Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.677
Filtrar
1.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630443

RESUMEN

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Asunto(s)
Verduras , Aguas Residuales , Brasinoesteroides , Aguas del Alcantarillado , Cadmio , Antioxidantes , Silicio , Plomo , Biodegradación Ambiental , Agua
2.
J Colloid Interface Sci ; 665: 825-837, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38564946

RESUMEN

Photocatalytic peroxymonosulfate (PMS) oxidation systems demonstrate significant potential and promising prospects through the interconnection of photocatalytic and PMS oxidation for simultaneously achieving efficient pollutant removal and reduction of PMS dosage, which prevents resource wastage and secondary pollution. In this study, a Z-scheme Bi25FeO40/BiOCl (BOFC) heterojunction was constructed to carry out the photocatalytic PMS oxidation process for tetracyclines (TCs) pollutants at low PMS concentrations (0.08 mM). The photocatalytic PMS oxidation rate of Bi25FeO40/BiOCl composites for tetracycline hydrochloride (TCH), chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DXC) reaches 86.6%, 83.6%, 86.7%, and 88.0% within 120 min. Simultaneously, the BOFC/PMS system under visible light (Vis) equally displayed the practical application prospects for the solo and mixed simulated TCs antibiotics wastewater. Based on the electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) valence band spectrum, a Z-scheme electron migration pathway was proposed to elucidate the mechanism underlying the performance enhancement of BOFC composites. Bi25FeO40 in BOFC composites can serve as active site for activating PMS by the formation of Fe3+/Fe2+ cycle. Toxicity estimation software tool (T.E.S.T.) and mung beans planting experiment demonstrates that BOFC/PMS/Vis system can reduce toxicity of TCs wastewater. Therefore, BOFC/PMS/Vis system achieves efficient examination in different water environments and efficient utilization of PMS, which displays a scientific reference for achieving environmentally-friendly and resource-saving handling processes.


Asunto(s)
Contaminantes Ambientales , Peróxidos , Aguas Residuales , Especies Reactivas de Oxígeno , Antibacterianos , Tetraciclina , Luz , Tetraciclinas , Oxígeno
3.
Water Sci Technol ; 89(7): 1647-1664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619895

RESUMEN

The study evaluated the impact of treated wastewater on plant growth through the use of hyperspectral and fluorescence-based techniques coupled with classical biomass analyses, and assessed the potential of reusing treated wastewater for irrigation without fertilizer application. Cherry tomato (Solanum lycopersicum) and cabbage (Brassica oleracea L.) were irrigated with tap water (Tap), secondary effluent (SE), and membrane effluent (ME). Maximum quantum yield of photosystem II (Fv/Fm) of tomato and cabbage was between 0.78 to 0.80 and 0.81 to 0.82, respectively, for all treatments. The performance index (PI) of Tap/SE/ME was 2.73, 2.85, and 2.48 for tomatoes and 4.25, 3.79, and 3.70 for cabbage, respectively. Both Fv/Fm and PI indicated that the treated wastewater did not have a significant adverse effect on the photosynthetic efficiency and plant vitality of the crops. Hyperspectral analysis showed higher chlorophyll and nitrogen content in leaves of recycled water-irrigated crops than tap water-irrigated crops. SE had 10.5% dry matter composition (tomato) and Tap had 10.7% (cabbage). Total leaf count of Tap/SE/ME was 86, 111, and 102 for tomato and 37, 40, and 42 for cabbage, respectively. In this study, the use of treated wastewater did not induce any photosynthetic-related or abiotic stress on the crops; instead, it promoted crop growth.


Asunto(s)
Brassica , Aguas Residuales , Fluorescencia , Biomasa , Hojas de la Planta , Agua , Productos Agrícolas
4.
Water Sci Technol ; 89(7): 1741-1756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619900

RESUMEN

Wastewater treatment plants (WWTPs) have positive and negative impacts on the environment. Therefore, life cycle impact assessment (LCIA) can provide a more holistic framework for performance evaluation than the conventional approach. This study added water footprint (WF) to LCIA and defined ϕ index for accounting for the damage ratio of carbon footprint (CF) to WF. The application of these innovations was verified by comparing the performance of 26 WWTPs. These facilities are located in four different climates in Iran, serve between 1,900 and 980,000 people, and have treatment units like activated sludge, aerated lagoon, and stabilization pond. Here, grey water footprint (GWF) calculated the ecological impacts through typical pollutants. Blue water footprint (BWF) included the productive impacts of wastewater reuse, and CF estimated CO2 emissions from WWTPs. Results showed that GWF was the leading factor. ϕ was 4-7.5% and the average WF of WWTPs was 0.6 m3/ca, which reduced 84%, to 0.1 m³/ca, through wastewater reuse. Here, wastewater treatment and reuse in larger WWTPs, particularly with activated sludge had lower cumulative impacts. Since this method takes more items than the conventional approach, it is recommended for integrated evaluation of WWTPs, mainly in areas where the water-energy nexus is a paradigm for sustainable development.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Huella de Carbono
5.
Environ Monit Assess ; 196(5): 416, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570390

RESUMEN

The research conducts a life cycle assessment (LCA) on wastewater treatment (WWT) methods-membrane bioreactor (MBR), soil biotechnology (SBT), and bio-electrochemical constructed wetlands (BCW)-in comparison with the conventional activated sludge process (ASP). Employing SimaPro v9.5 with a cradle-to-gate system boundary, the analysis utilizes the IMPACT 2002 + method, employing per cubic meter of treated wastewater as the functional unit. The analysis shows that SBT exhibits the lowest environmental impacts among the considered WWT methods. The global warming potential was 0.0996 kg CO2 eq. for SBT, 1.33 kg CO2 eq. for MBR, 0.131 kg CO2 eq. for BCW, and 0.544 kg CO2 eq. for ASP. BCW demonstrates a 75.91% decrease, while MBR exhibits a 144.48% increase compared to ASP. Notably, electricity consumption emerges as the primary contributor to environmental impact in MBR and ASP. The resource impact category varies with a 138.15% increase in MBR and an 83.41% decrease in SBT compared to ASP. Additionally, the research indicates that the high human health impact observed in MBR results mainly from increased carcinogens (0.00176 kg C2H3Cl eq.), non-carcinogens (0.01 kg C2H3Cl eq.), and ionizing radiation (3.34 Bq C-14 eq.). The findings underscore the importance of considering treatment efficiency and broader environmental implications in selecting WWT methods. As the world emphasizes sustainability, such LCA studies provide valuable insights for making informed decisions in wastewater management.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Humanos , Animales , Eliminación de Residuos Líquidos/métodos , Dióxido de Carbono , Monitoreo del Ambiente , Suelo , Estadios del Ciclo de Vida
6.
Water Sci Technol ; 89(6): 1512-1525, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557715

RESUMEN

This study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS-) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons. The results reveal differences in waking up times and evening routines, commuting behaviour during weekends and holidays, and water consumption. The pollutant profiles contribute to a better understanding of pollution generation in households and catchment activities. Flows and COD correlate well at all stations, but there are differences in conductivity and HS- at the station level. The article concludes by discussing the operational experience of the monitoring stations.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Monitoreo del Ambiente/métodos , Aguas del Alcantarillado/análisis , Lluvia , Análisis de la Demanda Biológica de Oxígeno , Ciudades
7.
Water Sci Technol ; 89(6): 1539-1553, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557717

RESUMEN

Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/toxicidad , Microplásticos/toxicidad , Plásticos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
8.
Environ Monit Assess ; 196(5): 440, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592560

RESUMEN

The absence of a sewer system and inadequate wastewater treatment plants results in a discharge of untreated wastewater to the urban drainage channels and pollutes receiving waters. Field visits were carried out to observe water quality parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in an urban drainage system (Kolshet drain) in Thane City, Mumbai Metropolitan Region, India. Dye-tracing studies using rhodamine WT dye were used for computing the velocity, discharge, and dispersion coefficient of the drain. The data analysis shows that the BOD and COD values in the drain are higher than the permissible limits (30 mg L-1 for BOD and 250 mg L-1 for COD), which is not suitable for disposal to any receiving water body. Also, the DO was less than the permissible limit of a minimum of 3 mg L-1 (for the survival of aquatic life). It is seen that the higher BOD load significantly reduced the DO throughout the drain. The Water Quality Analysis Simulation Program (WASP 8.32, 2019) developed by the US Environmental Protection Agency (USEPA) has been used for the simulation of the DO and BOD in the drainage channel. The model simulates an appropriate estimate of the expected variation of DO and BOD at points of interest. The modeling for the Kolshet drain is expected to enable better estimates of the wastewater parameters and the pollution transport in the drain for planning purposes.


Asunto(s)
Aguas Residuales , Calidad del Agua , Estados Unidos , Monitoreo del Ambiente , India , Simulación por Computador , Oxígeno
9.
Euro Surveill ; 29(14)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577805

RESUMEN

In 2019-2022, a prolonged outbreak of oxacillinase (OXA)-48-producing Citrobacter farmeri due to a persistent environmental contamination, occurred in our haematology intensive care unit. In April 2019, we isolated OXA-48-producing C. farmeri from rectal samples of two patients in weekly screenings. The cases had stayed in the same hospital room but 4 months apart. We screened five patients who had stayed in this room between the two cases and identified a third case. Over the following 3 years, five other cases were detected, the last case in September 2022. In total, eight cases were detected: seven colonised with the bacterium and one infected with a lethal outcome. All cases stayed in the same hospital room. We detected OXA-48-producing C. farmeri from a shower, washbasin drains and wastewater drainage of the bathroom of the hospital room. Molecular typing confirmed that all C. farmeri isolates from the environment and the cases were indistinguishable. Despite bundle measures to control the outbreak, the bacterium persisted in the system, which resulted in transmission to new patients. A design defect in the placement of wastewater drains contributed to the persistence and proliferation of the bacterium. The room was closed after the last case and the bathroom rebuilt.


Asunto(s)
Citrobacter , Infección Hospitalaria , Aguas Residuales , Humanos , Infección Hospitalaria/microbiología , beta-Lactamasas , Proteínas Bacterianas/genética , Brotes de Enfermedades , Hospitales , Cuidados Críticos , Klebsiella pneumoniae
10.
J Environ Manage ; 357: 120653, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574704

RESUMEN

In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Nitrógeno/análisis , Aguas del Alcantarillado/química , Bacterias/metabolismo , Contaminantes Ambientales/análisis
11.
J Environ Manage ; 357: 120715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579465

RESUMEN

The effluents from conventional wastewater treatment plants (WWTP), even if accomplishing quality regulations, substantially differ in their characteristics with those of waters in natural environments. Constructed wetlands (CWs) serve as transitional ecosystems within WWTPs, mitigating these differences and restoring natural features before water is poured into the natural environment. Our study focused on an experimental surface-flow CW naturalizing the WWTP effluent in a semiarid area in Eastern Spain. Despite relatively low pollutant concentrations entering the CW, it effectively further reduced settled organic matter and nitrogen. Dissolved organic matter (DOM) reaching the CW was mainly protein-like, yet optical property changes in the DOM indicated increased humification, aromaticity, and stabilization as it flowed through the CW. Flow cytometry analysis revealed that the CW released less abundant but more active bacterial populations than those received. MiSeq Illumina sequencing highlighted changes in the prokaryotic community composition, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria dominating the CW outflow. Functional prediction tools (FaproTax and PICRUSt2) demonstrated a shift towards microbial guilds aligned with those of the natural aquatic environments, increased aerobic chemoheterotrophs, photoautotrophs, and metabolic reactions at higher redox potentials. Enhanced capabilities for degrading plant material correlated well with changes in the DOM pool. Our findings emphasize the role of CWs in releasing biochemically stable DOM and functionally suited microbial populations for natural receiving environments. Consequently, we propose CWs as a naturalization nature-based solution (NBS) in water-scarce regions like the Mediterranean, where reclaimed discharged water can significantly contribute to ecosystem's water resources compared to natural flows.


Asunto(s)
Aguas Residuales , Humedales , Ecosistema , Ciudadanía , Bacterias , Materia Orgánica Disuelta , Región Mediterránea , Eliminación de Residuos Líquidos
12.
J Environ Manage ; 357: 120829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579474

RESUMEN

The emergence and increasing prevalence of antibiotic resistance pose a global public risk for human health, and nonantimicrobial pharmaceuticals play an important role in this process. Herein, five nonantimicrobial pharmaceuticals, including acetaminophen (ACT), clofibric acid (CA), carbamazepine (CBZ), caffeine (CF) and nicotine (NCT), tetracycline-resistant strains, five ARGs (sul1, sul2, tetG, tetM and tetW) and one integrase gene (intI1), were detected in 101 wastewater samples during two typical sewage treatment processes including anaerobic-oxic (A/O) and biological aerated filter (BAF) in Harbin, China. The impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on both the resistance genotypes and resistance phenotypes were explored. The results showed that a significant impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on tetracycline resistance genes encoding ribosomal protection proteins (RPPs) was found, while no changes in antibiotic phenotypes, such as minimal inhibitory concentrations (MICs), were observed. Machine learning was applied to further sort out the contribution of nonantibiotic pharmaceuticals at environmentally relevant concentrations to different ARG subtypes. The highest contribution and correlation were found at concentrations of 1400-1800 ng/L for NCT, 900-1500 ng/L for ACT and 7000-10,000 ng/L for CF for tetracycline resistance genes encoding RPPs, while no significant correlation was found between the target compounds and ARGs when their concentrations were lower than 500 ng/L for NCT, 100 ng/L for ACT and 1000 ng/L for CF, which were higher than the concentrations detected in effluent samples. Therefore, the removal of nonantibiotic pharmaceuticals in WWTPs can reduce their selection pressure for resistance genes in wastewater.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Humanos , Eliminación de Residuos Líquidos/métodos , Genes Bacterianos , Bacterias/genética , Antibacterianos/farmacología , Tetraciclina/farmacología , Genotipo , Farmacorresistencia Microbiana/genética , Aprendizaje Automático , Preparaciones Farmacéuticas
13.
J Environ Manage ; 357: 120606, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583387

RESUMEN

While phosphorus fertilizers contribute to food security, part of the introduced phosphorus dissipates into water bodies leading to eutrophication. At the same time, conventional mineral phosphorus sources are increasingly scarce. Therefore, closing phosphorus cycles reduces pollution while decreasing trade dependence and increasing food security. A major part of the phosphorus loss occurs during food processing. In this article, we combine a systematic literature review with investment and efficiency analysis to investigate the financial feasibility of recovering phosphorus from dairy processing wastewater. This wastewater is particularly rich in phosphorus, but while recovery technologies are readily available, they are rarely adopted. We calculate the Net Present Value (NPV) of investing in phosphorus recycling technology for a representative European dairy processing company producing 100,000 tonnes of milk per year. We develop sensitivity scenarios and adjust the parameters accordingly. Applying struvite precipitation, the NPV can be positive in two scenarios. First, if the phosphorus price is high (1.51 million EUR) or second if phosphorus recovery is a substitute for mandatory waste disposal (1.48 million EUR). However, for a variety of methodological specifications, the NPV is negative, mainly because of high input costs for chemicals and energy. These trade-offs between off-setting pollution and reducing energy consumption imply, that policy makers and investors should consider the energy source for phosphorus recovery carefully.


Asunto(s)
Eliminación de Residuos , Aguas Residuales , Fósforo , Estruvita , Agricultura , Eliminación de Residuos Líquidos , Fosfatos
14.
Swiss Med Wkly ; 154: 3706, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38642339

RESUMEN

AIM OF THE STUDY: The COVID-19 pandemic has drawn attention to the benefit of wastewater-based epidemiology, particularly when case numbers are underreported. Underreporting may be an issue with mpox, where biological reasons and stigma may prevent patients from getting tested. Therefore, we aimed to assess the validity of wastewater surveillance for monitoring mpox virus DNA in wastewater of a Central European city and its association with official case numbers. METHODS: Wastewater samples were collected between 1 July and 28 August 2022 in the catchment area of Basel, Switzerland, and the number of mpox virus genome copies they contained was determined by real-time quantitative PCR. Logistic regression analyses were used to determine the odds of detectability of mpox virus DNA in wastewater, categorised as detectable or undetectable. Mann-Whitney U tests were used to determine associations between samples that tested positive for the mpox virus and officially reported cases and patients' recorded symptomatic phases. RESULTS: Mpox virus DNA was detected in 15 of 39 wastewater samples. The number of positive wastewater samples was associated with the number of symptomatic cases (odds ratio [OR] = 2.18, 95% confidence interval (CI) = 1.38-3.43, p = 0.001). The number of symptomatic cases differed significantly between days with positive versus negative wastewater results (median = 11 and 8, respectively, p = 0.0024). CONCLUSION: Mpox virus DNA was detectable in wastewater, even when officially reported case numbers were low (0-3 newly reported mpox cases corresponding to 6-12 symptomatic patients). Detectability in wastewater was significantly associated with the number of symptomatic patients within the catchment area. These findings illustrate the value of wastewater-based surveillance systems when assessing the prevalence of emerging and circulating infectious diseases.


Asunto(s)
Viruela del Mono , Aguas Residuales , Humanos , Virus de la Viruela de los Monos , Suiza/epidemiología , Pandemias , Monitoreo Epidemiológico Basado en Aguas Residuales , ADN
15.
Environ Geochem Health ; 46(4): 145, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568460

RESUMEN

Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.


Asunto(s)
Nanotubos de Carbono , Aguas Residuales , Polímeros , Sulfonamidas , Sulfanilamida , Preparaciones Farmacéuticas
16.
Water Environ Res ; 96(4): e11014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38636991

RESUMEN

In this study, the characteristics, anaerobic treatability, and energy potential of wastewater samples taken from a dairy products industry were investigated. It was determined that the wastewater has a high organic load (COD = 2800 mg O2/L) and a large proportion of this load is biodegradable. The biochemical methane potential (BMP) value of wastewater was measured as 1118.71 ± 122 ml CH4/L. Volatile solids (VS) removal of 67.25 ± 4.98% was achieved during batch tests and the obtained methane yield was calculated as 411.59 ± 22.8 ml CH4/g VS. Peak methane formation rate and lag time of microorganisms were determined as 163.42 ± 3.83 ml CH4/g VS d and 0.584 ± 0.023 d, respectively. Rate constant for the first-order kinetic model was 0.384 ± 0.072 d-1. The volatile fatty acid (VFA) yield was measured as 155.19 mg COD/g VSS. It was concluded that the wastewater can be treated anaerobically without any inhibition and it has great energy potential. PRACTITIONER POINTS: Dairy wastewater has a large organic load and that most of the organics can be easily biodegradable. Although there are many components considered to be toxic for anaerobic treatment in wastewater, they were found to be very under the inhibition thresholds and did not pose any risk of toxicity. At a satisfactory level, organic matter removal and methane formation were observed in batch anaerobic tests. A rapid microbial adaptation was achieved and the system reached equilibrium in a short time without any acid accumulation. The electrical and caloric energy potentials of the obtained methane gas were calculated as 2.12 and 4.25 kWh/m3, respectively.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Anaerobiosis , Ácidos Grasos Volátiles , Metano , Eliminación de Residuos Líquidos
17.
PLoS One ; 19(4): e0298325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578803

RESUMEN

Surveillance methods of circulating antibiotic resistance genes (ARGs) are of utmost importance in order to tackle what has been described as one of the greatest threats to humanity in the 21st century. In order to be effective, these methods have to be accurate, quickly deployable, and scalable. In this study, we compare metagenomic shotgun sequencing (TruSeq DNA sequencing) of wastewater samples with a state-of-the-art PCR-based method (Resistomap HT-qPCR) on four wastewater samples that were taken from hospital, industrial, urban and rural areas. ARGs that confer resistance to 11 antibiotic classes have been identified in these wastewater samples using both methods, with the most abundant observed classes of ARGs conferring resistance to aminoglycoside, multidrug-resistance (MDR), macrolide-lincosamide-streptogramin B (MLSB), tetracycline and beta-lactams. In comparing the methods, we observed a strong correlation of relative abundance of ARGs obtained by the two tested methods for the majority of antibiotic classes. Finally, we investigated the source of discrepancies in the results obtained by the two methods. This analysis revealed that false negatives were more likely to occur in qPCR due to mutated primer target sites, whereas ARGs with incomplete or low coverage were not detected by the sequencing method due to the parameters set in the bioinformatics pipeline. Indeed, despite the good correlation between the methods, each has its advantages and disadvantages which are also discussed here. By using both methods together, a more robust ARG surveillance program can be established. Overall, the work described here can aid wastewater treatment plants that plan on implementing an ARG surveillance program.


Asunto(s)
Antibacterianos , Aguas Residuales , Antibacterianos/farmacología , Antibacterianos/análisis , Genes Bacterianos , Tetraciclina/análisis , Farmacorresistencia Microbiana/genética
18.
J Environ Sci (China) ; 142: 182-192, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527883

RESUMEN

The degradation of tilmicosin (TLM), a semi-synthetic 16-membered macrolide antibiotic, has been receiving increasing attention. Conventionally, there are three tilmicosin degradation methods, and among them microbial degradation is considered the best due to its high efficiency, eco-friendliness, and low cost. Coincidently, we found a new strain, Glutamicibacter nicotianae sp. AT6, capable of degrading high-concentration TLM at 100 mg/L with a 97% removal efficiency. The role of tryptone was as well investigated, and the results revealed that the loading of tryptone had a significant influence on TLM removals. The toxicity assessment indicated that strain AT6 could efficiently convert TLM into less-toxic substances. Based on the identified intermediates, the degradation of TLM by AT6 processing through two distinct pathways was then proposed.


Asunto(s)
Micrococcaceae , Tilosina , Tilosina/análogos & derivados , Aguas Residuales , Tilosina/toxicidad , Antibacterianos/metabolismo , Biodegradación Ambiental
19.
J Environ Sci (China) ; 142: 83-91, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527898

RESUMEN

Mineral processing wastewater (MPW) with large discharge and high toxicity affects environmental safety, and the realizing zero discharge of MPW is of great significance for reducing environmental pollution, saving water resources, and promoting the sustainable development of the mining industry. In this study, we reported natural marmatite (NM) as a low-cost and efficient photocatalyst for the treatment of MPW to help zero wastewater discharge. The photocatalytic activity of NM was evaluated by the removal of total organic carbon (TOC) from MPW under visible-light illumination, and the optimal degradation conditions were discussed. Results showed that superoxide free radicals (·O2-) were the dominant active species responsible for organic pollutants degradation, and 74.25% TOC removal was obtained after 120 min reaction under the optimum treatment conditions. Meanwhile, the wastewater treated by NM photocatalysis can be reused in the flotation system without adverse impact on the product index. Based on these findings, a model of zero wastewater discharge for flotation with the help of photocatalytic treatment was established, it indicated that the water of the whole system can be balanced without affecting the ore dressing index, which showed that visible light-driven photocatalyst has a promising application prospect in the treatment and recycling of industrial wastewater.


Asunto(s)
Luz , Sulfuros , Aguas Residuales , Compuestos de Zinc , Minerales , Catálisis
20.
Sci Total Environ ; 926: 171890, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521280

RESUMEN

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Anaerobiosis , Fósforo , Carbono , Propionatos , Desnitrificación , Reactores Biológicos/microbiología , Nitrógeno , Acetatos , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...