,8S , Filogenia , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/veterinária , Infecções por Cestoides/parasitologia , Ruminantes , RNA Ribossômico/genéticaRESUMO
The phylum Microsporidia contains obligate single celled parasites that can infect many vertebrate hosts including humans. Enterocytozoon bieneusi is considered as the most diagnosed species in humans. E. bieneusi has also been detected in many animals such as cats, dogs and cattle. Among these animals, cats are carriers of type D and IV which are the most common human pathogenic genotypes of E. bieneusi. In Türkiye, the prevalence of E. bieneusi in stray cats is not well known. Therefore, in this study, the molecular prevalence of E. bieneusi in stray cats (n = 339) was determined by Real-Time PCR targeting ribosomal DNA ITS (internal transcribed spacer) region of E. bieneusi. Initially, the analytical sensitivity of Real-Time PCR was determined by a plasmid control and then E. bieneusi DNA was investigated in fecal samples of stray cats. The results showed that the analytical sensitivity of Real-Time PCR targeting ITS region of E. bieneusi was ≤1 copy plasmid/reaction. Analysis of fecal samples revealed that the molecular prevalence of E. bieneusi was 50.15% (170/339). Overall, these results showed that the Real-Time PCR successfully detected E. bieneusi in cat's fecal samples and stray cats can be an important source for transmission of E. bieneusi to humans and other animals.
Assuntos
Doenças dos Bovinos , Doenças do Cão , Enterocytozoon , Microsporídios , Microsporidiose , Animais , Gatos , Humanos , Cães , Bovinos , Enterocytozoon/genética , Microsporidiose/epidemiologia , Microsporidiose/veterinária , Microsporidiose/parasitologia , Prevalência , Genótipo , Fezes/parasitologia , Filogenia , China/epidemiologia , Doenças do Cão/epidemiologiaRESUMO
Cattle production is a major contributor to the national economy of Kyrgyzstan. Most cattle in Kyrgyzstan are managed via extensive systems and graze in communal pastures. As a result, infestations with ectoparasites are widespread, implying that various vector-borne diseases might be common in cattle. However, methods to control such infectious diseases are not available in Kyrgyzstan because the epidemiology of vector-borne pathogens (VBPs) infecting cattle remains unclear. The present study was therefore designed to survey Kyrgyz cattle for VBPs. We prepared blood DNA samples from 319 cattle in Kyrgyzstan and screened them with specific PCR assays for detecting Babesia bovis, Babesia bigemina, Babesia naoakii, Theileria annulata, Theileria orientalis, Trypanosoma evansi, Trypanosoma theileri, and Anaplasma marginale infections. Our findings indicated that the surveyed cattle were infected with six of the eight pathogens targeted, with the exceptions being B. naoakii and Try. evansi. The most common pathogen was T. orientalis (84.3%), followed by B. bigemina (47.6%), T. annulata (16.6%), A. marginale (11.6%), Try. theileri (7.2%), and B. bovis (2.5%). Additional screening of the B. bovis- and B. bigemina-negative samples with a Babesia genus-specific 18S rRNA PCR identified two positive samples, and sequencing analysis confirmed that each of them was infected with either Babesia major or Babesia occultans. To the best of our knowledge, this is the first report of B. bovis, B. bigemina, B. occultans, Try. theileri, and A. marginale infections in cattle in Kyrgyzstan. Our findings suggest that cattle in Kyrgyzstan are at high risk of infectious diseases caused by VBPs.
Assuntos
Anaplasma marginale , Anaplasmose , Babesia , Babesiose , Doenças dos Bovinos , Doenças Transmissíveis , Theileria annulata , Theileria , Theileriose , Bovinos , Animais , Babesiose/parasitologia , Doenças dos Bovinos/parasitologia , Quirguistão/epidemiologia , Babesia/genética , Anaplasmose/epidemiologia , Theileria/genética , Theileria annulata/genética , Theileriose/parasitologiaRESUMO
Philopinna higai is a species of Didymozoidae (Digenea: Hemiuroidea). The definitive hosts of this parasite only belong to the fish genus Sarcocheilichthys. Sarcocheilichthys fishes are endemic to Lake Biwa and southwestern Japan and were introduced into the northeastern (Tohoku) region. However, P. higai parasitism has not been investigated in the Tohoku region. In this study, we surveyed the distribution of P. higai in the Tohoku region and sequenced 28S rDNA (994 bp) and cytochrome oxidase subunit 1 (CO1) gene (721 bp) of P. higai. We also sequenced mitochondrial cytochrome b (581 bp) of Sarcocheilichthys fishes from the Tohoku region and Lake Biwa. Our findings confirmed the distribution of P. higai in all seven surveyed river systems in the four prefectures of the Tohoku region. The 28S rDNA sequence of P. higai did not differ among regions, whereas 10 haplotypes of CO1 were identified and clustered into two major clades. The haplotypes of Sarcocheilichthys fishes introduced in the Tohoku region were identical to the dominant haplotypes in Lake Biwa. Thus, P. higai from Lake Biwa and the Tohoku region were genetically the same species, although genetically differentiated populations formed in the Tohoku region.
Assuntos
Cipriniformes , Trematódeos , Animais , Japão/epidemiologia , Trematódeos/genética , Peixes/parasitologia , Rios , DNA Ribossômico/genética , FilogeniaRESUMO
Species of the genus Pseudoterranova, infect kogiid cetaceans and pinnipeds. However, there is mounting molecular evidence that those from cetaceans and pinnipeds are not congeneric. Here, we provide further evidence of the non-monophyly of members of Pseudoterranova from phylogenetic analyses of the conserved nuclear LSU rDNA gene, entire ITS rDNA region and mtDNA cox2 gene, and identify morphological characters that may be used to distinguish the members of the two clades. We propose the resurrection of the genus Phocanema, with Ph. decipiens (sensu stricto) as the type species, to encompass Ph. decipiens, Ph. azarasi, Ph. bulbosa, Ph. cattani and Ph. krabbei, all parasites of pinnipeds. We propose to restrict the conception of genus Pseudoterranova, which now harbours two species infecting kogiid whales; Ps. kogiae (type species) and Ps. ceticola. Members of the genera Phocanema and Pseudoterranova differ by the shape and orientation of the lips, relative tail lengths, adult size, type of final host (pinniped vs. cetacean) and phylogenetic placement based on nuclear rDNA and mtDNA cox2 sequences.
Assuntos
Ascaridoidea , Caniformia , Parasitos , Animais , Caniformia/genética , Caniformia/parasitologia , Filogenia , Ciclo-Oxigenase 2/genética , Ascaridoidea/genética , DNA Ribossômico/genética , Baleias/genética , DNA Mitocondrial/genéticaRESUMO
Vitamin E has an antioxidant property and is associated with protection against malaria. The current study used systematic review and meta-analysis approaches examining the variance in blood levels of vitamin E in malaria patients as compared with uninfected individuals. The protocol for the systematic review was registered with PROSPERO (CRD4202341481). Searches for pertinent studies were carried out on Embase, MEDLINE, Ovid, PubMed, Scopus, ProQuest, and Google Scholar. The combined effect estimate (Cohen's d) of the difference in vitamin E levels in malaria patients as compared with uninfected individuals was estimated using the random effects model. The searches yielded 2009 records, and 23 studies were included in the systematic review. The majority of the studies (80%) found that vitamin E levels were significantly lower in malaria patients than those who were not infected. Overall, the results revealed a significant reduction in blood levels of vitamin E in malaria patients when compared with uninfected individuals (p < 0.01, Cohen's d: -2.74, 95% CI: -3.72-(-1.76), I2: 98.69%, 21 studies). There was a significant reduction in blood levels of vitamin E in patients suffering from severe malaria, in comparison with those experiencing less severe forms of the disease (p < 0.01, Cohen's d: -0.56, 95% CI: -0.85-(-0.26), I2: 0%, 2 studies), but no variation in blood levels of vitamin E among patients suffering from either P. falciparum or P. vivax malaria (p = 0.13, Cohen's d: -1.15, 95% CI: -2.62-0.33, I2: 93.22%, 3 studies). In summary, the present study strongly suggests that vitamin E levels are significantly reduced in malaria patients, with a more pronounced decrease observed in cases of severe malaria. However, the type of malaria parasite, specifically P. falciparum or P. vivax, did not appear to influence the levels of vitamin E. This study highlights the potential role of vitamin E in the pathogenesis of malaria and suggests that improved vitamin E status might be beneficial for improving disease outcomes.
Assuntos
Malária Vivax , Malária , Humanos , Vitamina E , Malária/complicações , Malária Vivax/complicações , Malária Vivax/parasitologia , AntioxidantesRESUMO
The growing interest in microRNAs (miRNAs) over recent years has led to their characterization in numerous organisms. However, there is currently a lack of data available on miRNAs from triatomine bugs (Reduviidae: Triatominae), which are the vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. A comprehensive understanding of the molecular biology of vectors provides new insights into insect-host interactions and insect control approaches, which are key methods to prevent disease incidence in endemic areas. In this work, we describe the miRNome profiles from gut, hemolymph, and salivary gland tissues of the Rhodnius prolixus triatomine. Small RNA sequencing data revealed abundant expression of miRNAs, along with tRNA- and rRNA-derived fragments. Fifty-two mature miRNAs, previously reported in Ecdysozoa, were identified, including 39 ubiquitously expressed in the three tissues. Additionally, 112, 73, and 78 novel miRNAs were predicted in the gut, hemolymph, and salivary glands, respectively. In silico prediction showed that the top eight most highly expressed miRNAs from salivary glands potentially target human blood-expressed genes, suggesting that R. prolixus may modulate the host's gene expression at the bite site. This study provides the first characterization of miRNAs in a Triatominae species, shedding light on the role of these crucial regulatory molecules.