Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407.225
Filtrar
1.
Methods Mol Biol ; 2725: 103-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37856020

RESUMO

A prominent technical barrier when imaging swimming sperm is capturing a singular sperm cell's head and tail position simultaneously at a high resolution to understand their relationship in different stages of the sperm tail beating cycle. This is due to the sperm's high beating frequency, rotational movement, and the large difference in diameter between the head and tail. These intricacies increase the complexity of determining the position of a dynamic subcellular structure in the sperm neck, such as the centriole. We have developed a way to obtain this information by snap freezing mobile sperm at different stages of the sperm tail beating cycle and then analyzing them with super-resolution microscopy. This method captures the position of both the sperm head and tail at the microscale and centriolar substructure details at the nanoscale. This chapter describes the detailed procedures for the selection, preparation, antibody staining, 3D N-STORM imaging, and image quantification of bovine spermatozoa.


Assuntos
Centríolos , Sêmen , Masculino , Animais , Bovinos , Centríolos/ultraestrutura , Espermatozoides/química , Cauda do Espermatozoide/ultraestrutura , Microscopia
2.
Micron ; 176: 103546, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804596

RESUMO

The sperm ultrastructure of two members of the Scraptiidae Anaspis pulicaria and A. lurida was studied. The results confirm the general organization of the sperm in the superfamily Tenebrionoidea. The sperm bundles at the end of the spermiogenesis show the same peculiar antiparallel distribution at the two opposite poles of the germ cyst, observed in other Tenebrionoidea. The sperm have a bi-layered acrosome, a long cylindrical nucleus with two infoldings at its basal region, two elliptical equal mitochondrial derivatives and two triangular accessory bodies. The flagellar axoneme has the common 9 + 9 + 2 microtubular pattern that at the tail end results disorganized. All these sperm characteristics are quite similar to those found in Pythidae, a closely related family, according to molecular data.


Assuntos
Besouros , Animais , Masculino , Besouros/ultraestrutura , Microscopia Eletrônica de Transmissão , Sêmen , Espermatozoides/ultraestrutura , Acrossomo/ultraestrutura , Espermatogênese
3.
Micron ; 176: 103559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924676

RESUMO

Although several immune related cells of small intestine play an essential role in the intestinal homeostasis. However, information related to ultrastructural evidence of Nano-scale exosomes-multivesicular bodies and autophagic pathway in the high endothelial cells (HECs) of the small intestine in laying birds is still ambiguous. In present study, the HECs secreted the early endosome (ee), late endosome (le) and multivesicular bodies (MVBs) in the lamina propria of layer small intestine was confirmed by transmission electron microscopy. Besides that, in the cytoplasm of HECs showed many autophagosomes were directly associated with lysosomes and mitochondria. Further, the immunohistochemistry and immunofluorescence results showed that, the immunoreactivity and immuno-signaling of Nano-scale exosome related proteins, cluster of differentiation (CD63) and tumor susceptibility gene (TSG101), and autophagic related proteins, autophagic related gene (ATG7) and microtubule-associated protein light chain (LC3) were strong positive expression in the lamina propria of small intestine. These results prove that HECs play a well-known immunological role in the maintenance of intestinal homeostasis. In summary, these findings indicate that the small intestine's HECs have developed an innovative way of communication.


Assuntos
Exossomos , Exossomos/ultraestrutura , Células Endoteliais , Autofagia , Corpos Multivesiculares/química , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Intestino Delgado
4.
Cells ; 12(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947653

RESUMO

Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.


Assuntos
Fator 2 de Liberação do Nucleotídeo Guanina , Células Fotorreceptoras Retinianas Cones , Animais , Camundongos , Camundongos Knockout , Retina , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Sinapses/ultraestrutura
5.
Platelets ; 34(1): 2264978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933490

RESUMO

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , RNA Viral , SARS-CoV-2 , Plaquetas/ultraestrutura , Organelas
6.
Science ; 382(6670): 527-528, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917691
7.
Cells ; 12(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998386

RESUMO

Whole-exome sequencing has expedited the diagnostic work-up of primary ciliary dyskinesia (PCD), when used in addition to clinical phenotype and nasal nitric oxide. However, it reveals variants of uncertain significance (VUS) in established PCD genes or (likely) pathogenic variants in genes of uncertain significance in approximately 30% of tested individuals. We aimed to assess genotype-phenotype correlations in adults with bronchiectasis, clinical suspicion of PCD, and inconclusive whole-exome sequencing results using transmission electron microscopy (TEM) and ciliary image averaging by the PCD Detect software. We recruited 16 patients with VUS in CCDC39, CCDC40, CCDC103, DNAH5, DNAH5/CCDC40, DNAH8/HYDIN, DNAH11, and DNAI1 as well as variants in the PCD candidate genes DNAH1, DNAH7, NEK10, and NME5. We found normal ciliary ultrastructure in eight patients with VUS in CCDC39, DNAH1, DNAH7, DNAH8/HYDIN, DNAH11, and DNAI1. In six patients with VUS in CCDC40, CCDC103, DNAH5, and DNAI1, we identified a corresponding ultrastructural hallmark defect. In one patient with homozygous variant in NME5, we detected a central complex defect supporting clinical relevance. Using TEM as a targeted approach, we established important genotype-phenotype correlations and definite PCD in a considerable proportion of patients. Overall, the PCD Detect software proved feasible in support of TEM.


Assuntos
Síndrome de Kartagener , Humanos , Adulto , Síndrome de Kartagener/genética , Mutação , Cílios/ultraestrutura , Genótipo , Microscopia Eletrônica de Transmissão , Nucleosídeo NM23 Difosfato Quinases
8.
Science ; 382(6671): 648-649, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943905

RESUMO

A protein-peptide complex generates and stabilizes a cell-wall carbohydrate lattice.


Assuntos
Pectinas , Tubo Polínico , Sinais Direcionadores de Proteínas , Parede Celular/química , Parede Celular/ultraestrutura , Tubo Polínico/química , Tubo Polínico/ultraestrutura , Arabidopsis , Pectinas/química
9.
Tissue Cell ; 85: 102258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918216

RESUMO

Tissue engineering is a science that uses the combination of scaffolds, cells, and active biomolecules to make tissue in order to restore or maintain its function and improve the damaged tissue or even an organ in the laboratory. The purpose of this research was to study the characteristics and biocompatibility of decellularized sheep tracheal scaffolds and also to investigate the differentiation of Adipose-derived stem cells (AD-MSCs) into tracheal cells. After the decellularization of sheep tracheas through the detergent-enzyme method, histological evaluations, measurement of biochemical factors, measurement of DNA amount, and photographing the ultrastructure of the samples by scanning electron microscopy (SEM), they were also evaluated mechanically. Further, In order to check the viability and adhesion of stem cells to the decellularized scaffolds, adipose mesenchymal stem cells were cultured on the scaffolds, and the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay was performed. The expression analysis of the intended genes for the differentiation of mesenchymal stem cells into tracheal cells was evaluated by the real-time PCR method. These results show that the prepared scaffolds are an ideal model for engineering applications, have high biocompatibility, and that the tracheal scaffold provides a suitable environment for the differentiation of ADMSCs. This review provides a basis for future research on tracheal decellularization scaffolds, serves as a suitable model for organ regeneration, and paves the way for their use in clinical medicine.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Animais , Ovinos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Traqueia/ultraestrutura , Matriz Extracelular/metabolismo , Células Cultivadas
10.
Sci Rep ; 13(1): 19456, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945811

RESUMO

Acoustic overexposure can eliminate synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs), even if hair-cell function recovers. This synaptopathy has been extensively studied by confocal microscopy, however, understanding the nature and sequence of damage requires ultrastructural analysis. Here, we used focused ion-beam scanning electron microscopy to mill, image, segment and reconstruct ANF terminals in mice, 1 day and 1 week after synaptopathic exposure (8-16 kHz, 98 dB SPL). At both survivals, ANF terminals were normal in number, but 62% and 53%, respectively, lacked normal synaptic specializations. Most non-synapsing fibers (57% and 48% at 1 day and 1 week) remained in contact with an IHC and contained healthy-looking organelles. ANFs showed a transient increase in mitochondrial content (51%) and efferent innervation (34%) at 1 day. Fibers maintaining synaptic connections showed hypertrophy of pre-synaptic ribbons at both 1 day and 1 week. Non-synaptic fibers were lower in mitochondrial content and typically on the modiolar side of the IHC, where ANFs with high-thresholds and low spontaneous rates are normally found. Even 1 week post-exposure, many ANF terminals remained in IHC contact despite loss of synaptic specializations, thus, regeneration efforts at early post-exposure times should concentrate on synaptogenesis rather than neurite extension.


Assuntos
Cóclea , Perda Auditiva Provocada por Ruído , Camundongos , Animais , Cóclea/fisiologia , Ruído/efeitos adversos , Células Ciliadas Auditivas , Células Ciliadas Auditivas Internas/fisiologia , Sinapses/ultraestrutura , Nervo Coclear , Limiar Auditivo/fisiologia
11.
Nature ; 623(7988): 853-862, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914935

RESUMO

Pumping of the heart is powered by filaments of the motor protein myosin that pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly1. Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years2. Here we solve the structure of the main (cMyBP-C-containing) region of the human cardiac filament using cryo-electron microscopy. The reconstruction reveals the architecture of titin and cMyBP-C and shows how myosin's motor domains (heads) form three different types of motif (providing functional flexibility), which interact with each other and with titin and cMyBP-C to dictate filament architecture and function. The packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps to generate the cardiac super-relaxed state3; how titin and cMyBP-C may contribute to length-dependent activation4; and how mutations in myosin and cMyBP-C might disturb interactions, causing disease5,6. The reconstruction resolves past uncertainties and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.


Assuntos
Miosinas Cardíacas , Microscopia Crioeletrônica , Miocárdio , Humanos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestrutura , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Conectina/química , Conectina/metabolismo , Conectina/ultraestrutura , Miocárdio/química , Miocárdio/ultraestrutura
12.
Nature ; 623(7988): 863-871, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914933

RESUMO

The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-ß chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-ß chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.


Assuntos
Miosinas Cardíacas , Miocárdio , Sarcômeros , Conectina/química , Conectina/metabolismo , Conectina/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Miocárdio/química , Miocárdio/citologia , Miocárdio/ultraestrutura , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestrutura
14.
Science ; 382(6667): eadf6812, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824655

RESUMO

Variation in cytoarchitecture is the basis for the histological definition of cortical areas. We used single cell transcriptomics and performed cellular characterization of the human cortex to better understand cortical areal specialization. Single-nucleus RNA-sequencing of 8 areas spanning cortical structural variation showed a highly consistent cellular makeup for 24 cell subclasses. However, proportions of excitatory neuron subclasses varied substantially, likely reflecting differences in connectivity across primary sensorimotor and association cortices. Laminar organization of astrocytes and oligodendrocytes also differed across areas. Primary visual cortex showed characteristic organization with major changes in the excitatory to inhibitory neuron ratio, expansion of layer 4 excitatory neurons, and specialized inhibitory neurons. These results lay the groundwork for a refined cellular and molecular characterization of human cortical cytoarchitecture and areal specialization.


Assuntos
Neocórtex , Humanos , Neocórtex/metabolismo , Neocórtex/ultraestrutura , Neurônios/classificação , Neurônios/metabolismo , Transcriptoma , Análise da Expressão Gênica de Célula Única , Filogenia
15.
Science ; 382(6669): 388-394, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883552

RESUMO

The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.


Assuntos
Hipotálamo , Neurogênese , Animais , Hipotálamo/fisiologia , Hipotálamo/ultraestrutura , Mamíferos , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Análise da Expressão Gênica de Célula Única
16.
eNeuro ; 10(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37827837

RESUMO

The retinas of the vast majority of vertebrate species are termed "duplex," that is, they contain both rod and cone photoreceptor neurons in different ratios. The retina of little skate (Leucoraja erinacea) is a rarity among vertebrates because it contains only a single photoreceptor cell type and is thus "simplex." This unique retina provides us with an important comparative model and an exciting opportunity to study retinal circuitry within the context of a visual system with a single photoreceptor cell type. What is perhaps even more intriguing is the fact that the Leucoraja retina is able use that single photoreceptor cell type to function under both scotopic and photopic ranges of illumination. Although some ultrastructural characteristics of skate photoreceptors have been examined previously, leading to a general description of them as "rods" largely based on outer segment (OS) morphology and rhodopsin expression, a detailed study of the fine anatomy of the entire cell and its synaptic connectivity is still lacking. To address this gap in knowledge, we performed serial block-face electron microscopy imaging and examined the structure of skate photoreceptors and their postsynaptic partners. We find that skate photoreceptors exhibit unusual ultrastructural characteristics that are either common to rods or cones in other vertebrates (e.g., outer segment architecture, synaptic ribbon number, terminal extensions), or are somewhere in between those of a typical vertebrate rod or cone (e.g., number of invaginating contacts, clustering of multiple ribbons over a single synaptic invagination). We suggest that some of the ultrastructural characteristics we observe may play a role in the ability of the skate retina to function across scotopic and photopic ranges of illumination. Our findings have the potential to reveal as yet undescribed principles of vertebrate retinal design.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Animais , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/ultraestrutura
17.
Kathmandu Univ Med J (KUMJ) ; 21(81): 98-99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37800435

RESUMO

Male infertility may be due to low sperm concentration, poor sperm motility, or abnormal morphology. Among the factors involved in male infertility, there is a rare morphology disorder called "Globozoospermia". This condition is primarily characterized by the presence of round-headed spermatozoa, absence of acrosomal cap and cytoskeleton defects around the nucleus. The morphological characteristics of globozoospermia are formed during spermiogenesis. We report here a case of male infertility due to morphological disorder Globozoospermia. Assessment of semen by observing macroscopic and microscopic parameters are not sufficient for sperm analysis. In present case, macroscopic and microscopic assessment was within normal range. Morphological assessment showed 80% of spermatozoa with round head and absence of acrosomal cap. The absence of acrosome makes fertilization impossible since these sperm are unable to bind to the zona pellucida. By using Intracytoplasmic Sperm Injection (ICSI), conception is possible; however, the fertilization rate remains very low.


Assuntos
Infertilidade Masculina , Teratozoospermia , Masculino , Humanos , Teratozoospermia/diagnóstico , Motilidade dos Espermatozoides , Sêmen , Espermatozoides/ultraestrutura , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/terapia , Doenças Raras
18.
Nature ; 622(7984): 872-879, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821701

RESUMO

Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Nucleotídeos/metabolismo , RNA/biossíntese , RNA/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , DNA/metabolismo , DNA/ultraestrutura
19.
Dokl Biol Sci ; 511(1): 213-221, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833575

RESUMO

The ultrastructure of the tegument of encapsulated tetrathyridia of the genus Mesocestoides Vaillant, 1863 (Cestoda, Cyclophyllidea, Mesocestoididae) from the liver of root voles Microtus oeconomus (Pallas, 1776) and the structure of the three-layered capsule surrounding them were studied for the first time. Several types of extracellular structures were noted on the surface of the tetrathyridia tegument: vesicles, fine granular material, and vacuoles. In addition, the phenomenon of shedding microtriches, which have expanded parts, was found. Host cells in contact with extracellular material show signs of destruction. A characteristic feature of the capsules surrounding the tetrathyridia is the reticular structure of the fibrous layer containing both native and degenerating inflammatory cells.


Assuntos
Cestoides , Mesocestoides , Animais , Mesocestoides/anatomia & histologia , Arvicolinae , Cestoides/ultraestrutura , Fígado
20.
J Morphol ; 284(11): e21644, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856278

RESUMO

The purpose of this study is to describe, in detail, the ultrastructure of the infundibulum of the sexually mature and active female green iguana, Iguana iguana. The infundibulum of five iguanas was remarkably distinct from the uterus, and was also clearly demarcated into cranial (expanded v-shaped) and caudal (tubular) divisions. Tissue samples obtained from five portions (three from the cranial division and two from the caudal division) of the infundibulum were processed conventionally for light and electron microscopy. The epithelial lining of the most anterior, middle, and posterior, parts of the cranial division displayed nonciliated cells predominantly, and occasionally ciliated cells. The numerous secretory granules in nonciliated type 1 cell found in the fimbrial aspect of the infundibulum were homogenous and deeply electron-dense, but those in the other two regions were variants of this cell type because they contained variably electron-dense secretory granules. Two main types of nonciliated cells (type 2 and its variant, type 3, as well as type 4) occurred in the epithelial lining of the caudal division of the infundibulum, but they, clearly, showed no dense secretory granules. Whereas the nonciliated type 2 cell and its variant (type 3 cell) contained large glycogen deposits, the type 4 cell lacked these deposits but its apical part contained large lipid-like droplets and, remarkably, blebbed into the duct lumen. The nonciliated cells lining the mucosal tubular glands contained highly electron-dense secretory granules, which were similar to those found in the nonciliated type 1 cell in the epithelial lining of the fimbrial part of the cranial division of the infundibulum.


Assuntos
Células Epiteliais , Iguanas , Feminino , Animais , Epitélio/ultraestrutura , Tubas Uterinas/ultraestrutura , Hipófise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...