Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820656

RESUMEN

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Animales , Carbono , Culinaria , Monitoreo del Ambiente , Honduras , Humanos , Material Particulado/análisis , Población Rural , Hollín
2.
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259686

RESUMEN

Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Proteína C-Reactiva , Culinaria/métodos , Estudios Transversales , Femenino , Honduras/epidemiología , Humanos , Material Particulado/análisis , Madera/análisis , Madera/química
3.
Environ Sci Technol Lett ; 9(6): 538-542, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38037640

RESUMEN

Introduction: Household air pollution from cooking-related biomass combustion remains a leading risk factor for global health. Black carbon (BC) is an important component of particulate matter (PM) in household air pollution. We evaluated the impact of the engineered, wood-burning Justa stove intervention on BC concentrations. Methods: We conducted a 3-year stepped-wedge randomized controlled trial with 6 repeated visits among 230 female primary cooks in rural Honduras. Participants used traditional stoves at baseline and were randomized to receive the Justa after visit 2 or after visit 4. At each visit, we measured 24-hour gravimetric personal and kitchen fine PM (PM2.5) concentrations and estimated BC mass concentrations (Sootscan Transmissometer). We conducted intent-to-treat analyses using linear mixed models with natural log-transformed 24-hour personal and kitchen BC. Results: BC concentrations were reduced for households assigned to the Justa vs. traditional stoves: e.g., personal BC geometric mean (GSD), 3.6 µg/m3 (6.4) vs. 11.5 µg/m3 (4.6), respectively. Following the intervention, we observed 53% (95% CI: 35-65%) lower geometric mean personal BC concentrations and 76% (95% CI: 66-83%) lower geometric mean kitchen BC concentrations. Conclusions: The Justa stove intervention substantially reduced BC concentrations, mitigating household air pollution and potentially benefitting human and climate health.

4.
Sci Total Environ ; 767: 144369, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429278

RESUMEN

TRIAL DESIGN: We evaluated the impact of a biomass stove intervention on fine particulate matter (PM2.5) concentrations using an individual-level, stepped-wedge randomized trial. METHODS: We enrolled 230 women in rural Honduran households using traditional biomass stoves and randomly allocated them to one of two study arms. The Justa stove, the study intervention, was locally-sourced, wood-burning, and included an engineered combustion chamber and chimney. At each of 6 visits over 3 years, we measured 24-hour gravimetric personal and kitchen PM2.5 concentrations. Half of the households received the intervention after Visit 2 and half after Visit 4. We conducted intent-to-treat analyses to evaluate the intervention effect using linear mixed models with log-transformed kitchen or personal PM2.5 (separately) as the dependent variable, adjusting for time. We also compared PM2.5 concentrations to World Health Organization (WHO) guidelines. RESULTS: Arms 1 and 2 each had 115 participants with 664 and 632 completed visits, respectively. Median 24-hour average personal PM2.5 exposures were 81 µg/m3 (25th-75th percentile: 50-141 µg/m3) for the traditional stove condition (n=622) and 43 µg/m3 (25th-75th percentile: 27-73 µg/m3) for the Justa stove condition (n=585). Median 24-hour average kitchen concentrations were 178 µg/m3 (25th-75th percentile: 69-440 µg/m3; n=629) and 53 µg/m3 (25th-75th percentile: 29-103 µg/m3; n=578) for the traditional and Justa stove conditions, respectively. The Justa intervention resulted in a 32% reduction in geometric mean personal PM2.5 (95% confidence interval [CI]: 20-43%) and a 56% reduction (95% CI: 46-65%) in geometric mean kitchen PM2.5. During rainy and dry seasons, 53% and 41% of participants with the Justa intervention had 24-hour average personal PM2.5 exposures below the WHO interim target-3 guideline (37.5 µg/m3), respectively. CONCLUSION: The Justa stove intervention substantially lowered personal and kitchen PM2.5 and may be a provisional solution that is feasible for Latin American communities where cleaner fuels may not be available, affordable, or acceptable for some time. Clinicaltrials.gov: NCT02658383.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Contaminación del Aire Interior/análisis , Culinaria , Femenino , Honduras , Humanos , Material Particulado/análisis , Población Rural , Madera/química
5.
Indoor Air ; 30(3): 521-533, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31943353

RESUMEN

Monitoring improved cookstove adoption and usage in developing countries can help anticipate potential health and environmental benefits that may result from household energy interventions. This study explores stove-usage monitor (SUM)-derived usage data from field studies in China (52 stoves, 1422 monitoring days), Honduras (270 stoves, 630 monitoring days), India (19 stoves, 565 monitoring days), and Uganda (38 stoves, 1007 monitoring days). Traditional stove usage was found to be generally similar among four seemingly disparate countries in terms of cooking habits, with average usage of between 171 and 257 minutes per day for the most-used stoves. In Honduras, where survey-based usage data were also collected, there was only modest agreement between sensor data and self-reported user data. For Indian homes, we combined stove-usage data with a single-zone Monte Carlo box model to estimate kitchen-level PM2.5 and CO concentrations under various scenarios of cleaner cookstove adoption. We defined clean cookstove performance based on the International Standards Organization (ISO) voluntary guidelines. Model results showed that even with 75% displacement of traditional stoves with the cleanest available stove (ISO tier-5), World Health Organization 24 hours PM2.5 standards were exceeded in 96.4% of model runs, underscoring the importance of full displacement.


Asunto(s)
Contaminación del Aire Interior , Culinaria , China , Composición Familiar , Honduras , Artículos Domésticos , Productos Domésticos , Humanos , India , Material Particulado , Población Rural , Uganda
6.
Int J Environ Health Res ; 30(2): 160-173, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30760020

RESUMEN

Household air pollution from combustion of solid fuels is an important risk factor for morbidity and mortality, causing an estimated 2.6 million premature deaths globally in 2016. Self-reported health symptoms are a meaningful measure of quality of life, however, few studies have evaluated symptoms and quantitative measures of exposure to household air pollution. We assessed the cross-sectional association of self-reported symptoms and exposures to household air pollution among women in rural Honduras using stove type (traditional [n = 76]; cleaner-burning Justa [n = 74]) and 24-hour average personal and kitchen fine particulate matter (PM2.5) concentrations. The odds of prevalent symptoms were higher among women using traditional stoves vs Justa stoves (e.g. headache: odds ratio = 2.23; 95% confidence interval = 1.13-4.39). Associations between symptoms and measured PM2.5 were generally consistent with the null. These results add to the evidence suggesting reduced exposures and better health-related quality of life among women using cleaner-burning biomass stoves.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire Interior/efectos adversos , Culinaria , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Enfermedades Respiratorias/epidemiología , Población Rural/estadística & datos numéricos , Trastornos de la Visión/epidemiología , Adulto , Estudios Transversales , Femenino , Honduras/epidemiología , Humanos , Persona de Mediana Edad , Prevalencia , Enfermedades Respiratorias/inducido químicamente , Autoinforme , Trastornos de la Visión/inducido químicamente
7.
Environ Pollut ; 258: 113697, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31875572

RESUMEN

Cooking and heating with solid fuels results in high levels of household air pollutants, including particulate matter (PM); however, limited data exist for size fractions smaller than PM2.5 (diameter less than 2.5 µm). We collected 24-h time-resolved measurements of PM2.5 (n = 27) and particle number concentrations (PNC, average diameter 10-700 nm) (n = 44; 24 with paired PM2.5 and PNC) in homes with wood-burning traditional and Justa (i.e., with an engineered combustion chamber and chimney) cookstoves in rural Honduras. The median 24-h PM2.5 concentration (n = 27) was 79 µg/m3 (interquartile range [IQR]: 44-174 µg/m3); traditional (n = 15): 130 µg/m3 (IQR: 48-250 µg/m3); Justa (n = 12): 66 µg/m3 (IQR: 44-97 µg/m3). The median 24-h PNC (n = 44) was 8.5 × 104 particles (pt)/cm3 (IQR: 3.8 × 104-1.8 × 105 pt/cm3); traditional (n = 27): 1.3 × 105 pt/cm3 (IQR: 3.3 × 104-2.0 × 105 pt/cm3); Justa (n = 17): 6.3 × 104 pt/cm3 (IQR: 4.0 × 104-1.2 × 105 pt/cm3). The 24-h average PM2.5 and particle number concentrations were correlated for the full sample of cookstoves (n = 24, Spearman ρ: 0.83); correlations between PM2.5 and PNC were higher in traditional stove kitchens (n = 12, ρ: 0.93) than in Justa stove kitchens (n = 12, ρ: 0.67). The 24-h average concentrations of PM2.5 and PNC were also correlated with the maximum average concentrations during shorter-term averaging windows of one-, five-, 15-, and 60-min, respectively (Spearman ρ: PM2.5 [0.65, 0.85, 0.82, 0.71], PNC [0.74, 0.86, 0.88, 0.86]). Given the moderate correlations observed between 24-h PM2.5 and PNC and between 24-h and the shorter-term averaging windows within size fractions, investigators may need to consider cost-effectiveness and information gained by measuring both size fractions for the study objective. Further evaluations of other stove and fuel combinations are needed.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria/instrumentación , Material Particulado/análisis , Biomasa , Monitoreo del Ambiente , Honduras , Humanos
8.
BMC Public Health ; 19(1): 903, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286921

RESUMEN

BACKGROUND: Growing evidence links household air pollution exposure from biomass-burning cookstoves to cardiometabolic disease risk. Few randomized controlled interventions of cookstoves (biomass or otherwise) have quantitatively characterized changes in exposure and indicators of cardiometabolic health, a growing and understudied burden in low- and middle-income countries (LMICs). Ideally, the solution is to transition households to clean cooking, such as with electric or liquefied petroleum gas stoves; however, those unable to afford or to access these options will continue to burn biomass for the foreseeable future. Wood-burning cookstove designs such as the Justa (incorporating an engineered combustion zone and chimney) have the potential to substantially reduce air pollution exposures. Previous cookstove intervention studies have been limited by stove types that did not substantially reduce exposures and/or by low cookstove adoption and sustained use, and few studies have incorporated community-engaged approaches to enhance the intervention. METHODS/DESIGN: We conducted an individual-level, stepped-wedge randomized controlled trial with the Justa cookstove intervention in rural Honduras. We enrolled 230 female primary cooks who were not pregnant, non-smoking, aged 24-59 years old, and used traditional wood-burning cookstoves at baseline. A community advisory board guided survey development and communication with participants, including recruitment and retention strategies. Over a 3-year study period, participants completed 6 study visits approximately 6 months apart. Half of the women received the Justa after visit 2 and half after visit 4. At each visit, we measured 24-h gravimetric personal and kitchen fine particulate matter (PM2.5) concentrations, qualitative and quantitative cookstove use and adoption metrics, and indicators of cardiometabolic health. The primary health endpoints were blood pressure, C-reactive protein, and glycated hemoglobin. Overall study goals are to explore barriers and enablers of new cookstove adoption and sustained use, compare health endpoints by assigned cookstove type, and explore the exposure-response associations between PM2.5 and indicators of cardiometabolic health. DISCUSSION: This trial, utilizing an economically feasible, community-vetted cookstove and evaluating endpoints relevant for the major causes of morbidity and mortality in LMICs, will provide critical information for household air pollution stakeholders globally. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02658383 , posted January 18, 2016, field work completed May 2018. Official title, "Community-Based Participatory Research: A Tool to Advance Cookstove Interventions." Principal Investigator Maggie L. Clark, Ph.D. Last update posted July 12, 2018.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Enfermedades Cardiovasculares/prevención & control , Culinaria/métodos , Exposición a Riesgos Ambientales/prevención & control , Artículos Domésticos , Adulto , Contaminación del Aire Interior/efectos adversos , Biomasa , Enfermedades Cardiovasculares/etiología , Exposición a Riesgos Ambientales/efectos adversos , Composición Familiar , Femenino , Honduras , Humanos , Persona de Mediana Edad , Material Particulado/análisis , Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto , Población Rural , Adulto Joven
9.
Environ Res ; 170: 46-55, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557691

RESUMEN

BACKGROUND: Household air pollution from cooking with solid fuels affects nearly 3 billion people worldwide and is responsible for an estimated 2.5 million premature deaths and 77 million disability-adjusted life years annually. Investigating the effect of household air pollution on indicators of cardiometabolic disease, such as metabolic syndrome, can help clarify the pathways between this widespread exposure and cardiovascular diseases, which are increasing in low- and middle-income countries. METHODS: Our cross-sectional study of 150 women in rural Honduras (76 with traditional stoves and 74 with cleaner-burning Justa stoves) explored the effect of household air pollution exposure on cardiovascular disease risk factors. Household air pollution was measured by stove type and 24-h average kitchen and personal fine particulate matter [PM2.5] mass and black carbon concentrations. Health endpoints included non-fasting total cholesterol, high-density lipoprotein, calculated low-density lipoprotein, triglycerides, waist circumference to indicate abdominal obesity, and presence of metabolic syndrome (defined by current modified international guidelines: waist circumference ≥ 80 cm plus any two of the following: triglycerides > 200 mg/dL, HDL < 50 mg/dL, systolic blood pressure ≥ 130 mmHg, diastolic blood pressure ≥ 85 mmHg, or glycated hemoglobin > 5.6%). RESULTS: Forty percent of women met the criteria for metabolic syndrome. The prevalence ratio [PR] for metabolic syndrome (versus normal) per interquartile range increase in kitchen PM2.5 and kitchen black carbon was 1.16 (95% confidence interval [CI]: 1.01-1.34) per 312 µg/m3 increase in PM2.5, and 1.07 (95% CI: 1.03-1.12) per 73 µg/m3 increase in black carbon. There is suggestive evidence of a stronger effect in women ≥ 40 years of age compared to women < 40 (p-value for interaction = 0.12 for personal PM2.5). There was no evidence of associations between all other exposure metrics and health endpoints. CONCLUSIONS: The prevalence of metabolic syndrome among our study population was high compared to global estimates. We observed a suggestive effect between metabolic syndrome and exposure to household air pollution. These results for metabolic syndrome may be driven by specific syndrome components, such as blood pressure. Longitudinal research with repeated health and exposure measures is needed to better understand the link between household air pollution and indicators of cardiometabolic disease risk.


Asunto(s)
Contaminación del Aire Interior/estadística & datos numéricos , Culinaria , Lípidos/sangre , Síndrome Metabólico/epidemiología , Circunferencia de la Cintura , Adulto , Contaminación del Aire , Animales , Biomasa , Bovinos , Estudios Transversales , Composición Familiar , Femenino , Honduras/epidemiología , Humanos , Material Particulado , Mujeres
10.
Indoor Air ; 29(1): 130-142, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195255

RESUMEN

Growing evidence links household air pollution exposure from biomass cookstoves with elevated blood pressure. We assessed cross-sectional associations of 24-hour mean concentrations of personal and kitchen fine particulate matter (PM2.5 ), black carbon (BC), and stove type with blood pressure, adjusting for confounders, among 147 women using traditional or cleaner-burning Justa stoves in Honduras. We investigated effect modification by age and body mass index. Traditional stove users had mean (standard deviation) personal and kitchen 24-hour PM2.5 concentrations of 126 µg/m3 (77) and 360 µg/m3 (374), while Justa stove users' exposures were 66 µg/m3 (38) and 137 µg/m3 (194), respectively. BC concentrations were similarly lower among Justa stove users. Adjusted mean systolic blood pressure was 2.5 mm Hg higher (95% CI, 0.7-4.3) per unit increase in natural log-transformed kitchen PM2.5 concentration; results were stronger among women of 40 years or older (5.2 mm Hg increase, 95% CI, 2.3-8.1). Adjusted odds of borderline high and high blood pressure (categorized) were also elevated (odds ratio = 1.5, 95% CI, 1.0-2.3). Some results included null values and are suggestive. Results suggest that reduced household air pollution, even when concentrations exceed air quality guidelines, may help lower cardiovascular disease risk, particularly among older subgroups.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Presión Sanguínea/fisiología , Hipertensión/inducido químicamente , Adulto , Biomasa , Índice de Masa Corporal , Culinaria , Estudios Transversales , Fuentes Generadoras de Energía , Monitoreo del Ambiente , Femenino , Honduras/epidemiología , Humanos , Hipertensión/epidemiología , Persona de Mediana Edad , Material Particulado/efectos adversos , Material Particulado/análisis , Población Rural
11.
Artículo en Inglés | MEDLINE | ID: mdl-30428575

RESUMEN

Household air pollution is estimated to be responsible for nearly three million premature deaths annually. Measuring fractional exhaled nitric oxide (FeNO) may improve the limited understanding of the association of household air pollution and airway inflammation. We evaluated the cross-sectional association of FeNO with exposure to household air pollution (24-h average kitchen and personal fine particulate matter and black carbon; stove type) among 139 women in rural Honduras using traditional stoves or cleaner-burning Justa stoves. We additionally evaluated interaction by age. Results were generally consistent with a null association; we did not observe a consistent pattern for interaction by age. Evidence from ambient and household air pollution regarding FeNO is inconsistent, and may be attributable to differing study populations, exposures, and FeNO measurement procedures (e.g., the flow rate used to measure FeNO).


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Inflamación/etiología , Exposición por Inhalación/efectos adversos , Óxido Nítrico/análisis , Humo/efectos adversos , Adulto , Contaminación del Aire , Contaminación del Aire Interior/análisis , Biomasa , Pruebas Respiratorias , Culinaria , Estudios Transversales , Espiración , Composición Familiar , Femenino , Honduras , Artículos Domésticos , Humanos , Exposición por Inhalación/análisis , Persona de Mediana Edad , Material Particulado/análisis , Población Rural , Humo/análisis
12.
Indoor Air ; 28(4): 640-650, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29575293

RESUMEN

Burning solid fuels to fulfill daily household energy needs results in chronic exposure to household air pollution (HAP), which is among the world's greatest health risks. This paper presents the results of a cross-sectional study of cookstove usage, fuel consumption, and indoor PM2.5 concentrations in rural and urban Honduran homes cooking with the Envirofit HM-5000 metal plancha stove (n = 32) as compared to control households using baseline cooking technologies (n = 33). Temperature-based stove usage measurements showed high HM-5000 acceptance, with significant displacement of the traditional cookstoves at both the urban (99%, P < .05) and rural study sites (75%, P < .05). However, longer-term usage data collected in peri-urban households showed that participants cooked on the HM-5000 more frequently during the 3-day monitoring period than during the following 3 weeks. Average indoor PM2.5 was 66% lower in HM-5000 households as compared to control households (P < .05). Lower indoor PM2.5 concentrations observed in participant homes as compared to control households, supported by high usage and traditional stove displacement, suggest the potential for the HM-5000 to yield health improvements in adopting Honduran households.


Asunto(s)
Contaminación del Aire Interior/análisis , Culinaria/instrumentación , Monitoreo del Ambiente/estadística & datos numéricos , Artículos Domésticos/instrumentación , Material Particulado/análisis , Contaminación del Aire Interior/prevención & control , Estudios Transversales , Diseño de Equipo , Composición Familiar , Honduras , Vivienda , Humanos , Población Rural , Temperatura , Factores de Tiempo , Población Urbana
13.
J Public Health (Oxf) ; 37(3): 455-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25378382

RESUMEN

BACKGROUND: The use of biomass fuel for cooking in traditional cookstove designs negatively affects respiratory health of communities in developing countries. Indoor pollution affects particularly women and children, who are participating in food preparation. The effects of smokeless cookstove designs on indoor pollution are well documented, but few studies exist to assess the effects of improved stove designs on the respiratory health of community members. METHODS: This study uses peak expiratory flow rate (PEFR) measurements in a before-and-after format to assess respiratory function of inhabitants of all 30 houses of Buenas Noches in central Honduras. PEFRs are measured before and 6 months after the installation of Justa stoves in people's homes. Health behaviors, respiratory symptoms and fire wood use are evaluated in a door-to-door survey format. RESULTS: A total of 137 eligible women and children between 6 and 14 years participated in the study. PEFR improved by 9.9-18.5% (P < 0.001) depending on the participants' exposure to indoor pollution. Health complaints like cough and behaviors like clinic visits did not change with the introduction of smokeless cookstove technology. CONCLUSIONS: Smokeless stoves improve respiratory health in an environment of high levels of indoor pollution.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Culinaria/métodos , Ápice del Flujo Espiratorio , Adolescente , Adulto , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/estadística & datos numéricos , Niño , Estudios Controlados Antes y Después , Culinaria/estadística & datos numéricos , Femenino , Honduras/epidemiología , Humanos , Masculino , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/etiología , Población Rural/estadística & datos numéricos
14.
Environ Res ; 110(1): 12-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19922911

RESUMEN

Elevated indoor air pollution exposures associated with the burning of biomass fuels in developing countries are well established. Improved cookstoves have the potential to substantially reduce these exposures. However, few studies have quantitatively evaluated exposure reductions associated with the introduction of improved stoves, likely due to the cost and time-intensive nature of such evaluations. Several studies have demonstrated the value of estimating indoor air pollution exposures by evaluating personal cooking practices and household parameters in addition to stove type. We assessed carbon monoxide (n=54) and fine particulate matter (PM(2.5)) (n=58) levels among non-smoking Honduran women cooking with traditional or improved wood-burning cookstoves in two communities, one semi-urban and one rural. Exposure concentrations were assessed via 8-h indoor monitoring, as well as 8-h personal PM(2.5) monitoring. Housing characteristics were determined to indicate ventilation that may affect carbon monoxide and PM(2.5). Stove quality was assessed using a four-level subjective scale representing the potential for indoor emissions, ranging from poorly functioning traditional stoves to well-functioning improved stoves. Univariately, the stove scale as compared to stove type (traditional versus improved) accounted for a higher percent of the variation in pollutant concentrations; for example, the stove scale predicted 79% of the variation and the stove type predicted 54% of the variation in indoor carbon monoxide concentrations. In multivariable models, the stove scale, age of the stove, and ventilation factors predicted more than 50% of the variation in personal and indoor PM(2.5) and 85% of the variation in indoor carbon monoxide. Results indicate that using type of stove alone as a proxy for exposure may lead to exposure misclassification and potentially biased exposure and health effects relationships. Utilizing stove quality and housing characteristics that influence ventilation may provide a viable alternative to the more time- and cost-intensive pollutant assessments for larger-scale studies. Designing kitchens with proper ventilation structures could lead to improved indoor environments, especially important in areas where biomass will continue to be the preferred and necessary cooking fuel for some time.


Asunto(s)
Contaminación del Aire Interior/análisis , Culinaria/instrumentación , Culinaria/normas , Vivienda/normas , Exposición por Inhalación/análisis , Adulto , Monóxido de Carbono/análisis , Monitoreo del Ambiente , Femenino , Honduras , Humanos , Modelos Lineales , Material Particulado/análisis , Encuestas y Cuestionarios
15.
Int J Environ Health Res ; 19(5): 357-68, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19626518

RESUMEN

Elevated indoor air pollution levels due to the burning of biomass in developing countries are well established. Few studies have quantitatively assessed air pollution levels of improved cookstoves and examined these measures in relation to health effects. We conducted a cross-sectional survey among 79 Honduran women cooking with traditional or improved cookstoves. Carbon monoxide and fine particulate matter (PM(2.5)) levels were assessed via indoor and personal monitoring. Pulmonary function and respiratory symptoms were ascertained. Finger-stick blood spot samples were collected to measure C-reactive protein (CRP) concentrations. The use of improved stoves was associated with 63% lower levels of personal PM(2.5), 73% lower levels of indoor PM(2.5), and 87% lower levels of indoor carbon monoxide as compared to traditional stoves. Women using traditional stoves reported symptoms more frequently than those using improved stoves. There was no evidence of associations between cookstove type or air quality measures with lung function or CRP.


Asunto(s)
Contaminación del Aire Interior/análisis , Culinaria/instrumentación , Exposición por Inhalación/análisis , Material Particulado/análisis , Adulto , Contaminación del Aire Interior/prevención & control , Proteína C-Reactiva/metabolismo , Monóxido de Carbono/análisis , Monóxido de Carbono/toxicidad , Culinaria/normas , Estudios Transversales , Recolección de Datos , Monitoreo del Ambiente/métodos , Femenino , Honduras , Vivienda , Humanos , Exposición por Inhalación/prevención & control , Persona de Mediana Edad , Material Particulado/toxicidad , Pruebas de Función Respiratoria , Adulto Joven
16.
Environ Sci Technol ; 40(21): 6750-7, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17144306

RESUMEN

It is estimated that the combustion of biofuel generates 20% of all carbonaceous aerosols, yet these particles are studied less than those of other common sources. We designed and built a portable battery-operated emission-sampling cart to measure the real-time optical properties and other emission characteristics of biofuel cookstoves. In a field study in Honduras, we measured emission factors averaging 8.5 g/kg, higher than those found in previous laboratory studies. Strong flaming events emitted very dark particles with the optical properties of black particles. The elemental carbon to total carbon ratios ranged from 0.07 to 0.64, confirming that high elemental carbon fractions can be emitted from biofuel combustion and may not be used to distinguish fossil-fuel from biofuel sources when cooking is the dominant usage. Absorption Angstrom exponents, representing the dependence of absorption on wavelength, ranged from 1 (black) to 5 (yellow). Strongly absorbing particles with absorption inversely dependent on wavelength were emitted separately from particles with weak absorption and strong wavelength dependence; the latter probably contained conjugated aromatic compounds. Because combustion occurs in distinct phases, different types of carbonaceous aerosols from biofuel combustion are externally mixed at emission and may have different atmospheric fates.


Asunto(s)
Carbono/química , Artículos Domésticos/instrumentación , Contaminantes Atmosféricos/análisis , Contaminación del Aire , Contaminación del Aire Interior , Carcinógenos Ambientales , Culinaria , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Combustibles Fósiles , Honduras , Hidrocarburos/análisis , Factores de Tiempo , Madera
17.
Int J Cancer ; 97(4): 536-41, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11802219

RESUMEN

There is suggestive evidence that the use of wood for cooking increases the risk of invasive cervical cancer. We investigated this association in women with cervical neoplasia in Honduras. Women aged 20-64 years with cervical intraepithelial neoplasia (CIN) grade I (n = 44), CIN II (n = 36) or CIN III (n = 45) were recruited from screening programs in Tegucigalpa City and each was matched by age and clinic to 2 controls (241 total) without cervical abnormalities. The clinics selected women of low socioeconomic status. Cervical scrapes were tested for the presence of human papillomavirus (HPV) DNA using a general primer set directed against the L1 open reading frame, and HPV genotyping was performed. Odds ratios (ORs) were computed through conditional logistic regression; p-values were from tests for linear trend of risk with increasing exposure. HPV DNA was detected in 48% of women with CIN I, 67% with CIN II and 89% with CIN III. The ORs were 1.5, 2.5 and 38.3 respectively. At univariate analysis, age at first intercourse was consistently lower among cases than controls. Risk was reduced by 50% or more in all 3 CIN classes when initiation of sexual activity at age 20 years or older was compared with initiation before age 16 years (p = 0.013 for CIN I). No effect was observed for smoking, oral contraceptives or previous cytologic screening. Effects for number of sexual partners, parity, age at first pregnancy and education were in the expected directions but never persisted after adjustment for HPV. Chronic exposure to wood smoke significantly increased the risk of CIN III (p = 0.022). However, women who said "No" when asked if they ever used wood in the kitchen had a higher risk than those with low or intermediate exposure. This was taken as evidence that the initial screening question had either been misunderstood or that answers were biased. Restricting the analysis to women who reported exposure yielded positive associations in all CIN classes with for CIN III ORs of 2.3 for 25-34 and 9.5 for 35+ years compared with women who had 1-14 years of exposure (p = 0.017). A multivariate analysis of the complete dataset (n = 366) allowed for separate ORs for HPV in each CIN class. Inclusion of age at first intercourse significantly improved this model (p = 0.021). Adding exposure to wood smoke further improved the model only if an interaction between woodsmoke and HPV was allowed for. If, as the data suggest, it was assumed that wood smoke had its effect among HPV-positives only, there was a significant linear dose-response relationship between exposure to woodsmoke and risk of CIN (p = 0.026). This association was independent of other risk factors including education, parity and number of sexual partners. ORs in the final model were 0.37 for age at first intercourse 20 years or higher and 5.69 for more than 35 years of exposure to wood burning in the kitchen. The present study suggests that the use of wood for cooking is a risk factor for cervical neoplasia that deserves further study, given its high prevalence in developing countries.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Carcinógenos Ambientales/efectos adversos , Culinaria/métodos , Exposición a Riesgos Ambientales , Infecciones por Papillomavirus/epidemiología , Humo/efectos adversos , Infecciones Tumorales por Virus/epidemiología , Displasia del Cuello del Útero/epidemiología , Neoplasias del Cuello Uterino/epidemiología , Madera , Adolescente , Adulto , Factores de Edad , Estudios de Casos y Controles , Anticonceptivos Orales/efectos adversos , Culinaria/estadística & datos numéricos , Sondas de ADN de HPV , Utilización de Medicamentos/estadística & datos numéricos , Femenino , Honduras/epidemiología , Humanos , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/complicaciones , Reacción en Cadena de la Polimerasa , Historia Reproductiva , Factores de Riesgo , Parejas Sexuales , Factores Socioeconómicos , Infecciones Tumorales por Virus/complicaciones , Neoplasias del Cuello Uterino/etiología , Displasia del Cuello del Útero/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...